/* * BSD syscalls * * Copyright (c) 2003-2008 Fabrice Bellard * Copyright (c) 2013-2014 Stacey D. Son * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ /* * We need the FreeBSD "legacy" definitions. Rust needs the FreeBSD 11 system * calls since it doesn't use libc at all, so we have to emulate that despite * FreeBSD 11 being EOL'd. */ #define _WANT_FREEBSD11_STAT #define _WANT_FREEBSD11_STATFS #define _WANT_FREEBSD11_DIRENT #define _WANT_KERNEL_ERRNO #define _WANT_SEMUN #include "qemu/osdep.h" #include "qemu/cutils.h" #include "qemu/path.h" #include #include #include #include #include "qemu.h" #include "signal-common.h" #include "user/syscall-trace.h" #include "bsd-file.h" #include "bsd-proc.h" /* I/O */ safe_syscall3(int, open, const char *, path, int, flags, mode_t, mode); safe_syscall4(int, openat, int, fd, const char *, path, int, flags, mode_t, mode); safe_syscall3(ssize_t, read, int, fd, void *, buf, size_t, nbytes); safe_syscall4(ssize_t, pread, int, fd, void *, buf, size_t, nbytes, off_t, offset); safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt); safe_syscall4(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt, off_t, offset); safe_syscall3(ssize_t, write, int, fd, void *, buf, size_t, nbytes); safe_syscall4(ssize_t, pwrite, int, fd, void *, buf, size_t, nbytes, off_t, offset); safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt); safe_syscall4(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt, off_t, offset); void target_set_brk(abi_ulong new_brk) { } /* * errno conversion. */ abi_long get_errno(abi_long ret) { if (ret == -1) { return -host_to_target_errno(errno); } else { return ret; } } int host_to_target_errno(int err) { /* * All the BSDs have the property that the error numbers are uniform across * all architectures for a given BSD, though they may vary between different * BSDs. */ return err; } bool is_error(abi_long ret) { return (abi_ulong)ret >= (abi_ulong)(-4096); } /* * Unlocks a iovec. Unlike unlock_iovec, it assumes the tvec array itself is * already locked from target_addr. It will be unlocked as well as all the iovec * elements. */ static void helper_unlock_iovec(struct target_iovec *target_vec, abi_ulong target_addr, struct iovec *vec, int count, int copy) { for (int i = 0; i < count; i++) { abi_ulong base = tswapal(target_vec[i].iov_base); if (vec[i].iov_base) { unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); } } unlock_user(target_vec, target_addr, 0); } struct iovec *lock_iovec(int type, abi_ulong target_addr, int count, int copy) { struct target_iovec *target_vec; struct iovec *vec; abi_ulong total_len, max_len; int i; int err = 0; if (count == 0) { errno = 0; return NULL; } if (count < 0 || count > IOV_MAX) { errno = EINVAL; return NULL; } vec = g_try_new0(struct iovec, count); if (vec == NULL) { errno = ENOMEM; return NULL; } target_vec = lock_user(VERIFY_READ, target_addr, count * sizeof(struct target_iovec), 1); if (target_vec == NULL) { err = EFAULT; goto fail2; } max_len = 0x7fffffff & MIN(TARGET_PAGE_MASK, PAGE_MASK); total_len = 0; for (i = 0; i < count; i++) { abi_ulong base = tswapal(target_vec[i].iov_base); abi_long len = tswapal(target_vec[i].iov_len); if (len < 0) { err = EINVAL; goto fail; } else if (len == 0) { /* Zero length pointer is ignored. */ vec[i].iov_base = 0; } else { vec[i].iov_base = lock_user(type, base, len, copy); /* * If the first buffer pointer is bad, this is a fault. But * subsequent bad buffers will result in a partial write; this is * realized by filling the vector with null pointers and zero * lengths. */ if (!vec[i].iov_base) { if (i == 0) { err = EFAULT; goto fail; } else { /* * Fail all the subsequent addresses, they are already * zero'd. */ goto out; } } if (len > max_len - total_len) { len = max_len - total_len; } } vec[i].iov_len = len; total_len += len; } out: unlock_user(target_vec, target_addr, 0); return vec; fail: helper_unlock_iovec(target_vec, target_addr, vec, i, copy); fail2: g_free(vec); errno = err; return NULL; } void unlock_iovec(struct iovec *vec, abi_ulong target_addr, int count, int copy) { struct target_iovec *target_vec; target_vec = lock_user(VERIFY_READ, target_addr, count * sizeof(struct target_iovec), 1); if (target_vec) { helper_unlock_iovec(target_vec, target_addr, vec, count, copy); } g_free(vec); } /* * All errnos that freebsd_syscall() returns must be -TARGET_. */ static abi_long freebsd_syscall(void *cpu_env, int num, abi_long arg1, abi_long arg2, abi_long arg3, abi_long arg4, abi_long arg5, abi_long arg6, abi_long arg7, abi_long arg8) { abi_long ret; switch (num) { /* * process system calls */ case TARGET_FREEBSD_NR_exit: /* exit(2) */ ret = do_bsd_exit(cpu_env, arg1); break; /* * File system calls. */ case TARGET_FREEBSD_NR_read: /* read(2) */ ret = do_bsd_read(arg1, arg2, arg3); break; case TARGET_FREEBSD_NR_pread: /* pread(2) */ ret = do_bsd_pread(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6); break; case TARGET_FREEBSD_NR_readv: /* readv(2) */ ret = do_bsd_readv(arg1, arg2, arg3); break; case TARGET_FREEBSD_NR_preadv: /* preadv(2) */ ret = do_bsd_preadv(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6); case TARGET_FREEBSD_NR_write: /* write(2) */ ret = do_bsd_write(arg1, arg2, arg3); break; case TARGET_FREEBSD_NR_pwrite: /* pwrite(2) */ ret = do_bsd_pwrite(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6); break; case TARGET_FREEBSD_NR_writev: /* writev(2) */ ret = do_bsd_writev(arg1, arg2, arg3); break; case TARGET_FREEBSD_NR_pwritev: /* pwritev(2) */ ret = do_bsd_pwritev(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6); break; case TARGET_FREEBSD_NR_open: /* open(2) */ ret = do_bsd_open(arg1, arg2, arg3); break; case TARGET_FREEBSD_NR_openat: /* openat(2) */ ret = do_bsd_openat(arg1, arg2, arg3, arg4); break; case TARGET_FREEBSD_NR_close: /* close(2) */ ret = do_bsd_close(arg1); break; case TARGET_FREEBSD_NR_fdatasync: /* fdatasync(2) */ ret = do_bsd_fdatasync(arg1); break; case TARGET_FREEBSD_NR_fsync: /* fsync(2) */ ret = do_bsd_fsync(arg1); break; case TARGET_FREEBSD_NR_freebsd12_closefrom: /* closefrom(2) */ ret = do_bsd_closefrom(arg1); break; case TARGET_FREEBSD_NR_revoke: /* revoke(2) */ ret = do_bsd_revoke(arg1); break; case TARGET_FREEBSD_NR_access: /* access(2) */ ret = do_bsd_access(arg1, arg2); break; case TARGET_FREEBSD_NR_eaccess: /* eaccess(2) */ ret = do_bsd_eaccess(arg1, arg2); break; case TARGET_FREEBSD_NR_faccessat: /* faccessat(2) */ ret = do_bsd_faccessat(arg1, arg2, arg3, arg4); break; case TARGET_FREEBSD_NR_chdir: /* chdir(2) */ ret = do_bsd_chdir(arg1); break; case TARGET_FREEBSD_NR_fchdir: /* fchdir(2) */ ret = do_bsd_fchdir(arg1); break; case TARGET_FREEBSD_NR_rename: /* rename(2) */ ret = do_bsd_rename(arg1, arg2); break; case TARGET_FREEBSD_NR_renameat: /* renameat(2) */ ret = do_bsd_renameat(arg1, arg2, arg3, arg4); break; case TARGET_FREEBSD_NR_link: /* link(2) */ ret = do_bsd_link(arg1, arg2); break; case TARGET_FREEBSD_NR_linkat: /* linkat(2) */ ret = do_bsd_linkat(arg1, arg2, arg3, arg4, arg5); break; case TARGET_FREEBSD_NR_unlink: /* unlink(2) */ ret = do_bsd_unlink(arg1); break; case TARGET_FREEBSD_NR_unlinkat: /* unlinkat(2) */ ret = do_bsd_unlinkat(arg1, arg2, arg3); break; case TARGET_FREEBSD_NR_mkdir: /* mkdir(2) */ ret = do_bsd_mkdir(arg1, arg2); break; case TARGET_FREEBSD_NR_mkdirat: /* mkdirat(2) */ ret = do_bsd_mkdirat(arg1, arg2, arg3); break; default: qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num); ret = -TARGET_ENOSYS; break; } return ret; } /* * do_freebsd_syscall() should always have a single exit point at the end so * that actions, such as logging of syscall results, can be performed. This * as a wrapper around freebsd_syscall() so that actually happens. Since * that is a singleton, modern compilers will inline it anyway... */ abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1, abi_long arg2, abi_long arg3, abi_long arg4, abi_long arg5, abi_long arg6, abi_long arg7, abi_long arg8) { CPUState *cpu = env_cpu(cpu_env); int ret; trace_guest_user_syscall(cpu, num, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8); if (do_strace) { print_freebsd_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6); } ret = freebsd_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8); if (do_strace) { print_freebsd_syscall_ret(num, ret); } trace_guest_user_syscall_ret(cpu, num, ret); return ret; } void syscall_init(void) { }