/* * block_copy API * * Copyright (C) 2013 Proxmox Server Solutions * Copyright (c) 2019 Virtuozzo International GmbH. * * Authors: * Dietmar Maurer (dietmar@proxmox.com) * Vladimir Sementsov-Ogievskiy * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "trace.h" #include "qapi/error.h" #include "block/block-copy.h" #include "block/block_int-io.h" #include "block/dirty-bitmap.h" #include "block/reqlist.h" #include "sysemu/block-backend.h" #include "qemu/units.h" #include "qemu/co-shared-resource.h" #include "qemu/coroutine.h" #include "qemu/ratelimit.h" #include "block/aio_task.h" #include "qemu/error-report.h" #include "qemu/memalign.h" #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB) #define BLOCK_COPY_MAX_BUFFER (1 * MiB) #define BLOCK_COPY_MAX_MEM (128 * MiB) #define BLOCK_COPY_MAX_WORKERS 64 #define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */ #define BLOCK_COPY_CLUSTER_SIZE_DEFAULT (1 << 16) typedef enum { COPY_READ_WRITE_CLUSTER, COPY_READ_WRITE, COPY_WRITE_ZEROES, COPY_RANGE_SMALL, COPY_RANGE_FULL } BlockCopyMethod; static coroutine_fn int block_copy_task_entry(AioTask *task); typedef struct BlockCopyCallState { /* Fields initialized in block_copy_async() and never changed. */ BlockCopyState *s; int64_t offset; int64_t bytes; int max_workers; int64_t max_chunk; bool ignore_ratelimit; BlockCopyAsyncCallbackFunc cb; void *cb_opaque; /* Coroutine where async block-copy is running */ Coroutine *co; /* Fields whose state changes throughout the execution */ bool finished; /* atomic */ QemuCoSleep sleep; /* TODO: protect API with a lock */ bool cancelled; /* atomic */ /* To reference all call states from BlockCopyState */ QLIST_ENTRY(BlockCopyCallState) list; /* * Fields that report information about return values and errors. * Protected by lock in BlockCopyState. */ bool error_is_read; /* * @ret is set concurrently by tasks under mutex. Only set once by first * failed task (and untouched if no task failed). * After finishing (call_state->finished is true), it is not modified * anymore and may be safely read without mutex. */ int ret; } BlockCopyCallState; typedef struct BlockCopyTask { AioTask task; /* * Fields initialized in block_copy_task_create() * and never changed. */ BlockCopyState *s; BlockCopyCallState *call_state; /* * @method can also be set again in the while loop of * block_copy_dirty_clusters(), but it is never accessed concurrently * because the only other function that reads it is * block_copy_task_entry() and it is invoked afterwards in the same * iteration. */ BlockCopyMethod method; /* * Generally, req is protected by lock in BlockCopyState, Still req.offset * is only set on task creation, so may be read concurrently after creation. * req.bytes is changed at most once, and need only protecting the case of * parallel read while updating @bytes value in block_copy_task_shrink(). */ BlockReq req; } BlockCopyTask; static int64_t task_end(BlockCopyTask *task) { return task->req.offset + task->req.bytes; } typedef struct BlockCopyState { /* * BdrvChild objects are not owned or managed by block-copy. They are * provided by block-copy user and user is responsible for appropriate * permissions on these children. */ BdrvChild *source; BdrvChild *target; /* * Fields initialized in block_copy_state_new() * and never changed. */ int64_t cluster_size; int64_t max_transfer; uint64_t len; BdrvRequestFlags write_flags; /* * Fields whose state changes throughout the execution * Protected by lock. */ CoMutex lock; int64_t in_flight_bytes; BlockCopyMethod method; bool discard_source; BlockReqList reqs; QLIST_HEAD(, BlockCopyCallState) calls; /* * skip_unallocated: * * Used by sync=top jobs, which first scan the source node for unallocated * areas and clear them in the copy_bitmap. During this process, the bitmap * is thus not fully initialized: It may still have bits set for areas that * are unallocated and should actually not be copied. * * This is indicated by skip_unallocated. * * In this case, block_copy() will query the source’s allocation status, * skip unallocated regions, clear them in the copy_bitmap, and invoke * block_copy_reset_unallocated() every time it does. */ bool skip_unallocated; /* atomic */ /* State fields that use a thread-safe API */ BdrvDirtyBitmap *copy_bitmap; ProgressMeter *progress; SharedResource *mem; RateLimit rate_limit; } BlockCopyState; /* Called with lock held */ static int64_t block_copy_chunk_size(BlockCopyState *s) { switch (s->method) { case COPY_READ_WRITE_CLUSTER: return s->cluster_size; case COPY_READ_WRITE: case COPY_RANGE_SMALL: return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER), s->max_transfer); case COPY_RANGE_FULL: return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE), s->max_transfer); default: /* Cannot have COPY_WRITE_ZEROES here. */ abort(); } } /* * Search for the first dirty area in offset/bytes range and create task at * the beginning of it. */ static coroutine_fn BlockCopyTask * block_copy_task_create(BlockCopyState *s, BlockCopyCallState *call_state, int64_t offset, int64_t bytes) { BlockCopyTask *task; int64_t max_chunk; QEMU_LOCK_GUARD(&s->lock); max_chunk = MIN_NON_ZERO(block_copy_chunk_size(s), call_state->max_chunk); if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap, offset, offset + bytes, max_chunk, &offset, &bytes)) { return NULL; } assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); bytes = QEMU_ALIGN_UP(bytes, s->cluster_size); /* region is dirty, so no existent tasks possible in it */ assert(!reqlist_find_conflict(&s->reqs, offset, bytes)); bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes); s->in_flight_bytes += bytes; task = g_new(BlockCopyTask, 1); *task = (BlockCopyTask) { .task.func = block_copy_task_entry, .s = s, .call_state = call_state, .method = s->method, }; reqlist_init_req(&s->reqs, &task->req, offset, bytes); return task; } /* * block_copy_task_shrink * * Drop the tail of the task to be handled later. Set dirty bits back and * wake up all tasks waiting for us (may be some of them are not intersecting * with shrunk task) */ static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task, int64_t new_bytes) { QEMU_LOCK_GUARD(&task->s->lock); if (new_bytes == task->req.bytes) { return; } assert(new_bytes > 0 && new_bytes < task->req.bytes); task->s->in_flight_bytes -= task->req.bytes - new_bytes; bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->req.offset + new_bytes, task->req.bytes - new_bytes); reqlist_shrink_req(&task->req, new_bytes); } static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret) { QEMU_LOCK_GUARD(&task->s->lock); task->s->in_flight_bytes -= task->req.bytes; if (ret < 0) { bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->req.offset, task->req.bytes); } if (task->s->progress) { progress_set_remaining(task->s->progress, bdrv_get_dirty_count(task->s->copy_bitmap) + task->s->in_flight_bytes); } reqlist_remove_req(&task->req); } void block_copy_state_free(BlockCopyState *s) { if (!s) { return; } ratelimit_destroy(&s->rate_limit); bdrv_release_dirty_bitmap(s->copy_bitmap); shres_destroy(s->mem); g_free(s); } static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target) { return MIN_NON_ZERO(INT_MAX, MIN_NON_ZERO(source->bs->bl.max_transfer, target->bs->bl.max_transfer)); } void block_copy_set_copy_opts(BlockCopyState *s, bool use_copy_range, bool compress) { /* Keep BDRV_REQ_SERIALISING set (or not set) in block_copy_state_new() */ s->write_flags = (s->write_flags & BDRV_REQ_SERIALISING) | (compress ? BDRV_REQ_WRITE_COMPRESSED : 0); if (s->max_transfer < s->cluster_size) { /* * copy_range does not respect max_transfer. We don't want to bother * with requests smaller than block-copy cluster size, so fallback to * buffered copying (read and write respect max_transfer on their * behalf). */ s->method = COPY_READ_WRITE_CLUSTER; } else if (compress) { /* Compression supports only cluster-size writes and no copy-range. */ s->method = COPY_READ_WRITE_CLUSTER; } else { /* * If copy range enabled, start with COPY_RANGE_SMALL, until first * successful copy_range (look at block_copy_do_copy). */ s->method = use_copy_range ? COPY_RANGE_SMALL : COPY_READ_WRITE; } } static int64_t block_copy_calculate_cluster_size(BlockDriverState *target, int64_t min_cluster_size, Error **errp) { int ret; BlockDriverInfo bdi; bool target_does_cow; GLOBAL_STATE_CODE(); GRAPH_RDLOCK_GUARD_MAINLOOP(); min_cluster_size = MAX(min_cluster_size, (int64_t)BLOCK_COPY_CLUSTER_SIZE_DEFAULT); target_does_cow = bdrv_backing_chain_next(target); /* * If there is no backing file on the target, we cannot rely on COW if our * backup cluster size is smaller than the target cluster size. Even for * targets with a backing file, try to avoid COW if possible. */ ret = bdrv_get_info(target, &bdi); if (ret == -ENOTSUP && !target_does_cow) { /* Cluster size is not defined */ warn_report("The target block device doesn't provide information about " "the block size and it doesn't have a backing file. The " "(default) block size of %" PRIi64 " bytes is used. If the " "actual block size of the target exceeds this value, the " "backup may be unusable", min_cluster_size); return min_cluster_size; } else if (ret < 0 && !target_does_cow) { error_setg_errno(errp, -ret, "Couldn't determine the cluster size of the target image, " "which has no backing file"); error_append_hint(errp, "Aborting, since this may create an unusable destination image\n"); return ret; } else if (ret < 0 && target_does_cow) { /* Not fatal; just trudge on ahead. */ return min_cluster_size; } return MAX(min_cluster_size, bdi.cluster_size); } BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target, BlockDriverState *copy_bitmap_bs, const BdrvDirtyBitmap *bitmap, bool discard_source, uint64_t min_cluster_size, Error **errp) { ERRP_GUARD(); BlockCopyState *s; int64_t cluster_size; BdrvDirtyBitmap *copy_bitmap; bool is_fleecing; GLOBAL_STATE_CODE(); if (min_cluster_size > INT64_MAX) { error_setg(errp, "min-cluster-size too large: %" PRIu64 " > %" PRIi64, min_cluster_size, INT64_MAX); return NULL; } else if (min_cluster_size && !is_power_of_2(min_cluster_size)) { error_setg(errp, "min-cluster-size needs to be a power of 2"); return NULL; } cluster_size = block_copy_calculate_cluster_size(target->bs, (int64_t)min_cluster_size, errp); if (cluster_size < 0) { return NULL; } copy_bitmap = bdrv_create_dirty_bitmap(copy_bitmap_bs, cluster_size, NULL, errp); if (!copy_bitmap) { return NULL; } bdrv_disable_dirty_bitmap(copy_bitmap); if (bitmap) { if (!bdrv_merge_dirty_bitmap(copy_bitmap, bitmap, NULL, errp)) { error_prepend(errp, "Failed to merge bitmap '%s' to internal " "copy-bitmap: ", bdrv_dirty_bitmap_name(bitmap)); bdrv_release_dirty_bitmap(copy_bitmap); return NULL; } } else { bdrv_set_dirty_bitmap(copy_bitmap, 0, bdrv_dirty_bitmap_size(copy_bitmap)); } /* * If source is in backing chain of target assume that target is going to be * used for "image fleecing", i.e. it should represent a kind of snapshot of * source at backup-start point in time. And target is going to be read by * somebody (for example, used as NBD export) during backup job. * * In this case, we need to add BDRV_REQ_SERIALISING write flag to avoid * intersection of backup writes and third party reads from target, * otherwise reading from target we may occasionally read already updated by * guest data. * * For more information see commit f8d59dfb40bb and test * tests/qemu-iotests/222 */ bdrv_graph_rdlock_main_loop(); is_fleecing = bdrv_chain_contains(target->bs, source->bs); bdrv_graph_rdunlock_main_loop(); s = g_new(BlockCopyState, 1); *s = (BlockCopyState) { .source = source, .target = target, .copy_bitmap = copy_bitmap, .cluster_size = cluster_size, .len = bdrv_dirty_bitmap_size(copy_bitmap), .write_flags = (is_fleecing ? BDRV_REQ_SERIALISING : 0), .mem = shres_create(BLOCK_COPY_MAX_MEM), .max_transfer = QEMU_ALIGN_DOWN( block_copy_max_transfer(source, target), cluster_size), }; s->discard_source = discard_source; block_copy_set_copy_opts(s, false, false); ratelimit_init(&s->rate_limit); qemu_co_mutex_init(&s->lock); QLIST_INIT(&s->reqs); QLIST_INIT(&s->calls); return s; } /* Only set before running the job, no need for locking. */ void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm) { s->progress = pm; } /* * Takes ownership of @task * * If pool is NULL directly run the task, otherwise schedule it into the pool. * * Returns: task.func return code if pool is NULL * otherwise -ECANCELED if pool status is bad * otherwise 0 (successfully scheduled) */ static coroutine_fn int block_copy_task_run(AioTaskPool *pool, BlockCopyTask *task) { if (!pool) { int ret = task->task.func(&task->task); g_free(task); return ret; } aio_task_pool_wait_slot(pool); if (aio_task_pool_status(pool) < 0) { co_put_to_shres(task->s->mem, task->req.bytes); block_copy_task_end(task, -ECANCELED); g_free(task); return -ECANCELED; } aio_task_pool_start_task(pool, &task->task); return 0; } /* * block_copy_do_copy * * Do copy of cluster-aligned chunk. Requested region is allowed to exceed * s->len only to cover last cluster when s->len is not aligned to clusters. * * No sync here: neither bitmap nor intersecting requests handling, only copy. * * @method is an in-out argument, so that copy_range can be either extended to * a full-size buffer or disabled if the copy_range attempt fails. The output * value of @method should be used for subsequent tasks. * Returns 0 on success. */ static int coroutine_fn GRAPH_RDLOCK block_copy_do_copy(BlockCopyState *s, int64_t offset, int64_t bytes, BlockCopyMethod *method, bool *error_is_read) { int ret; int64_t nbytes = MIN(offset + bytes, s->len) - offset; void *bounce_buffer = NULL; assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes); assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); assert(QEMU_IS_ALIGNED(bytes, s->cluster_size)); assert(offset < s->len); assert(offset + bytes <= s->len || offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size)); assert(nbytes < INT_MAX); switch (*method) { case COPY_WRITE_ZEROES: ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags & ~BDRV_REQ_WRITE_COMPRESSED); if (ret < 0) { trace_block_copy_write_zeroes_fail(s, offset, ret); *error_is_read = false; } return ret; case COPY_RANGE_SMALL: case COPY_RANGE_FULL: ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes, 0, s->write_flags); if (ret >= 0) { /* Successful copy-range, increase chunk size. */ *method = COPY_RANGE_FULL; return 0; } trace_block_copy_copy_range_fail(s, offset, ret); *method = COPY_READ_WRITE; /* Fall through to read+write with allocated buffer */ case COPY_READ_WRITE_CLUSTER: case COPY_READ_WRITE: /* * In case of failed copy_range request above, we may proceed with * buffered request larger than BLOCK_COPY_MAX_BUFFER. * Still, further requests will be properly limited, so don't care too * much. Moreover the most likely case (copy_range is unsupported for * the configuration, so the very first copy_range request fails) * is handled by setting large copy_size only after first successful * copy_range. */ bounce_buffer = qemu_blockalign(s->source->bs, nbytes); ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0); if (ret < 0) { trace_block_copy_read_fail(s, offset, ret); *error_is_read = true; goto out; } ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer, s->write_flags); if (ret < 0) { trace_block_copy_write_fail(s, offset, ret); *error_is_read = false; goto out; } out: qemu_vfree(bounce_buffer); break; default: abort(); } return ret; } static coroutine_fn int block_copy_task_entry(AioTask *task) { BlockCopyTask *t = container_of(task, BlockCopyTask, task); BlockCopyState *s = t->s; bool error_is_read = false; BlockCopyMethod method = t->method; int ret; WITH_GRAPH_RDLOCK_GUARD() { ret = block_copy_do_copy(s, t->req.offset, t->req.bytes, &method, &error_is_read); } WITH_QEMU_LOCK_GUARD(&s->lock) { if (s->method == t->method) { s->method = method; } if (ret < 0) { if (!t->call_state->ret) { t->call_state->ret = ret; t->call_state->error_is_read = error_is_read; } } else if (s->progress) { progress_work_done(s->progress, t->req.bytes); } } co_put_to_shres(s->mem, t->req.bytes); block_copy_task_end(t, ret); if (s->discard_source && ret == 0) { int64_t nbytes = MIN(t->req.offset + t->req.bytes, s->len) - t->req.offset; WITH_GRAPH_RDLOCK_GUARD() { bdrv_co_pdiscard(s->source, t->req.offset, nbytes); } } return ret; } static coroutine_fn GRAPH_RDLOCK int block_copy_block_status(BlockCopyState *s, int64_t offset, int64_t bytes, int64_t *pnum) { int64_t num; BlockDriverState *base; int ret; if (qatomic_read(&s->skip_unallocated)) { base = bdrv_backing_chain_next(s->source->bs); } else { base = NULL; } ret = bdrv_co_block_status_above(s->source->bs, base, offset, bytes, &num, NULL, NULL); if (ret < 0 || num < s->cluster_size) { /* * On error or if failed to obtain large enough chunk just fallback to * copy one cluster. */ num = s->cluster_size; ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA; } else if (offset + num == s->len) { num = QEMU_ALIGN_UP(num, s->cluster_size); } else { num = QEMU_ALIGN_DOWN(num, s->cluster_size); } *pnum = num; return ret; } /* * Check if the cluster starting at offset is allocated or not. * return via pnum the number of contiguous clusters sharing this allocation. */ static int coroutine_fn GRAPH_RDLOCK block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset, int64_t *pnum) { BlockDriverState *bs = s->source->bs; int64_t count, total_count = 0; int64_t bytes = s->len - offset; int ret; assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); while (true) { /* protected in backup_run() */ ret = bdrv_co_is_allocated(bs, offset, bytes, &count); if (ret < 0) { return ret; } total_count += count; if (ret || count == 0) { /* * ret: partial segment(s) are considered allocated. * otherwise: unallocated tail is treated as an entire segment. */ *pnum = DIV_ROUND_UP(total_count, s->cluster_size); return ret; } /* Unallocated segment(s) with uncertain following segment(s) */ if (total_count >= s->cluster_size) { *pnum = total_count / s->cluster_size; return 0; } offset += count; bytes -= count; } } void block_copy_reset(BlockCopyState *s, int64_t offset, int64_t bytes) { QEMU_LOCK_GUARD(&s->lock); bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes); if (s->progress) { progress_set_remaining(s->progress, bdrv_get_dirty_count(s->copy_bitmap) + s->in_flight_bytes); } } /* * Reset bits in copy_bitmap starting at offset if they represent unallocated * data in the image. May reset subsequent contiguous bits. * @return 0 when the cluster at @offset was unallocated, * 1 otherwise, and -ret on error. */ int64_t coroutine_fn block_copy_reset_unallocated(BlockCopyState *s, int64_t offset, int64_t *count) { int ret; int64_t clusters, bytes; ret = block_copy_is_cluster_allocated(s, offset, &clusters); if (ret < 0) { return ret; } bytes = clusters * s->cluster_size; if (!ret) { block_copy_reset(s, offset, bytes); } *count = bytes; return ret; } /* * block_copy_dirty_clusters * * Copy dirty clusters in @offset/@bytes range. * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty * clusters found and -errno on failure. */ static int coroutine_fn GRAPH_RDLOCK block_copy_dirty_clusters(BlockCopyCallState *call_state) { BlockCopyState *s = call_state->s; int64_t offset = call_state->offset; int64_t bytes = call_state->bytes; int ret = 0; bool found_dirty = false; int64_t end = offset + bytes; AioTaskPool *aio = NULL; /* * block_copy() user is responsible for keeping source and target in same * aio context */ assert(bdrv_get_aio_context(s->source->bs) == bdrv_get_aio_context(s->target->bs)); assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); assert(QEMU_IS_ALIGNED(bytes, s->cluster_size)); while (bytes && aio_task_pool_status(aio) == 0 && !qatomic_read(&call_state->cancelled)) { BlockCopyTask *task; int64_t status_bytes; task = block_copy_task_create(s, call_state, offset, bytes); if (!task) { /* No more dirty bits in the bitmap */ trace_block_copy_skip_range(s, offset, bytes); break; } if (task->req.offset > offset) { trace_block_copy_skip_range(s, offset, task->req.offset - offset); } found_dirty = true; ret = block_copy_block_status(s, task->req.offset, task->req.bytes, &status_bytes); assert(ret >= 0); /* never fail */ if (status_bytes < task->req.bytes) { block_copy_task_shrink(task, status_bytes); } if (qatomic_read(&s->skip_unallocated) && !(ret & BDRV_BLOCK_ALLOCATED)) { block_copy_task_end(task, 0); trace_block_copy_skip_range(s, task->req.offset, task->req.bytes); offset = task_end(task); bytes = end - offset; g_free(task); continue; } if (ret & BDRV_BLOCK_ZERO) { task->method = COPY_WRITE_ZEROES; } if (!call_state->ignore_ratelimit) { uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0); if (ns > 0) { block_copy_task_end(task, -EAGAIN); g_free(task); qemu_co_sleep_ns_wakeable(&call_state->sleep, QEMU_CLOCK_REALTIME, ns); continue; } } ratelimit_calculate_delay(&s->rate_limit, task->req.bytes); trace_block_copy_process(s, task->req.offset); co_get_from_shres(s->mem, task->req.bytes); offset = task_end(task); bytes = end - offset; if (!aio && bytes) { aio = aio_task_pool_new(call_state->max_workers); } ret = block_copy_task_run(aio, task); if (ret < 0) { goto out; } } out: if (aio) { aio_task_pool_wait_all(aio); /* * We are not really interested in -ECANCELED returned from * block_copy_task_run. If it fails, it means some task already failed * for real reason, let's return first failure. * Still, assert that we don't rewrite failure by success. * * Note: ret may be positive here because of block-status result. */ assert(ret >= 0 || aio_task_pool_status(aio) < 0); ret = aio_task_pool_status(aio); aio_task_pool_free(aio); } return ret < 0 ? ret : found_dirty; } void block_copy_kick(BlockCopyCallState *call_state) { qemu_co_sleep_wake(&call_state->sleep); } /* * block_copy_common * * Copy requested region, accordingly to dirty bitmap. * Collaborate with parallel block_copy requests: if they succeed it will help * us. If they fail, we will retry not-copied regions. So, if we return error, * it means that some I/O operation failed in context of _this_ block_copy call, * not some parallel operation. */ static int coroutine_fn GRAPH_RDLOCK block_copy_common(BlockCopyCallState *call_state) { int ret; BlockCopyState *s = call_state->s; qemu_co_mutex_lock(&s->lock); QLIST_INSERT_HEAD(&s->calls, call_state, list); qemu_co_mutex_unlock(&s->lock); do { ret = block_copy_dirty_clusters(call_state); if (ret == 0 && !qatomic_read(&call_state->cancelled)) { WITH_QEMU_LOCK_GUARD(&s->lock) { /* * Check that there is no task we still need to * wait to complete */ ret = reqlist_wait_one(&s->reqs, call_state->offset, call_state->bytes, &s->lock); if (ret == 0) { /* * No pending tasks, but check again the bitmap in this * same critical section, since a task might have failed * between this and the critical section in * block_copy_dirty_clusters(). * * reqlist_wait_one return value 0 also means that it * didn't release the lock. So, we are still in the same * critical section, not interrupted by any concurrent * access to state. */ ret = bdrv_dirty_bitmap_next_dirty(s->copy_bitmap, call_state->offset, call_state->bytes) >= 0; } } } /* * We retry in two cases: * 1. Some progress done * Something was copied, which means that there were yield points * and some new dirty bits may have appeared (due to failed parallel * block-copy requests). * 2. We have waited for some intersecting block-copy request * It may have failed and produced new dirty bits. */ } while (ret > 0 && !qatomic_read(&call_state->cancelled)); qatomic_store_release(&call_state->finished, true); if (call_state->cb) { call_state->cb(call_state->cb_opaque); } qemu_co_mutex_lock(&s->lock); QLIST_REMOVE(call_state, list); qemu_co_mutex_unlock(&s->lock); return ret; } static void coroutine_fn block_copy_async_co_entry(void *opaque) { GRAPH_RDLOCK_GUARD(); block_copy_common(opaque); } int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes, bool ignore_ratelimit, uint64_t timeout_ns, BlockCopyAsyncCallbackFunc cb, void *cb_opaque) { int ret; BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1); *call_state = (BlockCopyCallState) { .s = s, .offset = start, .bytes = bytes, .ignore_ratelimit = ignore_ratelimit, .max_workers = BLOCK_COPY_MAX_WORKERS, .cb = cb, .cb_opaque = cb_opaque, }; ret = qemu_co_timeout(block_copy_async_co_entry, call_state, timeout_ns, g_free); if (ret < 0) { assert(ret == -ETIMEDOUT); block_copy_call_cancel(call_state); /* call_state will be freed by running coroutine. */ return ret; } ret = call_state->ret; g_free(call_state); return ret; } BlockCopyCallState *block_copy_async(BlockCopyState *s, int64_t offset, int64_t bytes, int max_workers, int64_t max_chunk, BlockCopyAsyncCallbackFunc cb, void *cb_opaque) { BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1); *call_state = (BlockCopyCallState) { .s = s, .offset = offset, .bytes = bytes, .max_workers = max_workers, .max_chunk = max_chunk, .cb = cb, .cb_opaque = cb_opaque, .co = qemu_coroutine_create(block_copy_async_co_entry, call_state), }; qemu_coroutine_enter(call_state->co); return call_state; } void block_copy_call_free(BlockCopyCallState *call_state) { if (!call_state) { return; } assert(qatomic_read(&call_state->finished)); g_free(call_state); } bool block_copy_call_finished(BlockCopyCallState *call_state) { return qatomic_read(&call_state->finished); } bool block_copy_call_succeeded(BlockCopyCallState *call_state) { return qatomic_load_acquire(&call_state->finished) && !qatomic_read(&call_state->cancelled) && call_state->ret == 0; } bool block_copy_call_failed(BlockCopyCallState *call_state) { return qatomic_load_acquire(&call_state->finished) && !qatomic_read(&call_state->cancelled) && call_state->ret < 0; } bool block_copy_call_cancelled(BlockCopyCallState *call_state) { return qatomic_read(&call_state->cancelled); } int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read) { assert(qatomic_load_acquire(&call_state->finished)); if (error_is_read) { *error_is_read = call_state->error_is_read; } return call_state->ret; } /* * Note that cancelling and finishing are racy. * User can cancel a block-copy that is already finished. */ void block_copy_call_cancel(BlockCopyCallState *call_state) { qatomic_set(&call_state->cancelled, true); block_copy_kick(call_state); } BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s) { return s->copy_bitmap; } int64_t block_copy_cluster_size(BlockCopyState *s) { return s->cluster_size; } void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip) { qatomic_set(&s->skip_unallocated, skip); } void block_copy_set_speed(BlockCopyState *s, uint64_t speed) { ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME); /* * Note: it's good to kick all call states from here, but it should be done * only from a coroutine, to not crash if s->calls list changed while * entering one call. So for now, the only user of this function kicks its * only one call_state by hand. */ }