/* * plugin-gen.c - TCG-related bits of plugin infrastructure * * Copyright (C) 2018, Emilio G. Cota * License: GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * * We support instrumentation at an instruction granularity. That is, * if a plugin wants to instrument the memory accesses performed by a * particular instruction, it can just do that instead of instrumenting * all memory accesses. Thus, in order to do this we first have to * translate a TB, so that plugins can decide what/where to instrument. * * Injecting the desired instrumentation could be done with a second * translation pass that combined the instrumentation requests, but that * would be ugly and inefficient since we would decode the guest code twice. * Instead, during TB translation we add "plugin_cb" marker opcodes * for all possible instrumentation events, and then once we collect the * instrumentation requests from plugins, we generate code for those markers * or remove them if they have no requests. */ #include "qemu/osdep.h" #include "qemu/plugin.h" #include "qemu/log.h" #include "cpu.h" #include "tcg/tcg.h" #include "tcg/tcg-temp-internal.h" #include "tcg/tcg-op.h" #include "exec/exec-all.h" #include "exec/plugin-gen.h" #include "exec/translator.h" enum plugin_gen_from { PLUGIN_GEN_FROM_TB, PLUGIN_GEN_FROM_INSN, PLUGIN_GEN_AFTER_INSN, PLUGIN_GEN_AFTER_TB, }; /* called before finishing a TB with exit_tb, goto_tb or goto_ptr */ void plugin_gen_disable_mem_helpers(void) { if (tcg_ctx->plugin_insn) { tcg_gen_plugin_cb(PLUGIN_GEN_AFTER_TB); } } static void gen_enable_mem_helper(struct qemu_plugin_tb *ptb, struct qemu_plugin_insn *insn) { GArray *arr; size_t len; /* * Tracking memory accesses performed from helpers requires extra work. * If an instruction is emulated with helpers, we do two things: * (1) copy the CB descriptors, and keep track of it so that they can be * freed later on, and (2) point CPUState.neg.plugin_mem_cbs to the * descriptors, so that we can read them at run-time * (i.e. when the helper executes). * This run-time access is performed from qemu_plugin_vcpu_mem_cb. * * Note that plugin_gen_disable_mem_helpers undoes (2). Since it * is possible that the code we generate after the instruction is * dead, we also add checks before generating tb_exit etc. */ if (!insn->calls_helpers) { return; } if (!insn->mem_cbs || !insn->mem_cbs->len) { insn->mem_helper = false; return; } insn->mem_helper = true; ptb->mem_helper = true; /* * TODO: It seems like we should be able to use ref/unref * to avoid needing to actually copy this array. * Alternately, perhaps we could allocate new memory adjacent * to the TranslationBlock itself, so that we do not have to * actively manage the lifetime after this. */ len = insn->mem_cbs->len; arr = g_array_sized_new(false, false, sizeof(struct qemu_plugin_dyn_cb), len); g_array_append_vals(arr, insn->mem_cbs->data, len); qemu_plugin_add_dyn_cb_arr(arr); tcg_gen_st_ptr(tcg_constant_ptr((intptr_t)arr), tcg_env, offsetof(CPUState, neg.plugin_mem_cbs) - offsetof(ArchCPU, env)); } static void gen_disable_mem_helper(void) { tcg_gen_st_ptr(tcg_constant_ptr(0), tcg_env, offsetof(CPUState, neg.plugin_mem_cbs) - offsetof(ArchCPU, env)); } static TCGv_i32 gen_cpu_index(void) { TCGv_i32 cpu_index = tcg_temp_ebb_new_i32(); tcg_gen_ld_i32(cpu_index, tcg_env, -offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index)); return cpu_index; } static void gen_udata_cb(struct qemu_plugin_regular_cb *cb) { TCGv_i32 cpu_index = gen_cpu_index(); tcg_gen_call2(cb->f.vcpu_udata, cb->info, NULL, tcgv_i32_temp(cpu_index), tcgv_ptr_temp(tcg_constant_ptr(cb->userp))); tcg_temp_free_i32(cpu_index); } static TCGv_ptr gen_plugin_u64_ptr(qemu_plugin_u64 entry) { TCGv_ptr ptr = tcg_temp_ebb_new_ptr(); GArray *arr = entry.score->data; char *base_ptr = arr->data + entry.offset; size_t entry_size = g_array_get_element_size(arr); TCGv_i32 cpu_index = gen_cpu_index(); tcg_gen_muli_i32(cpu_index, cpu_index, entry_size); tcg_gen_ext_i32_ptr(ptr, cpu_index); tcg_temp_free_i32(cpu_index); tcg_gen_addi_ptr(ptr, ptr, (intptr_t) base_ptr); return ptr; } static TCGCond plugin_cond_to_tcgcond(enum qemu_plugin_cond cond) { switch (cond) { case QEMU_PLUGIN_COND_EQ: return TCG_COND_EQ; case QEMU_PLUGIN_COND_NE: return TCG_COND_NE; case QEMU_PLUGIN_COND_LT: return TCG_COND_LTU; case QEMU_PLUGIN_COND_LE: return TCG_COND_LEU; case QEMU_PLUGIN_COND_GT: return TCG_COND_GTU; case QEMU_PLUGIN_COND_GE: return TCG_COND_GEU; default: /* ALWAYS and NEVER conditions should never reach */ g_assert_not_reached(); } } static void gen_udata_cond_cb(struct qemu_plugin_conditional_cb *cb) { TCGv_ptr ptr = gen_plugin_u64_ptr(cb->entry); TCGv_i64 val = tcg_temp_ebb_new_i64(); TCGLabel *after_cb = gen_new_label(); /* Condition should be negated, as calling the cb is the "else" path */ TCGCond cond = tcg_invert_cond(plugin_cond_to_tcgcond(cb->cond)); tcg_gen_ld_i64(val, ptr, 0); tcg_gen_brcondi_i64(cond, val, cb->imm, after_cb); TCGv_i32 cpu_index = gen_cpu_index(); tcg_gen_call2(cb->f.vcpu_udata, cb->info, NULL, tcgv_i32_temp(cpu_index), tcgv_ptr_temp(tcg_constant_ptr(cb->userp))); tcg_temp_free_i32(cpu_index); gen_set_label(after_cb); tcg_temp_free_i64(val); tcg_temp_free_ptr(ptr); } static void gen_inline_add_u64_cb(struct qemu_plugin_inline_cb *cb) { TCGv_ptr ptr = gen_plugin_u64_ptr(cb->entry); TCGv_i64 val = tcg_temp_ebb_new_i64(); tcg_gen_ld_i64(val, ptr, 0); tcg_gen_addi_i64(val, val, cb->imm); tcg_gen_st_i64(val, ptr, 0); tcg_temp_free_i64(val); tcg_temp_free_ptr(ptr); } static void gen_inline_store_u64_cb(struct qemu_plugin_inline_cb *cb) { TCGv_ptr ptr = gen_plugin_u64_ptr(cb->entry); TCGv_i64 val = tcg_constant_i64(cb->imm); tcg_gen_st_i64(val, ptr, 0); tcg_temp_free_ptr(ptr); } static void gen_mem_cb(struct qemu_plugin_regular_cb *cb, qemu_plugin_meminfo_t meminfo, TCGv_i64 addr) { TCGv_i32 cpu_index = gen_cpu_index(); tcg_gen_call4(cb->f.vcpu_mem, cb->info, NULL, tcgv_i32_temp(cpu_index), tcgv_i32_temp(tcg_constant_i32(meminfo)), tcgv_i64_temp(addr), tcgv_ptr_temp(tcg_constant_ptr(cb->userp))); tcg_temp_free_i32(cpu_index); } static void inject_cb(struct qemu_plugin_dyn_cb *cb) { switch (cb->type) { case PLUGIN_CB_REGULAR: gen_udata_cb(&cb->regular); break; case PLUGIN_CB_COND: gen_udata_cond_cb(&cb->cond); break; case PLUGIN_CB_INLINE_ADD_U64: gen_inline_add_u64_cb(&cb->inline_insn); break; case PLUGIN_CB_INLINE_STORE_U64: gen_inline_store_u64_cb(&cb->inline_insn); break; default: g_assert_not_reached(); } } static void inject_mem_cb(struct qemu_plugin_dyn_cb *cb, enum qemu_plugin_mem_rw rw, qemu_plugin_meminfo_t meminfo, TCGv_i64 addr) { switch (cb->type) { case PLUGIN_CB_MEM_REGULAR: if (rw & cb->regular.rw) { gen_mem_cb(&cb->regular, meminfo, addr); } break; case PLUGIN_CB_INLINE_ADD_U64: case PLUGIN_CB_INLINE_STORE_U64: if (rw & cb->inline_insn.rw) { inject_cb(cb); } break; default: g_assert_not_reached(); break; } } static void plugin_gen_inject(struct qemu_plugin_tb *plugin_tb) { TCGOp *op, *next; int insn_idx = -1; if (unlikely(qemu_loglevel_mask(LOG_TB_OP_PLUGIN) && qemu_log_in_addr_range(tcg_ctx->plugin_db->pc_first))) { FILE *logfile = qemu_log_trylock(); if (logfile) { fprintf(logfile, "OP before plugin injection:\n"); tcg_dump_ops(tcg_ctx, logfile, false); fprintf(logfile, "\n"); qemu_log_unlock(logfile); } } /* * While injecting code, we cannot afford to reuse any ebb temps * that might be live within the existing opcode stream. * The simplest solution is to release them all and create new. */ memset(tcg_ctx->free_temps, 0, sizeof(tcg_ctx->free_temps)); QTAILQ_FOREACH_SAFE(op, &tcg_ctx->ops, link, next) { switch (op->opc) { case INDEX_op_insn_start: insn_idx++; break; case INDEX_op_plugin_cb: { enum plugin_gen_from from = op->args[0]; struct qemu_plugin_insn *insn = NULL; const GArray *cbs; int i, n; if (insn_idx >= 0) { insn = g_ptr_array_index(plugin_tb->insns, insn_idx); } tcg_ctx->emit_before_op = op; switch (from) { case PLUGIN_GEN_AFTER_TB: if (plugin_tb->mem_helper) { gen_disable_mem_helper(); } break; case PLUGIN_GEN_AFTER_INSN: assert(insn != NULL); if (insn->mem_helper) { gen_disable_mem_helper(); } break; case PLUGIN_GEN_FROM_TB: assert(insn == NULL); cbs = plugin_tb->cbs; for (i = 0, n = (cbs ? cbs->len : 0); i < n; i++) { inject_cb( &g_array_index(cbs, struct qemu_plugin_dyn_cb, i)); } break; case PLUGIN_GEN_FROM_INSN: assert(insn != NULL); gen_enable_mem_helper(plugin_tb, insn); cbs = insn->insn_cbs; for (i = 0, n = (cbs ? cbs->len : 0); i < n; i++) { inject_cb( &g_array_index(cbs, struct qemu_plugin_dyn_cb, i)); } break; default: g_assert_not_reached(); } tcg_ctx->emit_before_op = NULL; tcg_op_remove(tcg_ctx, op); break; } case INDEX_op_plugin_mem_cb: { TCGv_i64 addr = temp_tcgv_i64(arg_temp(op->args[0])); qemu_plugin_meminfo_t meminfo = op->args[1]; enum qemu_plugin_mem_rw rw = (qemu_plugin_mem_is_store(meminfo) ? QEMU_PLUGIN_MEM_W : QEMU_PLUGIN_MEM_R); struct qemu_plugin_insn *insn; const GArray *cbs; int i, n; assert(insn_idx >= 0); insn = g_ptr_array_index(plugin_tb->insns, insn_idx); tcg_ctx->emit_before_op = op; cbs = insn->mem_cbs; for (i = 0, n = (cbs ? cbs->len : 0); i < n; i++) { inject_mem_cb(&g_array_index(cbs, struct qemu_plugin_dyn_cb, i), rw, meminfo, addr); } tcg_ctx->emit_before_op = NULL; tcg_op_remove(tcg_ctx, op); break; } default: /* plugins don't care about any other ops */ break; } } } bool plugin_gen_tb_start(CPUState *cpu, const DisasContextBase *db) { struct qemu_plugin_tb *ptb; if (!test_bit(QEMU_PLUGIN_EV_VCPU_TB_TRANS, cpu->plugin_state->event_mask)) { return false; } tcg_ctx->plugin_db = db; tcg_ctx->plugin_insn = NULL; ptb = tcg_ctx->plugin_tb; if (ptb) { /* Reset callbacks */ if (ptb->cbs) { g_array_set_size(ptb->cbs, 0); } ptb->n = 0; ptb->mem_helper = false; } else { ptb = g_new0(struct qemu_plugin_tb, 1); tcg_ctx->plugin_tb = ptb; ptb->insns = g_ptr_array_new(); } tcg_gen_plugin_cb(PLUGIN_GEN_FROM_TB); return true; } void plugin_gen_insn_start(CPUState *cpu, const DisasContextBase *db) { struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb; struct qemu_plugin_insn *insn; size_t n = db->num_insns; vaddr pc; assert(n >= 1); ptb->n = n; if (n <= ptb->insns->len) { insn = g_ptr_array_index(ptb->insns, n - 1); } else { assert(n - 1 == ptb->insns->len); insn = g_new0(struct qemu_plugin_insn, 1); g_ptr_array_add(ptb->insns, insn); } tcg_ctx->plugin_insn = insn; insn->calls_helpers = false; insn->mem_helper = false; if (insn->insn_cbs) { g_array_set_size(insn->insn_cbs, 0); } if (insn->mem_cbs) { g_array_set_size(insn->mem_cbs, 0); } pc = db->pc_next; insn->vaddr = pc; tcg_gen_plugin_cb(PLUGIN_GEN_FROM_INSN); } void plugin_gen_insn_end(void) { const DisasContextBase *db = tcg_ctx->plugin_db; struct qemu_plugin_insn *pinsn = tcg_ctx->plugin_insn; pinsn->len = db->fake_insn ? db->record_len : db->pc_next - pinsn->vaddr; tcg_gen_plugin_cb(PLUGIN_GEN_AFTER_INSN); } /* * There are cases where we never get to finalise a translation - for * example a page fault during translation. As a result we shouldn't * do any clean-up here and make sure things are reset in * plugin_gen_tb_start. */ void plugin_gen_tb_end(CPUState *cpu, size_t num_insns) { struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb; /* translator may have removed instructions, update final count */ g_assert(num_insns <= ptb->n); ptb->n = num_insns; /* collect instrumentation requests */ qemu_plugin_tb_trans_cb(cpu, ptb); /* inject the instrumentation at the appropriate places */ plugin_gen_inject(ptb); /* reset plugin translation state (plugin_tb is reused between blocks) */ tcg_ctx->plugin_db = NULL; tcg_ctx->plugin_insn = NULL; }