/* * Common CPU TLB handling * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/main-loop.h" #include "hw/core/tcg-cpu-ops.h" #include "exec/exec-all.h" #include "exec/memory.h" #include "exec/cpu_ldst.h" #include "exec/cputlb.h" #include "exec/memory-internal.h" #include "exec/ram_addr.h" #include "tcg/tcg.h" #include "qemu/error-report.h" #include "exec/log.h" #include "exec/helper-proto-common.h" #include "qemu/atomic.h" #include "qemu/atomic128.h" #include "exec/translate-all.h" #include "trace.h" #include "tb-hash.h" #include "internal.h" #ifdef CONFIG_PLUGIN #include "qemu/plugin-memory.h" #endif #include "tcg/tcg-ldst.h" #include "tcg/oversized-guest.h" /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ /* #define DEBUG_TLB */ /* #define DEBUG_TLB_LOG */ #ifdef DEBUG_TLB # define DEBUG_TLB_GATE 1 # ifdef DEBUG_TLB_LOG # define DEBUG_TLB_LOG_GATE 1 # else # define DEBUG_TLB_LOG_GATE 0 # endif #else # define DEBUG_TLB_GATE 0 # define DEBUG_TLB_LOG_GATE 0 #endif #define tlb_debug(fmt, ...) do { \ if (DEBUG_TLB_LOG_GATE) { \ qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ ## __VA_ARGS__); \ } else if (DEBUG_TLB_GATE) { \ fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ } \ } while (0) #define assert_cpu_is_self(cpu) do { \ if (DEBUG_TLB_GATE) { \ g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ } \ } while (0) /* run_on_cpu_data.target_ptr should always be big enough for a * vaddr even on 32 bit builds */ QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data)); /* We currently can't handle more than 16 bits in the MMUIDX bitmask. */ QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) static inline size_t tlb_n_entries(CPUTLBDescFast *fast) { return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; } static inline size_t sizeof_tlb(CPUTLBDescFast *fast) { return fast->mask + (1 << CPU_TLB_ENTRY_BITS); } static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, size_t max_entries) { desc->window_begin_ns = ns; desc->window_max_entries = max_entries; } static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr) { CPUJumpCache *jc = cpu->tb_jmp_cache; int i, i0; if (unlikely(!jc)) { return; } i0 = tb_jmp_cache_hash_page(page_addr); for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { qatomic_set(&jc->array[i0 + i].tb, NULL); } } /** * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary * @desc: The CPUTLBDesc portion of the TLB * @fast: The CPUTLBDescFast portion of the same TLB * * Called with tlb_lock_held. * * We have two main constraints when resizing a TLB: (1) we only resize it * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing * the array or unnecessarily flushing it), which means we do not control how * frequently the resizing can occur; (2) we don't have access to the guest's * future scheduling decisions, and therefore have to decide the magnitude of * the resize based on past observations. * * In general, a memory-hungry process can benefit greatly from an appropriately * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that * we just have to make the TLB as large as possible; while an oversized TLB * results in minimal TLB miss rates, it also takes longer to be flushed * (flushes can be _very_ frequent), and the reduced locality can also hurt * performance. * * To achieve near-optimal performance for all kinds of workloads, we: * * 1. Aggressively increase the size of the TLB when the use rate of the * TLB being flushed is high, since it is likely that in the near future this * memory-hungry process will execute again, and its memory hungriness will * probably be similar. * * 2. Slowly reduce the size of the TLB as the use rate declines over a * reasonably large time window. The rationale is that if in such a time window * we have not observed a high TLB use rate, it is likely that we won't observe * it in the near future. In that case, once a time window expires we downsize * the TLB to match the maximum use rate observed in the window. * * 3. Try to keep the maximum use rate in a time window in the 30-70% range, * since in that range performance is likely near-optimal. Recall that the TLB * is direct mapped, so we want the use rate to be low (or at least not too * high), since otherwise we are likely to have a significant amount of * conflict misses. */ static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) { size_t old_size = tlb_n_entries(fast); size_t rate; size_t new_size = old_size; int64_t window_len_ms = 100; int64_t window_len_ns = window_len_ms * 1000 * 1000; bool window_expired = now > desc->window_begin_ns + window_len_ns; if (desc->n_used_entries > desc->window_max_entries) { desc->window_max_entries = desc->n_used_entries; } rate = desc->window_max_entries * 100 / old_size; if (rate > 70) { new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); } else if (rate < 30 && window_expired) { size_t ceil = pow2ceil(desc->window_max_entries); size_t expected_rate = desc->window_max_entries * 100 / ceil; /* * Avoid undersizing when the max number of entries seen is just below * a pow2. For instance, if max_entries == 1025, the expected use rate * would be 1025/2048==50%. However, if max_entries == 1023, we'd get * 1023/1024==99.9% use rate, so we'd likely end up doubling the size * later. Thus, make sure that the expected use rate remains below 70%. * (and since we double the size, that means the lowest rate we'd * expect to get is 35%, which is still in the 30-70% range where * we consider that the size is appropriate.) */ if (expected_rate > 70) { ceil *= 2; } new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); } if (new_size == old_size) { if (window_expired) { tlb_window_reset(desc, now, desc->n_used_entries); } return; } g_free(fast->table); g_free(desc->fulltlb); tlb_window_reset(desc, now, 0); /* desc->n_used_entries is cleared by the caller */ fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; fast->table = g_try_new(CPUTLBEntry, new_size); desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); /* * If the allocations fail, try smaller sizes. We just freed some * memory, so going back to half of new_size has a good chance of working. * Increased memory pressure elsewhere in the system might cause the * allocations to fail though, so we progressively reduce the allocation * size, aborting if we cannot even allocate the smallest TLB we support. */ while (fast->table == NULL || desc->fulltlb == NULL) { if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { error_report("%s: %s", __func__, strerror(errno)); abort(); } new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; g_free(fast->table); g_free(desc->fulltlb); fast->table = g_try_new(CPUTLBEntry, new_size); desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); } } static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) { desc->n_used_entries = 0; desc->large_page_addr = -1; desc->large_page_mask = -1; desc->vindex = 0; memset(fast->table, -1, sizeof_tlb(fast)); memset(desc->vtable, -1, sizeof(desc->vtable)); } static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx, int64_t now) { CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx]; tlb_mmu_resize_locked(desc, fast, now); tlb_mmu_flush_locked(desc, fast); } static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) { size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; tlb_window_reset(desc, now, 0); desc->n_used_entries = 0; fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; fast->table = g_new(CPUTLBEntry, n_entries); desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); tlb_mmu_flush_locked(desc, fast); } static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) { env_tlb(env)->d[mmu_idx].n_used_entries++; } static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) { env_tlb(env)->d[mmu_idx].n_used_entries--; } void tlb_init(CPUState *cpu) { CPUArchState *env = cpu->env_ptr; int64_t now = get_clock_realtime(); int i; qemu_spin_init(&env_tlb(env)->c.lock); /* All tlbs are initialized flushed. */ env_tlb(env)->c.dirty = 0; for (i = 0; i < NB_MMU_MODES; i++) { tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now); } } void tlb_destroy(CPUState *cpu) { CPUArchState *env = cpu->env_ptr; int i; qemu_spin_destroy(&env_tlb(env)->c.lock); for (i = 0; i < NB_MMU_MODES; i++) { CPUTLBDesc *desc = &env_tlb(env)->d[i]; CPUTLBDescFast *fast = &env_tlb(env)->f[i]; g_free(fast->table); g_free(desc->fulltlb); } } /* flush_all_helper: run fn across all cpus * * If the wait flag is set then the src cpu's helper will be queued as * "safe" work and the loop exited creating a synchronisation point * where all queued work will be finished before execution starts * again. */ static void flush_all_helper(CPUState *src, run_on_cpu_func fn, run_on_cpu_data d) { CPUState *cpu; CPU_FOREACH(cpu) { if (cpu != src) { async_run_on_cpu(cpu, fn, d); } } } void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) { CPUState *cpu; size_t full = 0, part = 0, elide = 0; CPU_FOREACH(cpu) { CPUArchState *env = cpu->env_ptr; full += qatomic_read(&env_tlb(env)->c.full_flush_count); part += qatomic_read(&env_tlb(env)->c.part_flush_count); elide += qatomic_read(&env_tlb(env)->c.elide_flush_count); } *pfull = full; *ppart = part; *pelide = elide; } static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) { CPUArchState *env = cpu->env_ptr; uint16_t asked = data.host_int; uint16_t all_dirty, work, to_clean; int64_t now = get_clock_realtime(); assert_cpu_is_self(cpu); tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); qemu_spin_lock(&env_tlb(env)->c.lock); all_dirty = env_tlb(env)->c.dirty; to_clean = asked & all_dirty; all_dirty &= ~to_clean; env_tlb(env)->c.dirty = all_dirty; for (work = to_clean; work != 0; work &= work - 1) { int mmu_idx = ctz32(work); tlb_flush_one_mmuidx_locked(env, mmu_idx, now); } qemu_spin_unlock(&env_tlb(env)->c.lock); tcg_flush_jmp_cache(cpu); if (to_clean == ALL_MMUIDX_BITS) { qatomic_set(&env_tlb(env)->c.full_flush_count, env_tlb(env)->c.full_flush_count + 1); } else { qatomic_set(&env_tlb(env)->c.part_flush_count, env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); if (to_clean != asked) { qatomic_set(&env_tlb(env)->c.elide_flush_count, env_tlb(env)->c.elide_flush_count + ctpop16(asked & ~to_clean)); } } } void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) { tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); if (cpu->created && !qemu_cpu_is_self(cpu)) { async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, RUN_ON_CPU_HOST_INT(idxmap)); } else { tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); } } void tlb_flush(CPUState *cpu) { tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); } void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) { const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); } void tlb_flush_all_cpus(CPUState *src_cpu) { tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); } void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) { const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); } void tlb_flush_all_cpus_synced(CPUState *src_cpu) { tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); } static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, vaddr page, vaddr mask) { page &= mask; mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; return (page == (tlb_entry->addr_read & mask) || page == (tlb_addr_write(tlb_entry) & mask) || page == (tlb_entry->addr_code & mask)); } static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page) { return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); } /** * tlb_entry_is_empty - return true if the entry is not in use * @te: pointer to CPUTLBEntry */ static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) { return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; } /* Called with tlb_c.lock held */ static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, vaddr page, vaddr mask) { if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { memset(tlb_entry, -1, sizeof(*tlb_entry)); return true; } return false; } static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page) { return tlb_flush_entry_mask_locked(tlb_entry, page, -1); } /* Called with tlb_c.lock held */ static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx, vaddr page, vaddr mask) { CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; int k; assert_cpu_is_self(env_cpu(env)); for (k = 0; k < CPU_VTLB_SIZE; k++) { if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { tlb_n_used_entries_dec(env, mmu_idx); } } } static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, vaddr page) { tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1); } static void tlb_flush_page_locked(CPUArchState *env, int midx, vaddr page) { vaddr lp_addr = env_tlb(env)->d[midx].large_page_addr; vaddr lp_mask = env_tlb(env)->d[midx].large_page_mask; /* Check if we need to flush due to large pages. */ if ((page & lp_mask) == lp_addr) { tlb_debug("forcing full flush midx %d (%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n", midx, lp_addr, lp_mask); tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); } else { if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { tlb_n_used_entries_dec(env, midx); } tlb_flush_vtlb_page_locked(env, midx, page); } } /** * tlb_flush_page_by_mmuidx_async_0: * @cpu: cpu on which to flush * @addr: page of virtual address to flush * @idxmap: set of mmu_idx to flush * * Helper for tlb_flush_page_by_mmuidx and friends, flush one page * at @addr from the tlbs indicated by @idxmap from @cpu. */ static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, vaddr addr, uint16_t idxmap) { CPUArchState *env = cpu->env_ptr; int mmu_idx; assert_cpu_is_self(cpu); tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap); qemu_spin_lock(&env_tlb(env)->c.lock); for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { if ((idxmap >> mmu_idx) & 1) { tlb_flush_page_locked(env, mmu_idx, addr); } } qemu_spin_unlock(&env_tlb(env)->c.lock); /* * Discard jump cache entries for any tb which might potentially * overlap the flushed page, which includes the previous. */ tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); tb_jmp_cache_clear_page(cpu, addr); } /** * tlb_flush_page_by_mmuidx_async_1: * @cpu: cpu on which to flush * @data: encoded addr + idxmap * * Helper for tlb_flush_page_by_mmuidx and friends, called through * async_run_on_cpu. The idxmap parameter is encoded in the page * offset of the target_ptr field. This limits the set of mmu_idx * that can be passed via this method. */ static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, run_on_cpu_data data) { vaddr addr_and_idxmap = data.target_ptr; vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK; uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); } typedef struct { vaddr addr; uint16_t idxmap; } TLBFlushPageByMMUIdxData; /** * tlb_flush_page_by_mmuidx_async_2: * @cpu: cpu on which to flush * @data: allocated addr + idxmap * * Helper for tlb_flush_page_by_mmuidx and friends, called through * async_run_on_cpu. The addr+idxmap parameters are stored in a * TLBFlushPageByMMUIdxData structure that has been allocated * specifically for this helper. Free the structure when done. */ static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, run_on_cpu_data data) { TLBFlushPageByMMUIdxData *d = data.host_ptr; tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); g_free(d); } void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap) { tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap); /* This should already be page aligned */ addr &= TARGET_PAGE_MASK; if (qemu_cpu_is_self(cpu)) { tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); } else if (idxmap < TARGET_PAGE_SIZE) { /* * Most targets have only a few mmu_idx. In the case where * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid * allocating memory for this operation. */ async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, RUN_ON_CPU_TARGET_PTR(addr | idxmap)); } else { TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); /* Otherwise allocate a structure, freed by the worker. */ d->addr = addr; d->idxmap = idxmap; async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, RUN_ON_CPU_HOST_PTR(d)); } } void tlb_flush_page(CPUState *cpu, vaddr addr) { tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); } void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr, uint16_t idxmap) { tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); /* This should already be page aligned */ addr &= TARGET_PAGE_MASK; /* * Allocate memory to hold addr+idxmap only when needed. * See tlb_flush_page_by_mmuidx for details. */ if (idxmap < TARGET_PAGE_SIZE) { flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, RUN_ON_CPU_TARGET_PTR(addr | idxmap)); } else { CPUState *dst_cpu; /* Allocate a separate data block for each destination cpu. */ CPU_FOREACH(dst_cpu) { if (dst_cpu != src_cpu) { TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); d->addr = addr; d->idxmap = idxmap; async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, RUN_ON_CPU_HOST_PTR(d)); } } } tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); } void tlb_flush_page_all_cpus(CPUState *src, vaddr addr) { tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); } void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, vaddr addr, uint16_t idxmap) { tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); /* This should already be page aligned */ addr &= TARGET_PAGE_MASK; /* * Allocate memory to hold addr+idxmap only when needed. * See tlb_flush_page_by_mmuidx for details. */ if (idxmap < TARGET_PAGE_SIZE) { flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, RUN_ON_CPU_TARGET_PTR(addr | idxmap)); async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, RUN_ON_CPU_TARGET_PTR(addr | idxmap)); } else { CPUState *dst_cpu; TLBFlushPageByMMUIdxData *d; /* Allocate a separate data block for each destination cpu. */ CPU_FOREACH(dst_cpu) { if (dst_cpu != src_cpu) { d = g_new(TLBFlushPageByMMUIdxData, 1); d->addr = addr; d->idxmap = idxmap; async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, RUN_ON_CPU_HOST_PTR(d)); } } d = g_new(TLBFlushPageByMMUIdxData, 1); d->addr = addr; d->idxmap = idxmap; async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, RUN_ON_CPU_HOST_PTR(d)); } } void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr) { tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); } static void tlb_flush_range_locked(CPUArchState *env, int midx, vaddr addr, vaddr len, unsigned bits) { CPUTLBDesc *d = &env_tlb(env)->d[midx]; CPUTLBDescFast *f = &env_tlb(env)->f[midx]; vaddr mask = MAKE_64BIT_MASK(0, bits); /* * If @bits is smaller than the tlb size, there may be multiple entries * within the TLB; otherwise all addresses that match under @mask hit * the same TLB entry. * TODO: Perhaps allow bits to be a few bits less than the size. * For now, just flush the entire TLB. * * If @len is larger than the tlb size, then it will take longer to * test all of the entries in the TLB than it will to flush it all. */ if (mask < f->mask || len > f->mask) { tlb_debug("forcing full flush midx %d (" "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n", midx, addr, mask, len); tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); return; } /* * Check if we need to flush due to large pages. * Because large_page_mask contains all 1's from the msb, * we only need to test the end of the range. */ if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { tlb_debug("forcing full flush midx %d (" "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n", midx, d->large_page_addr, d->large_page_mask); tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); return; } for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) { vaddr page = addr + i; CPUTLBEntry *entry = tlb_entry(env, midx, page); if (tlb_flush_entry_mask_locked(entry, page, mask)) { tlb_n_used_entries_dec(env, midx); } tlb_flush_vtlb_page_mask_locked(env, midx, page, mask); } } typedef struct { vaddr addr; vaddr len; uint16_t idxmap; uint16_t bits; } TLBFlushRangeData; static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, TLBFlushRangeData d) { CPUArchState *env = cpu->env_ptr; int mmu_idx; assert_cpu_is_self(cpu); tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n", d.addr, d.bits, d.len, d.idxmap); qemu_spin_lock(&env_tlb(env)->c.lock); for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { if ((d.idxmap >> mmu_idx) & 1) { tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits); } } qemu_spin_unlock(&env_tlb(env)->c.lock); /* * If the length is larger than the jump cache size, then it will take * longer to clear each entry individually than it will to clear it all. */ if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { tcg_flush_jmp_cache(cpu); return; } /* * Discard jump cache entries for any tb which might potentially * overlap the flushed pages, which includes the previous. */ d.addr -= TARGET_PAGE_SIZE; for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { tb_jmp_cache_clear_page(cpu, d.addr); d.addr += TARGET_PAGE_SIZE; } } static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, run_on_cpu_data data) { TLBFlushRangeData *d = data.host_ptr; tlb_flush_range_by_mmuidx_async_0(cpu, *d); g_free(d); } void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr, vaddr len, uint16_t idxmap, unsigned bits) { TLBFlushRangeData d; /* * If all bits are significant, and len is small, * this devolves to tlb_flush_page. */ if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { tlb_flush_page_by_mmuidx(cpu, addr, idxmap); return; } /* If no page bits are significant, this devolves to tlb_flush. */ if (bits < TARGET_PAGE_BITS) { tlb_flush_by_mmuidx(cpu, idxmap); return; } /* This should already be page aligned */ d.addr = addr & TARGET_PAGE_MASK; d.len = len; d.idxmap = idxmap; d.bits = bits; if (qemu_cpu_is_self(cpu)) { tlb_flush_range_by_mmuidx_async_0(cpu, d); } else { /* Otherwise allocate a structure, freed by the worker. */ TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, RUN_ON_CPU_HOST_PTR(p)); } } void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap, unsigned bits) { tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); } void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr, vaddr len, uint16_t idxmap, unsigned bits) { TLBFlushRangeData d; CPUState *dst_cpu; /* * If all bits are significant, and len is small, * this devolves to tlb_flush_page. */ if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); return; } /* If no page bits are significant, this devolves to tlb_flush. */ if (bits < TARGET_PAGE_BITS) { tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); return; } /* This should already be page aligned */ d.addr = addr & TARGET_PAGE_MASK; d.len = len; d.idxmap = idxmap; d.bits = bits; /* Allocate a separate data block for each destination cpu. */ CPU_FOREACH(dst_cpu) { if (dst_cpu != src_cpu) { TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, RUN_ON_CPU_HOST_PTR(p)); } } tlb_flush_range_by_mmuidx_async_0(src_cpu, d); } void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr, uint16_t idxmap, unsigned bits) { tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); } void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, vaddr addr, vaddr len, uint16_t idxmap, unsigned bits) { TLBFlushRangeData d, *p; CPUState *dst_cpu; /* * If all bits are significant, and len is small, * this devolves to tlb_flush_page. */ if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); return; } /* If no page bits are significant, this devolves to tlb_flush. */ if (bits < TARGET_PAGE_BITS) { tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); return; } /* This should already be page aligned */ d.addr = addr & TARGET_PAGE_MASK; d.len = len; d.idxmap = idxmap; d.bits = bits; /* Allocate a separate data block for each destination cpu. */ CPU_FOREACH(dst_cpu) { if (dst_cpu != src_cpu) { p = g_memdup(&d, sizeof(d)); async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, RUN_ON_CPU_HOST_PTR(p)); } } p = g_memdup(&d, sizeof(d)); async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, RUN_ON_CPU_HOST_PTR(p)); } void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, vaddr addr, uint16_t idxmap, unsigned bits) { tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); } /* update the TLBs so that writes to code in the virtual page 'addr' can be detected */ void tlb_protect_code(ram_addr_t ram_addr) { cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, TARGET_PAGE_SIZE, DIRTY_MEMORY_CODE); } /* update the TLB so that writes in physical page 'phys_addr' are no longer tested for self modifying code */ void tlb_unprotect_code(ram_addr_t ram_addr) { cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); } /* * Dirty write flag handling * * When the TCG code writes to a location it looks up the address in * the TLB and uses that data to compute the final address. If any of * the lower bits of the address are set then the slow path is forced. * There are a number of reasons to do this but for normal RAM the * most usual is detecting writes to code regions which may invalidate * generated code. * * Other vCPUs might be reading their TLBs during guest execution, so we update * te->addr_write with qatomic_set. We don't need to worry about this for * oversized guests as MTTCG is disabled for them. * * Called with tlb_c.lock held. */ static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, uintptr_t start, uintptr_t length) { uintptr_t addr = tlb_entry->addr_write; if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { addr &= TARGET_PAGE_MASK; addr += tlb_entry->addend; if ((addr - start) < length) { #if TARGET_LONG_BITS == 32 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write; ptr_write += HOST_BIG_ENDIAN; qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY); #elif TCG_OVERSIZED_GUEST tlb_entry->addr_write |= TLB_NOTDIRTY; #else qatomic_set(&tlb_entry->addr_write, tlb_entry->addr_write | TLB_NOTDIRTY); #endif } } } /* * Called with tlb_c.lock held. * Called only from the vCPU context, i.e. the TLB's owner thread. */ static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) { *d = *s; } /* This is a cross vCPU call (i.e. another vCPU resetting the flags of * the target vCPU). * We must take tlb_c.lock to avoid racing with another vCPU update. The only * thing actually updated is the target TLB entry ->addr_write flags. */ void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) { CPUArchState *env; int mmu_idx; env = cpu->env_ptr; qemu_spin_lock(&env_tlb(env)->c.lock); for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { unsigned int i; unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]); for (i = 0; i < n; i++) { tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], start1, length); } for (i = 0; i < CPU_VTLB_SIZE; i++) { tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], start1, length); } } qemu_spin_unlock(&env_tlb(env)->c.lock); } /* Called with tlb_c.lock held */ static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, vaddr addr) { if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) { tlb_entry->addr_write = addr; } } /* update the TLB corresponding to virtual page vaddr so that it is no longer dirty */ void tlb_set_dirty(CPUState *cpu, vaddr addr) { CPUArchState *env = cpu->env_ptr; int mmu_idx; assert_cpu_is_self(cpu); addr &= TARGET_PAGE_MASK; qemu_spin_lock(&env_tlb(env)->c.lock); for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, addr), addr); } for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { int k; for (k = 0; k < CPU_VTLB_SIZE; k++) { tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], addr); } } qemu_spin_unlock(&env_tlb(env)->c.lock); } /* Our TLB does not support large pages, so remember the area covered by large pages and trigger a full TLB flush if these are invalidated. */ static void tlb_add_large_page(CPUArchState *env, int mmu_idx, vaddr addr, uint64_t size) { vaddr lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; vaddr lp_mask = ~(size - 1); if (lp_addr == (vaddr)-1) { /* No previous large page. */ lp_addr = addr; } else { /* Extend the existing region to include the new page. This is a compromise between unnecessary flushes and the cost of maintaining a full variable size TLB. */ lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; while (((lp_addr ^ addr) & lp_mask) != 0) { lp_mask <<= 1; } } env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; } static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent, vaddr address, int flags, MMUAccessType access_type, bool enable) { if (enable) { address |= flags & TLB_FLAGS_MASK; flags &= TLB_SLOW_FLAGS_MASK; if (flags) { address |= TLB_FORCE_SLOW; } } else { address = -1; flags = 0; } ent->addr_idx[access_type] = address; full->slow_flags[access_type] = flags; } /* * Add a new TLB entry. At most one entry for a given virtual address * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the * supplied size is only used by tlb_flush_page. * * Called from TCG-generated code, which is under an RCU read-side * critical section. */ void tlb_set_page_full(CPUState *cpu, int mmu_idx, vaddr addr, CPUTLBEntryFull *full) { CPUArchState *env = cpu->env_ptr; CPUTLB *tlb = env_tlb(env); CPUTLBDesc *desc = &tlb->d[mmu_idx]; MemoryRegionSection *section; unsigned int index, read_flags, write_flags; uintptr_t addend; CPUTLBEntry *te, tn; hwaddr iotlb, xlat, sz, paddr_page; vaddr addr_page; int asidx, wp_flags, prot; bool is_ram, is_romd; assert_cpu_is_self(cpu); if (full->lg_page_size <= TARGET_PAGE_BITS) { sz = TARGET_PAGE_SIZE; } else { sz = (hwaddr)1 << full->lg_page_size; tlb_add_large_page(env, mmu_idx, addr, sz); } addr_page = addr & TARGET_PAGE_MASK; paddr_page = full->phys_addr & TARGET_PAGE_MASK; prot = full->prot; asidx = cpu_asidx_from_attrs(cpu, full->attrs); section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, &xlat, &sz, full->attrs, &prot); assert(sz >= TARGET_PAGE_SIZE); tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx " prot=%x idx=%d\n", addr, full->phys_addr, prot, mmu_idx); read_flags = 0; if (full->lg_page_size < TARGET_PAGE_BITS) { /* Repeat the MMU check and TLB fill on every access. */ read_flags |= TLB_INVALID_MASK; } if (full->attrs.byte_swap) { read_flags |= TLB_BSWAP; } is_ram = memory_region_is_ram(section->mr); is_romd = memory_region_is_romd(section->mr); if (is_ram || is_romd) { /* RAM and ROMD both have associated host memory. */ addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; } else { /* I/O does not; force the host address to NULL. */ addend = 0; } write_flags = read_flags; if (is_ram) { iotlb = memory_region_get_ram_addr(section->mr) + xlat; /* * Computing is_clean is expensive; avoid all that unless * the page is actually writable. */ if (prot & PAGE_WRITE) { if (section->readonly) { write_flags |= TLB_DISCARD_WRITE; } else if (cpu_physical_memory_is_clean(iotlb)) { write_flags |= TLB_NOTDIRTY; } } } else { /* I/O or ROMD */ iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; /* * Writes to romd devices must go through MMIO to enable write. * Reads to romd devices go through the ram_ptr found above, * but of course reads to I/O must go through MMIO. */ write_flags |= TLB_MMIO; if (!is_romd) { read_flags = write_flags; } } wp_flags = cpu_watchpoint_address_matches(cpu, addr_page, TARGET_PAGE_SIZE); index = tlb_index(env, mmu_idx, addr_page); te = tlb_entry(env, mmu_idx, addr_page); /* * Hold the TLB lock for the rest of the function. We could acquire/release * the lock several times in the function, but it is faster to amortize the * acquisition cost by acquiring it just once. Note that this leads to * a longer critical section, but this is not a concern since the TLB lock * is unlikely to be contended. */ qemu_spin_lock(&tlb->c.lock); /* Note that the tlb is no longer clean. */ tlb->c.dirty |= 1 << mmu_idx; /* Make sure there's no cached translation for the new page. */ tlb_flush_vtlb_page_locked(env, mmu_idx, addr_page); /* * Only evict the old entry to the victim tlb if it's for a * different page; otherwise just overwrite the stale data. */ if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) { unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; CPUTLBEntry *tv = &desc->vtable[vidx]; /* Evict the old entry into the victim tlb. */ copy_tlb_helper_locked(tv, te); desc->vfulltlb[vidx] = desc->fulltlb[index]; tlb_n_used_entries_dec(env, mmu_idx); } /* refill the tlb */ /* * At this point iotlb contains a physical section number in the lower * TARGET_PAGE_BITS, and either * + the ram_addr_t of the page base of the target RAM (RAM) * + the offset within section->mr of the page base (I/O, ROMD) * We subtract addr_page (which is page aligned and thus won't * disturb the low bits) to give an offset which can be added to the * (non-page-aligned) vaddr of the eventual memory access to get * the MemoryRegion offset for the access. Note that the vaddr we * subtract here is that of the page base, and not the same as the * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). */ desc->fulltlb[index] = *full; full = &desc->fulltlb[index]; full->xlat_section = iotlb - addr_page; full->phys_addr = paddr_page; /* Now calculate the new entry */ tn.addend = addend - addr_page; tlb_set_compare(full, &tn, addr_page, read_flags, MMU_INST_FETCH, prot & PAGE_EXEC); if (wp_flags & BP_MEM_READ) { read_flags |= TLB_WATCHPOINT; } tlb_set_compare(full, &tn, addr_page, read_flags, MMU_DATA_LOAD, prot & PAGE_READ); if (prot & PAGE_WRITE_INV) { write_flags |= TLB_INVALID_MASK; } if (wp_flags & BP_MEM_WRITE) { write_flags |= TLB_WATCHPOINT; } tlb_set_compare(full, &tn, addr_page, write_flags, MMU_DATA_STORE, prot & PAGE_WRITE); copy_tlb_helper_locked(te, &tn); tlb_n_used_entries_inc(env, mmu_idx); qemu_spin_unlock(&tlb->c.lock); } void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr, hwaddr paddr, MemTxAttrs attrs, int prot, int mmu_idx, uint64_t size) { CPUTLBEntryFull full = { .phys_addr = paddr, .attrs = attrs, .prot = prot, .lg_page_size = ctz64(size) }; assert(is_power_of_2(size)); tlb_set_page_full(cpu, mmu_idx, addr, &full); } void tlb_set_page(CPUState *cpu, vaddr addr, hwaddr paddr, int prot, int mmu_idx, uint64_t size) { tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED, prot, mmu_idx, size); } /* * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must * be discarded and looked up again (e.g. via tlb_entry()). */ static void tlb_fill(CPUState *cpu, vaddr addr, int size, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { bool ok; /* * This is not a probe, so only valid return is success; failure * should result in exception + longjmp to the cpu loop. */ ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size, access_type, mmu_idx, false, retaddr); assert(ok); } static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr); } static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, vaddr addr, unsigned size, MMUAccessType access_type, int mmu_idx, MemTxAttrs attrs, MemTxResult response, uintptr_t retaddr) { CPUClass *cc = CPU_GET_CLASS(cpu); if (!cpu->ignore_memory_transaction_failures && cc->tcg_ops->do_transaction_failed) { cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, access_type, mmu_idx, attrs, response, retaddr); } } /* * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin. * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match * because of the side effect of io_writex changing memory layout. */ static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section, hwaddr mr_offset) { #ifdef CONFIG_PLUGIN SavedIOTLB *saved = &cs->saved_iotlb; saved->section = section; saved->mr_offset = mr_offset; #endif } static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full, int mmu_idx, vaddr addr, uintptr_t retaddr, MMUAccessType access_type, MemOp op) { CPUState *cpu = env_cpu(env); hwaddr mr_offset; MemoryRegionSection *section; MemoryRegion *mr; uint64_t val; MemTxResult r; section = iotlb_to_section(cpu, full->xlat_section, full->attrs); mr = section->mr; mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; cpu->mem_io_pc = retaddr; if (!cpu->can_do_io) { cpu_io_recompile(cpu, retaddr); } /* * The memory_region_dispatch may trigger a flush/resize * so for plugins we save the iotlb_data just in case. */ save_iotlb_data(cpu, section, mr_offset); { QEMU_IOTHREAD_LOCK_GUARD(); r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs); } if (r != MEMTX_OK) { hwaddr physaddr = mr_offset + section->offset_within_address_space - section->offset_within_region; cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, mmu_idx, full->attrs, r, retaddr); } return val; } static void io_writex(CPUArchState *env, CPUTLBEntryFull *full, int mmu_idx, uint64_t val, vaddr addr, uintptr_t retaddr, MemOp op) { CPUState *cpu = env_cpu(env); hwaddr mr_offset; MemoryRegionSection *section; MemoryRegion *mr; MemTxResult r; section = iotlb_to_section(cpu, full->xlat_section, full->attrs); mr = section->mr; mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; if (!cpu->can_do_io) { cpu_io_recompile(cpu, retaddr); } cpu->mem_io_pc = retaddr; /* * The memory_region_dispatch may trigger a flush/resize * so for plugins we save the iotlb_data just in case. */ save_iotlb_data(cpu, section, mr_offset); { QEMU_IOTHREAD_LOCK_GUARD(); r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs); } if (r != MEMTX_OK) { hwaddr physaddr = mr_offset + section->offset_within_address_space - section->offset_within_region; cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), MMU_DATA_STORE, mmu_idx, full->attrs, r, retaddr); } } /* Return true if ADDR is present in the victim tlb, and has been copied back to the main tlb. */ static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, MMUAccessType access_type, vaddr page) { size_t vidx; assert_cpu_is_self(env_cpu(env)); for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; uint64_t cmp = tlb_read_idx(vtlb, access_type); if (cmp == page) { /* Found entry in victim tlb, swap tlb and iotlb. */ CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; qemu_spin_lock(&env_tlb(env)->c.lock); copy_tlb_helper_locked(&tmptlb, tlb); copy_tlb_helper_locked(tlb, vtlb); copy_tlb_helper_locked(vtlb, &tmptlb); qemu_spin_unlock(&env_tlb(env)->c.lock); CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index]; CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx]; CPUTLBEntryFull tmpf; tmpf = *f1; *f1 = *f2; *f2 = tmpf; return true; } } return false; } static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, CPUTLBEntryFull *full, uintptr_t retaddr) { ram_addr_t ram_addr = mem_vaddr + full->xlat_section; trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { tb_invalidate_phys_range_fast(ram_addr, size, retaddr); } /* * Set both VGA and migration bits for simplicity and to remove * the notdirty callback faster. */ cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); /* We remove the notdirty callback only if the code has been flushed. */ if (!cpu_physical_memory_is_clean(ram_addr)) { trace_memory_notdirty_set_dirty(mem_vaddr); tlb_set_dirty(cpu, mem_vaddr); } } static int probe_access_internal(CPUArchState *env, vaddr addr, int fault_size, MMUAccessType access_type, int mmu_idx, bool nonfault, void **phost, CPUTLBEntryFull **pfull, uintptr_t retaddr, bool check_mem_cbs) { uintptr_t index = tlb_index(env, mmu_idx, addr); CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); uint64_t tlb_addr = tlb_read_idx(entry, access_type); vaddr page_addr = addr & TARGET_PAGE_MASK; int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW; bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(env_cpu(env)); CPUTLBEntryFull *full; if (!tlb_hit_page(tlb_addr, page_addr)) { if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) { CPUState *cs = env_cpu(env); if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type, mmu_idx, nonfault, retaddr)) { /* Non-faulting page table read failed. */ *phost = NULL; *pfull = NULL; return TLB_INVALID_MASK; } /* TLB resize via tlb_fill may have moved the entry. */ index = tlb_index(env, mmu_idx, addr); entry = tlb_entry(env, mmu_idx, addr); /* * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, * to force the next access through tlb_fill. We've just * called tlb_fill, so we know that this entry *is* valid. */ flags &= ~TLB_INVALID_MASK; } tlb_addr = tlb_read_idx(entry, access_type); } flags &= tlb_addr; *pfull = full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; flags |= full->slow_flags[access_type]; /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY)) || (access_type != MMU_INST_FETCH && force_mmio)) { *phost = NULL; return TLB_MMIO; } /* Everything else is RAM. */ *phost = (void *)((uintptr_t)addr + entry->addend); return flags; } int probe_access_full(CPUArchState *env, vaddr addr, int size, MMUAccessType access_type, int mmu_idx, bool nonfault, void **phost, CPUTLBEntryFull **pfull, uintptr_t retaddr) { int flags = probe_access_internal(env, addr, size, access_type, mmu_idx, nonfault, phost, pfull, retaddr, true); /* Handle clean RAM pages. */ if (unlikely(flags & TLB_NOTDIRTY)) { notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr); flags &= ~TLB_NOTDIRTY; } return flags; } int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size, MMUAccessType access_type, int mmu_idx, void **phost, CPUTLBEntryFull **pfull) { void *discard_phost; CPUTLBEntryFull *discard_tlb; /* privately handle users that don't need full results */ phost = phost ? phost : &discard_phost; pfull = pfull ? pfull : &discard_tlb; int flags = probe_access_internal(env, addr, size, access_type, mmu_idx, true, phost, pfull, 0, false); /* Handle clean RAM pages. */ if (unlikely(flags & TLB_NOTDIRTY)) { notdirty_write(env_cpu(env), addr, 1, *pfull, 0); flags &= ~TLB_NOTDIRTY; } return flags; } int probe_access_flags(CPUArchState *env, vaddr addr, int size, MMUAccessType access_type, int mmu_idx, bool nonfault, void **phost, uintptr_t retaddr) { CPUTLBEntryFull *full; int flags; g_assert(-(addr | TARGET_PAGE_MASK) >= size); flags = probe_access_internal(env, addr, size, access_type, mmu_idx, nonfault, phost, &full, retaddr, true); /* Handle clean RAM pages. */ if (unlikely(flags & TLB_NOTDIRTY)) { notdirty_write(env_cpu(env), addr, 1, full, retaddr); flags &= ~TLB_NOTDIRTY; } return flags; } void *probe_access(CPUArchState *env, vaddr addr, int size, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { CPUTLBEntryFull *full; void *host; int flags; g_assert(-(addr | TARGET_PAGE_MASK) >= size); flags = probe_access_internal(env, addr, size, access_type, mmu_idx, false, &host, &full, retaddr, true); /* Per the interface, size == 0 merely faults the access. */ if (size == 0) { return NULL; } if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { /* Handle watchpoints. */ if (flags & TLB_WATCHPOINT) { int wp_access = (access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ); cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp_access, retaddr); } /* Handle clean RAM pages. */ if (flags & TLB_NOTDIRTY) { notdirty_write(env_cpu(env), addr, 1, full, retaddr); } } return host; } void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, MMUAccessType access_type, int mmu_idx) { CPUTLBEntryFull *full; void *host; int flags; flags = probe_access_internal(env, addr, 0, access_type, mmu_idx, true, &host, &full, 0, false); /* No combination of flags are expected by the caller. */ return flags ? NULL : host; } /* * Return a ram_addr_t for the virtual address for execution. * * Return -1 if we can't translate and execute from an entire page * of RAM. This will force us to execute by loading and translating * one insn at a time, without caching. * * NOTE: This function will trigger an exception if the page is * not executable. */ tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr, void **hostp) { CPUTLBEntryFull *full; void *p; (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH, cpu_mmu_index(env, true), false, &p, &full, 0, false); if (p == NULL) { return -1; } if (full->lg_page_size < TARGET_PAGE_BITS) { return -1; } if (hostp) { *hostp = p; } return qemu_ram_addr_from_host_nofail(p); } /* Load/store with atomicity primitives. */ #include "ldst_atomicity.c.inc" #ifdef CONFIG_PLUGIN /* * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. * This should be a hot path as we will have just looked this path up * in the softmmu lookup code (or helper). We don't handle re-fills or * checking the victim table. This is purely informational. * * This almost never fails as the memory access being instrumented * should have just filled the TLB. The one corner case is io_writex * which can cause TLB flushes and potential resizing of the TLBs * losing the information we need. In those cases we need to recover * data from a copy of the CPUTLBEntryFull. As long as this always occurs * from the same thread (which a mem callback will be) this is safe. */ bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx, bool is_store, struct qemu_plugin_hwaddr *data) { CPUArchState *env = cpu->env_ptr; CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); uintptr_t index = tlb_index(env, mmu_idx, addr); uint64_t tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read; if (likely(tlb_hit(tlb_addr, addr))) { /* We must have an iotlb entry for MMIO */ if (tlb_addr & TLB_MMIO) { CPUTLBEntryFull *full; full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; data->is_io = true; data->v.io.section = iotlb_to_section(cpu, full->xlat_section, full->attrs); data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; } else { data->is_io = false; data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend); } return true; } else { SavedIOTLB *saved = &cpu->saved_iotlb; data->is_io = true; data->v.io.section = saved->section; data->v.io.offset = saved->mr_offset; return true; } } #endif /* * Probe for a load/store operation. * Return the host address and into @flags. */ typedef struct MMULookupPageData { CPUTLBEntryFull *full; void *haddr; vaddr addr; int flags; int size; } MMULookupPageData; typedef struct MMULookupLocals { MMULookupPageData page[2]; MemOp memop; int mmu_idx; } MMULookupLocals; /** * mmu_lookup1: translate one page * @env: cpu context * @data: lookup parameters * @mmu_idx: virtual address context * @access_type: load/store/code * @ra: return address into tcg generated code, or 0 * * Resolve the translation for the one page at @data.addr, filling in * the rest of @data with the results. If the translation fails, * tlb_fill will longjmp out. Return true if the softmmu tlb for * @mmu_idx may have resized. */ static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data, int mmu_idx, MMUAccessType access_type, uintptr_t ra) { vaddr addr = data->addr; uintptr_t index = tlb_index(env, mmu_idx, addr); CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); uint64_t tlb_addr = tlb_read_idx(entry, access_type); bool maybe_resized = false; CPUTLBEntryFull *full; int flags; /* If the TLB entry is for a different page, reload and try again. */ if (!tlb_hit(tlb_addr, addr)) { if (!victim_tlb_hit(env, mmu_idx, index, access_type, addr & TARGET_PAGE_MASK)) { tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra); maybe_resized = true; index = tlb_index(env, mmu_idx, addr); entry = tlb_entry(env, mmu_idx, addr); } tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK; } full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW); flags |= full->slow_flags[access_type]; data->full = full; data->flags = flags; /* Compute haddr speculatively; depending on flags it might be invalid. */ data->haddr = (void *)((uintptr_t)addr + entry->addend); return maybe_resized; } /** * mmu_watch_or_dirty * @env: cpu context * @data: lookup parameters * @access_type: load/store/code * @ra: return address into tcg generated code, or 0 * * Trigger watchpoints for @data.addr:@data.size; * record writes to protected clean pages. */ static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data, MMUAccessType access_type, uintptr_t ra) { CPUTLBEntryFull *full = data->full; vaddr addr = data->addr; int flags = data->flags; int size = data->size; /* On watchpoint hit, this will longjmp out. */ if (flags & TLB_WATCHPOINT) { int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ; cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra); flags &= ~TLB_WATCHPOINT; } /* Note that notdirty is only set for writes. */ if (flags & TLB_NOTDIRTY) { notdirty_write(env_cpu(env), addr, size, full, ra); flags &= ~TLB_NOTDIRTY; } data->flags = flags; } /** * mmu_lookup: translate page(s) * @env: cpu context * @addr: virtual address * @oi: combined mmu_idx and MemOp * @ra: return address into tcg generated code, or 0 * @access_type: load/store/code * @l: output result * * Resolve the translation for the page(s) beginning at @addr, for MemOp.size * bytes. Return true if the lookup crosses a page boundary. */ static bool mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi, uintptr_t ra, MMUAccessType type, MMULookupLocals *l) { unsigned a_bits; bool crosspage; int flags; l->memop = get_memop(oi); l->mmu_idx = get_mmuidx(oi); tcg_debug_assert(l->mmu_idx < NB_MMU_MODES); /* Handle CPU specific unaligned behaviour */ a_bits = get_alignment_bits(l->memop); if (addr & ((1 << a_bits) - 1)) { cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra); } l->page[0].addr = addr; l->page[0].size = memop_size(l->memop); l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK; l->page[1].size = 0; crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK; if (likely(!crosspage)) { mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); flags = l->page[0].flags; if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { mmu_watch_or_dirty(env, &l->page[0], type, ra); } if (unlikely(flags & TLB_BSWAP)) { l->memop ^= MO_BSWAP; } } else { /* Finish compute of page crossing. */ int size0 = l->page[1].addr - addr; l->page[1].size = l->page[0].size - size0; l->page[0].size = size0; /* * Lookup both pages, recognizing exceptions from either. If the * second lookup potentially resized, refresh first CPUTLBEntryFull. */ mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) { uintptr_t index = tlb_index(env, l->mmu_idx, addr); l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index]; } flags = l->page[0].flags | l->page[1].flags; if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { mmu_watch_or_dirty(env, &l->page[0], type, ra); mmu_watch_or_dirty(env, &l->page[1], type, ra); } /* * Since target/sparc is the only user of TLB_BSWAP, and all * Sparc accesses are aligned, any treatment across two pages * would be arbitrary. Refuse it until there's a use. */ tcg_debug_assert((flags & TLB_BSWAP) == 0); } return crosspage; } /* * Probe for an atomic operation. Do not allow unaligned operations, * or io operations to proceed. Return the host address. */ static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi, int size, uintptr_t retaddr) { uintptr_t mmu_idx = get_mmuidx(oi); MemOp mop = get_memop(oi); int a_bits = get_alignment_bits(mop); uintptr_t index; CPUTLBEntry *tlbe; vaddr tlb_addr; void *hostaddr; CPUTLBEntryFull *full; tcg_debug_assert(mmu_idx < NB_MMU_MODES); /* Adjust the given return address. */ retaddr -= GETPC_ADJ; /* Enforce guest required alignment. */ if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { /* ??? Maybe indicate atomic op to cpu_unaligned_access */ cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } /* Enforce qemu required alignment. */ if (unlikely(addr & (size - 1))) { /* We get here if guest alignment was not requested, or was not enforced by cpu_unaligned_access above. We might widen the access and emulate, but for now mark an exception and exit the cpu loop. */ goto stop_the_world; } index = tlb_index(env, mmu_idx, addr); tlbe = tlb_entry(env, mmu_idx, addr); /* Check TLB entry and enforce page permissions. */ tlb_addr = tlb_addr_write(tlbe); if (!tlb_hit(tlb_addr, addr)) { if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE, addr & TARGET_PAGE_MASK)) { tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE, mmu_idx, retaddr); index = tlb_index(env, mmu_idx, addr); tlbe = tlb_entry(env, mmu_idx, addr); } tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; } /* * Let the guest notice RMW on a write-only page. * We have just verified that the page is writable. * Subpage lookups may have left TLB_INVALID_MASK set, * but addr_read will only be -1 if PAGE_READ was unset. */ if (unlikely(tlbe->addr_read == -1)) { tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); /* * Since we don't support reads and writes to different * addresses, and we do have the proper page loaded for * write, this shouldn't ever return. But just in case, * handle via stop-the-world. */ goto stop_the_world; } /* Collect tlb flags for read. */ tlb_addr |= tlbe->addr_read; /* Notice an IO access or a needs-MMU-lookup access */ if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { /* There's really nothing that can be done to support this apart from stop-the-world. */ goto stop_the_world; } hostaddr = (void *)((uintptr_t)addr + tlbe->addend); full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; if (unlikely(tlb_addr & TLB_NOTDIRTY)) { notdirty_write(env_cpu(env), addr, size, full, retaddr); } if (unlikely(tlb_addr & TLB_FORCE_SLOW)) { int wp_flags = 0; if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) { wp_flags |= BP_MEM_WRITE; } if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) { wp_flags |= BP_MEM_READ; } if (wp_flags) { cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp_flags, retaddr); } } return hostaddr; stop_the_world: cpu_loop_exit_atomic(env_cpu(env), retaddr); } /* * Load Helpers * * We support two different access types. SOFTMMU_CODE_ACCESS is * specifically for reading instructions from system memory. It is * called by the translation loop and in some helpers where the code * is disassembled. It shouldn't be called directly by guest code. * * For the benefit of TCG generated code, we want to avoid the * complication of ABI-specific return type promotion and always * return a value extended to the register size of the host. This is * tcg_target_long, except in the case of a 32-bit host and 64-bit * data, and for that we always have uint64_t. * * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. */ /** * do_ld_mmio_beN: * @env: cpu context * @full: page parameters * @ret_be: accumulated data * @addr: virtual address * @size: number of bytes * @mmu_idx: virtual address context * @ra: return address into tcg generated code, or 0 * Context: iothread lock held * * Load @size bytes from @addr, which is memory-mapped i/o. * The bytes are concatenated in big-endian order with @ret_be. */ static uint64_t do_ld_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full, uint64_t ret_be, vaddr addr, int size, int mmu_idx, MMUAccessType type, uintptr_t ra) { uint64_t t; tcg_debug_assert(size > 0 && size <= 8); do { /* Read aligned pieces up to 8 bytes. */ switch ((size | (int)addr) & 7) { case 1: case 3: case 5: case 7: t = io_readx(env, full, mmu_idx, addr, ra, type, MO_UB); ret_be = (ret_be << 8) | t; size -= 1; addr += 1; break; case 2: case 6: t = io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUW); ret_be = (ret_be << 16) | t; size -= 2; addr += 2; break; case 4: t = io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUL); ret_be = (ret_be << 32) | t; size -= 4; addr += 4; break; case 0: return io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUQ); default: qemu_build_not_reached(); } } while (size); return ret_be; } /** * do_ld_bytes_beN * @p: translation parameters * @ret_be: accumulated data * * Load @p->size bytes from @p->haddr, which is RAM. * The bytes to concatenated in big-endian order with @ret_be. */ static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) { uint8_t *haddr = p->haddr; int i, size = p->size; for (i = 0; i < size; i++) { ret_be = (ret_be << 8) | haddr[i]; } return ret_be; } /** * do_ld_parts_beN * @p: translation parameters * @ret_be: accumulated data * * As do_ld_bytes_beN, but atomically on each aligned part. */ static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be) { void *haddr = p->haddr; int size = p->size; do { uint64_t x; int n; /* * Find minimum of alignment and size. * This is slightly stronger than required by MO_ATOM_SUBALIGN, which * would have only checked the low bits of addr|size once at the start, * but is just as easy. */ switch (((uintptr_t)haddr | size) & 7) { case 4: x = cpu_to_be32(load_atomic4(haddr)); ret_be = (ret_be << 32) | x; n = 4; break; case 2: case 6: x = cpu_to_be16(load_atomic2(haddr)); ret_be = (ret_be << 16) | x; n = 2; break; default: x = *(uint8_t *)haddr; ret_be = (ret_be << 8) | x; n = 1; break; case 0: g_assert_not_reached(); } haddr += n; size -= n; } while (size != 0); return ret_be; } /** * do_ld_parts_be4 * @p: translation parameters * @ret_be: accumulated data * * As do_ld_bytes_beN, but with one atomic load. * Four aligned bytes are guaranteed to cover the load. */ static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be) { int o = p->addr & 3; uint32_t x = load_atomic4(p->haddr - o); x = cpu_to_be32(x); x <<= o * 8; x >>= (4 - p->size) * 8; return (ret_be << (p->size * 8)) | x; } /** * do_ld_parts_be8 * @p: translation parameters * @ret_be: accumulated data * * As do_ld_bytes_beN, but with one atomic load. * Eight aligned bytes are guaranteed to cover the load. */ static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra, MMULookupPageData *p, uint64_t ret_be) { int o = p->addr & 7; uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o); x = cpu_to_be64(x); x <<= o * 8; x >>= (8 - p->size) * 8; return (ret_be << (p->size * 8)) | x; } /** * do_ld_parts_be16 * @p: translation parameters * @ret_be: accumulated data * * As do_ld_bytes_beN, but with one atomic load. * 16 aligned bytes are guaranteed to cover the load. */ static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra, MMULookupPageData *p, uint64_t ret_be) { int o = p->addr & 15; Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o); int size = p->size; if (!HOST_BIG_ENDIAN) { y = bswap128(y); } y = int128_lshift(y, o * 8); y = int128_urshift(y, (16 - size) * 8); x = int128_make64(ret_be); x = int128_lshift(x, size * 8); return int128_or(x, y); } /* * Wrapper for the above. */ static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p, uint64_t ret_be, int mmu_idx, MMUAccessType type, MemOp mop, uintptr_t ra) { MemOp atom; unsigned tmp, half_size; if (unlikely(p->flags & TLB_MMIO)) { QEMU_IOTHREAD_LOCK_GUARD(); return do_ld_mmio_beN(env, p->full, ret_be, p->addr, p->size, mmu_idx, type, ra); } /* * It is a given that we cross a page and therefore there is no * atomicity for the load as a whole, but subobjects may need attention. */ atom = mop & MO_ATOM_MASK; switch (atom) { case MO_ATOM_SUBALIGN: return do_ld_parts_beN(p, ret_be); case MO_ATOM_IFALIGN_PAIR: case MO_ATOM_WITHIN16_PAIR: tmp = mop & MO_SIZE; tmp = tmp ? tmp - 1 : 0; half_size = 1 << tmp; if (atom == MO_ATOM_IFALIGN_PAIR ? p->size == half_size : p->size >= half_size) { if (!HAVE_al8_fast && p->size < 4) { return do_ld_whole_be4(p, ret_be); } else { return do_ld_whole_be8(env, ra, p, ret_be); } } /* fall through */ case MO_ATOM_IFALIGN: case MO_ATOM_WITHIN16: case MO_ATOM_NONE: return do_ld_bytes_beN(p, ret_be); default: g_assert_not_reached(); } } /* * Wrapper for the above, for 8 < size < 16. */ static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p, uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra) { int size = p->size; uint64_t b; MemOp atom; if (unlikely(p->flags & TLB_MMIO)) { QEMU_IOTHREAD_LOCK_GUARD(); a = do_ld_mmio_beN(env, p->full, a, p->addr, size - 8, mmu_idx, MMU_DATA_LOAD, ra); b = do_ld_mmio_beN(env, p->full, 0, p->addr + 8, 8, mmu_idx, MMU_DATA_LOAD, ra); return int128_make128(b, a); } /* * It is a given that we cross a page and therefore there is no * atomicity for the load as a whole, but subobjects may need attention. */ atom = mop & MO_ATOM_MASK; switch (atom) { case MO_ATOM_SUBALIGN: p->size = size - 8; a = do_ld_parts_beN(p, a); p->haddr += size - 8; p->size = 8; b = do_ld_parts_beN(p, 0); break; case MO_ATOM_WITHIN16_PAIR: /* Since size > 8, this is the half that must be atomic. */ return do_ld_whole_be16(env, ra, p, a); case MO_ATOM_IFALIGN_PAIR: /* * Since size > 8, both halves are misaligned, * and so neither is atomic. */ case MO_ATOM_IFALIGN: case MO_ATOM_WITHIN16: case MO_ATOM_NONE: p->size = size - 8; a = do_ld_bytes_beN(p, a); b = ldq_be_p(p->haddr + size - 8); break; default: g_assert_not_reached(); } return int128_make128(b, a); } static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx, MMUAccessType type, uintptr_t ra) { if (unlikely(p->flags & TLB_MMIO)) { return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB); } else { return *(uint8_t *)p->haddr; } } static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx, MMUAccessType type, MemOp memop, uintptr_t ra) { uint16_t ret; if (unlikely(p->flags & TLB_MMIO)) { QEMU_IOTHREAD_LOCK_GUARD(); ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 2, mmu_idx, type, ra); if ((memop & MO_BSWAP) == MO_LE) { ret = bswap16(ret); } } else { /* Perform the load host endian, then swap if necessary. */ ret = load_atom_2(env, ra, p->haddr, memop); if (memop & MO_BSWAP) { ret = bswap16(ret); } } return ret; } static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx, MMUAccessType type, MemOp memop, uintptr_t ra) { uint32_t ret; if (unlikely(p->flags & TLB_MMIO)) { QEMU_IOTHREAD_LOCK_GUARD(); ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 4, mmu_idx, type, ra); if ((memop & MO_BSWAP) == MO_LE) { ret = bswap32(ret); } } else { /* Perform the load host endian. */ ret = load_atom_4(env, ra, p->haddr, memop); if (memop & MO_BSWAP) { ret = bswap32(ret); } } return ret; } static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx, MMUAccessType type, MemOp memop, uintptr_t ra) { uint64_t ret; if (unlikely(p->flags & TLB_MMIO)) { QEMU_IOTHREAD_LOCK_GUARD(); ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 8, mmu_idx, type, ra); if ((memop & MO_BSWAP) == MO_LE) { ret = bswap64(ret); } } else { /* Perform the load host endian. */ ret = load_atom_8(env, ra, p->haddr, memop); if (memop & MO_BSWAP) { ret = bswap64(ret); } } return ret; } static uint8_t do_ld1_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, uintptr_t ra, MMUAccessType access_type) { MMULookupLocals l; bool crosspage; cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); tcg_debug_assert(!crosspage); return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); } tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr, MemOpIdx oi, uintptr_t retaddr) { tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8); return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); } static uint16_t do_ld2_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, uintptr_t ra, MMUAccessType access_type) { MMULookupLocals l; bool crosspage; uint16_t ret; uint8_t a, b; cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); if (likely(!crosspage)) { return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); } a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra); if ((l.memop & MO_BSWAP) == MO_LE) { ret = a | (b << 8); } else { ret = b | (a << 8); } return ret; } tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr, MemOpIdx oi, uintptr_t retaddr) { tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); } static uint32_t do_ld4_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, uintptr_t ra, MMUAccessType access_type) { MMULookupLocals l; bool crosspage; uint32_t ret; cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); if (likely(!crosspage)) { return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); } ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); if ((l.memop & MO_BSWAP) == MO_LE) { ret = bswap32(ret); } return ret; } tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr, MemOpIdx oi, uintptr_t retaddr) { tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); } static uint64_t do_ld8_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, uintptr_t ra, MMUAccessType access_type) { MMULookupLocals l; bool crosspage; uint64_t ret; cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); if (likely(!crosspage)) { return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); } ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); if ((l.memop & MO_BSWAP) == MO_LE) { ret = bswap64(ret); } return ret; } uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr, MemOpIdx oi, uintptr_t retaddr) { tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); } /* * Provide signed versions of the load routines as well. We can of course * avoid this for 64-bit data, or for 32-bit data on 32-bit host. */ tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr, MemOpIdx oi, uintptr_t retaddr) { return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr); } tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr, MemOpIdx oi, uintptr_t retaddr) { return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr); } tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr, MemOpIdx oi, uintptr_t retaddr) { return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr); } static Int128 do_ld16_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, uintptr_t ra) { MMULookupLocals l; bool crosspage; uint64_t a, b; Int128 ret; int first; cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l); if (likely(!crosspage)) { if (unlikely(l.page[0].flags & TLB_MMIO)) { QEMU_IOTHREAD_LOCK_GUARD(); a = do_ld_mmio_beN(env, l.page[0].full, 0, addr, 8, l.mmu_idx, MMU_DATA_LOAD, ra); b = do_ld_mmio_beN(env, l.page[0].full, 0, addr + 8, 8, l.mmu_idx, MMU_DATA_LOAD, ra); ret = int128_make128(b, a); if ((l.memop & MO_BSWAP) == MO_LE) { ret = bswap128(ret); } } else { /* Perform the load host endian. */ ret = load_atom_16(env, ra, l.page[0].haddr, l.memop); if (l.memop & MO_BSWAP) { ret = bswap128(ret); } } return ret; } first = l.page[0].size; if (first == 8) { MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64; a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); if ((mop8 & MO_BSWAP) == MO_LE) { ret = int128_make128(a, b); } else { ret = int128_make128(b, a); } return ret; } if (first < 8) { a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, MMU_DATA_LOAD, l.memop, ra); ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra); } else { ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra); b = int128_getlo(ret); ret = int128_lshift(ret, l.page[1].size * 8); a = int128_gethi(ret); b = do_ld_beN(env, &l.page[1], b, l.mmu_idx, MMU_DATA_LOAD, l.memop, ra); ret = int128_make128(b, a); } if ((l.memop & MO_BSWAP) == MO_LE) { ret = bswap128(ret); } return ret; } Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr, uint32_t oi, uintptr_t retaddr) { tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); return do_ld16_mmu(env, addr, oi, retaddr); } Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi) { return helper_ld16_mmu(env, addr, oi, GETPC()); } /* * Load helpers for cpu_ldst.h. */ static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) { qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); } uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { uint8_t ret; tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB); ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD); plugin_load_cb(env, addr, oi); return ret; } uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { uint16_t ret; tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD); plugin_load_cb(env, addr, oi); return ret; } uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { uint32_t ret; tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD); plugin_load_cb(env, addr, oi); return ret; } uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { uint64_t ret; tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD); plugin_load_cb(env, addr, oi); return ret; } Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { Int128 ret; tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); ret = do_ld16_mmu(env, addr, oi, ra); plugin_load_cb(env, addr, oi); return ret; } /* * Store Helpers */ /** * do_st_mmio_leN: * @env: cpu context * @full: page parameters * @val_le: data to store * @addr: virtual address * @size: number of bytes * @mmu_idx: virtual address context * @ra: return address into tcg generated code, or 0 * Context: iothread lock held * * Store @size bytes at @addr, which is memory-mapped i/o. * The bytes to store are extracted in little-endian order from @val_le; * return the bytes of @val_le beyond @p->size that have not been stored. */ static uint64_t do_st_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full, uint64_t val_le, vaddr addr, int size, int mmu_idx, uintptr_t ra) { tcg_debug_assert(size > 0 && size <= 8); do { /* Store aligned pieces up to 8 bytes. */ switch ((size | (int)addr) & 7) { case 1: case 3: case 5: case 7: io_writex(env, full, mmu_idx, val_le, addr, ra, MO_UB); val_le >>= 8; size -= 1; addr += 1; break; case 2: case 6: io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUW); val_le >>= 16; size -= 2; addr += 2; break; case 4: io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUL); val_le >>= 32; size -= 4; addr += 4; break; case 0: io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUQ); return 0; default: qemu_build_not_reached(); } } while (size); return val_le; } /* * Wrapper for the above. */ static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p, uint64_t val_le, int mmu_idx, MemOp mop, uintptr_t ra) { MemOp atom; unsigned tmp, half_size; if (unlikely(p->flags & TLB_MMIO)) { QEMU_IOTHREAD_LOCK_GUARD(); return do_st_mmio_leN(env, p->full, val_le, p->addr, p->size, mmu_idx, ra); } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { return val_le >> (p->size * 8); } /* * It is a given that we cross a page and therefore there is no atomicity * for the store as a whole, but subobjects may need attention. */ atom = mop & MO_ATOM_MASK; switch (atom) { case MO_ATOM_SUBALIGN: return store_parts_leN(p->haddr, p->size, val_le); case MO_ATOM_IFALIGN_PAIR: case MO_ATOM_WITHIN16_PAIR: tmp = mop & MO_SIZE; tmp = tmp ? tmp - 1 : 0; half_size = 1 << tmp; if (atom == MO_ATOM_IFALIGN_PAIR ? p->size == half_size : p->size >= half_size) { if (!HAVE_al8_fast && p->size <= 4) { return store_whole_le4(p->haddr, p->size, val_le); } else if (HAVE_al8) { return store_whole_le8(p->haddr, p->size, val_le); } else { cpu_loop_exit_atomic(env_cpu(env), ra); } } /* fall through */ case MO_ATOM_IFALIGN: case MO_ATOM_WITHIN16: case MO_ATOM_NONE: return store_bytes_leN(p->haddr, p->size, val_le); default: g_assert_not_reached(); } } /* * Wrapper for the above, for 8 < size < 16. */ static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p, Int128 val_le, int mmu_idx, MemOp mop, uintptr_t ra) { int size = p->size; MemOp atom; if (unlikely(p->flags & TLB_MMIO)) { QEMU_IOTHREAD_LOCK_GUARD(); do_st_mmio_leN(env, p->full, int128_getlo(val_le), p->addr, 8, mmu_idx, ra); return do_st_mmio_leN(env, p->full, int128_gethi(val_le), p->addr + 8, size - 8, mmu_idx, ra); } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { return int128_gethi(val_le) >> ((size - 8) * 8); } /* * It is a given that we cross a page and therefore there is no atomicity * for the store as a whole, but subobjects may need attention. */ atom = mop & MO_ATOM_MASK; switch (atom) { case MO_ATOM_SUBALIGN: store_parts_leN(p->haddr, 8, int128_getlo(val_le)); return store_parts_leN(p->haddr + 8, p->size - 8, int128_gethi(val_le)); case MO_ATOM_WITHIN16_PAIR: /* Since size > 8, this is the half that must be atomic. */ if (!HAVE_ATOMIC128_RW) { cpu_loop_exit_atomic(env_cpu(env), ra); } return store_whole_le16(p->haddr, p->size, val_le); case MO_ATOM_IFALIGN_PAIR: /* * Since size > 8, both halves are misaligned, * and so neither is atomic. */ case MO_ATOM_IFALIGN: case MO_ATOM_WITHIN16: case MO_ATOM_NONE: stq_le_p(p->haddr, int128_getlo(val_le)); return store_bytes_leN(p->haddr + 8, p->size - 8, int128_gethi(val_le)); default: g_assert_not_reached(); } } static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val, int mmu_idx, uintptr_t ra) { if (unlikely(p->flags & TLB_MMIO)) { io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB); } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { /* nothing */ } else { *(uint8_t *)p->haddr = val; } } static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val, int mmu_idx, MemOp memop, uintptr_t ra) { if (unlikely(p->flags & TLB_MMIO)) { if ((memop & MO_BSWAP) != MO_LE) { val = bswap16(val); } QEMU_IOTHREAD_LOCK_GUARD(); do_st_mmio_leN(env, p->full, val, p->addr, 2, mmu_idx, ra); } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { /* nothing */ } else { /* Swap to host endian if necessary, then store. */ if (memop & MO_BSWAP) { val = bswap16(val); } store_atom_2(env, ra, p->haddr, memop, val); } } static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val, int mmu_idx, MemOp memop, uintptr_t ra) { if (unlikely(p->flags & TLB_MMIO)) { if ((memop & MO_BSWAP) != MO_LE) { val = bswap32(val); } QEMU_IOTHREAD_LOCK_GUARD(); do_st_mmio_leN(env, p->full, val, p->addr, 4, mmu_idx, ra); } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { /* nothing */ } else { /* Swap to host endian if necessary, then store. */ if (memop & MO_BSWAP) { val = bswap32(val); } store_atom_4(env, ra, p->haddr, memop, val); } } static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val, int mmu_idx, MemOp memop, uintptr_t ra) { if (unlikely(p->flags & TLB_MMIO)) { if ((memop & MO_BSWAP) != MO_LE) { val = bswap64(val); } QEMU_IOTHREAD_LOCK_GUARD(); do_st_mmio_leN(env, p->full, val, p->addr, 8, mmu_idx, ra); } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { /* nothing */ } else { /* Swap to host endian if necessary, then store. */ if (memop & MO_BSWAP) { val = bswap64(val); } store_atom_8(env, ra, p->haddr, memop, val); } } void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val, MemOpIdx oi, uintptr_t ra) { MMULookupLocals l; bool crosspage; tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8); cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); tcg_debug_assert(!crosspage); do_st_1(env, &l.page[0], val, l.mmu_idx, ra); } static void do_st2_mmu(CPUArchState *env, vaddr addr, uint16_t val, MemOpIdx oi, uintptr_t ra) { MMULookupLocals l; bool crosspage; uint8_t a, b; cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); if (likely(!crosspage)) { do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra); return; } if ((l.memop & MO_BSWAP) == MO_LE) { a = val, b = val >> 8; } else { b = val, a = val >> 8; } do_st_1(env, &l.page[0], a, l.mmu_idx, ra); do_st_1(env, &l.page[1], b, l.mmu_idx, ra); } void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val, MemOpIdx oi, uintptr_t retaddr) { tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); do_st2_mmu(env, addr, val, oi, retaddr); } static void do_st4_mmu(CPUArchState *env, vaddr addr, uint32_t val, MemOpIdx oi, uintptr_t ra) { MMULookupLocals l; bool crosspage; cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); if (likely(!crosspage)) { do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra); return; } /* Swap to little endian for simplicity, then store by bytes. */ if ((l.memop & MO_BSWAP) != MO_LE) { val = bswap32(val); } val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); } void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val, MemOpIdx oi, uintptr_t retaddr) { tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); do_st4_mmu(env, addr, val, oi, retaddr); } static void do_st8_mmu(CPUArchState *env, vaddr addr, uint64_t val, MemOpIdx oi, uintptr_t ra) { MMULookupLocals l; bool crosspage; cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); if (likely(!crosspage)) { do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra); return; } /* Swap to little endian for simplicity, then store by bytes. */ if ((l.memop & MO_BSWAP) != MO_LE) { val = bswap64(val); } val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); } void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val, MemOpIdx oi, uintptr_t retaddr) { tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); do_st8_mmu(env, addr, val, oi, retaddr); } static void do_st16_mmu(CPUArchState *env, vaddr addr, Int128 val, MemOpIdx oi, uintptr_t ra) { MMULookupLocals l; bool crosspage; uint64_t a, b; int first; cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); if (likely(!crosspage)) { if (unlikely(l.page[0].flags & TLB_MMIO)) { if ((l.memop & MO_BSWAP) != MO_LE) { val = bswap128(val); } a = int128_getlo(val); b = int128_gethi(val); QEMU_IOTHREAD_LOCK_GUARD(); do_st_mmio_leN(env, l.page[0].full, a, addr, 8, l.mmu_idx, ra); do_st_mmio_leN(env, l.page[0].full, b, addr + 8, 8, l.mmu_idx, ra); } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) { /* nothing */ } else { /* Swap to host endian if necessary, then store. */ if (l.memop & MO_BSWAP) { val = bswap128(val); } store_atom_16(env, ra, l.page[0].haddr, l.memop, val); } return; } first = l.page[0].size; if (first == 8) { MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64; if (l.memop & MO_BSWAP) { val = bswap128(val); } if (HOST_BIG_ENDIAN) { b = int128_getlo(val), a = int128_gethi(val); } else { a = int128_getlo(val), b = int128_gethi(val); } do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra); do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra); return; } if ((l.memop & MO_BSWAP) != MO_LE) { val = bswap128(val); } if (first < 8) { do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra); val = int128_urshift(val, first * 8); do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); } else { b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra); } } void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi, uintptr_t retaddr) { tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); do_st16_mmu(env, addr, val, oi, retaddr); } void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi) { helper_st16_mmu(env, addr, val, oi, GETPC()); } /* * Store Helpers for cpu_ldst.h */ static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) { qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); } void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val, MemOpIdx oi, uintptr_t retaddr) { helper_stb_mmu(env, addr, val, oi, retaddr); plugin_store_cb(env, addr, oi); } void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val, MemOpIdx oi, uintptr_t retaddr) { tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); do_st2_mmu(env, addr, val, oi, retaddr); plugin_store_cb(env, addr, oi); } void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val, MemOpIdx oi, uintptr_t retaddr) { tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); do_st4_mmu(env, addr, val, oi, retaddr); plugin_store_cb(env, addr, oi); } void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val, MemOpIdx oi, uintptr_t retaddr) { tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); do_st8_mmu(env, addr, val, oi, retaddr); plugin_store_cb(env, addr, oi); } void cpu_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val, MemOpIdx oi, uintptr_t retaddr) { tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); do_st16_mmu(env, addr, val, oi, retaddr); plugin_store_cb(env, addr, oi); } #include "ldst_common.c.inc" /* * First set of functions passes in OI and RETADDR. * This makes them callable from other helpers. */ #define ATOMIC_NAME(X) \ glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) #define ATOMIC_MMU_CLEANUP #include "atomic_common.c.inc" #define DATA_SIZE 1 #include "atomic_template.h" #define DATA_SIZE 2 #include "atomic_template.h" #define DATA_SIZE 4 #include "atomic_template.h" #ifdef CONFIG_ATOMIC64 #define DATA_SIZE 8 #include "atomic_template.h" #endif #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128 #define DATA_SIZE 16 #include "atomic_template.h" #endif /* Code access functions. */ uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) { MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH); } uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) { MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH); } uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) { MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH); } uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) { MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true)); return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH); } uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t retaddr) { return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); } uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t retaddr) { return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); } uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t retaddr) { return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); } uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t retaddr) { return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); }