/* * emulator main execution loop * * Copyright (c) 2003-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include "qemu/qemu-print.h" #include "qapi/error.h" #include "qapi/type-helpers.h" #include "hw/core/tcg-cpu-ops.h" #include "trace.h" #include "disas/disas.h" #include "exec/exec-all.h" #include "tcg/tcg.h" #include "qemu/atomic.h" #include "qemu/rcu.h" #include "exec/log.h" #include "qemu/main-loop.h" #include "sysemu/cpus.h" #include "exec/cpu-all.h" #include "sysemu/cpu-timers.h" #include "exec/replay-core.h" #include "sysemu/tcg.h" #include "exec/helper-proto-common.h" #include "tb-jmp-cache.h" #include "tb-hash.h" #include "tb-context.h" #include "internal-common.h" #include "internal-target.h" #if defined(CONFIG_USER_ONLY) #include "user-retaddr.h" #endif /* -icount align implementation. */ typedef struct SyncClocks { int64_t diff_clk; int64_t last_cpu_icount; int64_t realtime_clock; } SyncClocks; #if !defined(CONFIG_USER_ONLY) /* Allow the guest to have a max 3ms advance. * The difference between the 2 clocks could therefore * oscillate around 0. */ #define VM_CLOCK_ADVANCE 3000000 #define THRESHOLD_REDUCE 1.5 #define MAX_DELAY_PRINT_RATE 2000000000LL #define MAX_NB_PRINTS 100 int64_t max_delay; int64_t max_advance; static void align_clocks(SyncClocks *sc, CPUState *cpu) { int64_t cpu_icount; if (!icount_align_option) { return; } cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low; sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); sc->last_cpu_icount = cpu_icount; if (sc->diff_clk > VM_CLOCK_ADVANCE) { #ifndef _WIN32 struct timespec sleep_delay, rem_delay; sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; if (nanosleep(&sleep_delay, &rem_delay) < 0) { sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; } else { sc->diff_clk = 0; } #else Sleep(sc->diff_clk / SCALE_MS); sc->diff_clk = 0; #endif } } static void print_delay(const SyncClocks *sc) { static float threshold_delay; static int64_t last_realtime_clock; static int nb_prints; if (icount_align_option && sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && nb_prints < MAX_NB_PRINTS) { if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || (-sc->diff_clk / (float)1000000000LL < (threshold_delay - THRESHOLD_REDUCE))) { threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", threshold_delay - 1, threshold_delay); nb_prints++; last_realtime_clock = sc->realtime_clock; } } } static void init_delay_params(SyncClocks *sc, CPUState *cpu) { if (!icount_align_option) { return; } sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; sc->last_cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low; if (sc->diff_clk < max_delay) { max_delay = sc->diff_clk; } if (sc->diff_clk > max_advance) { max_advance = sc->diff_clk; } /* Print every 2s max if the guest is late. We limit the number of printed messages to NB_PRINT_MAX(currently 100) */ print_delay(sc); } #else static void align_clocks(SyncClocks *sc, const CPUState *cpu) { } static void init_delay_params(SyncClocks *sc, const CPUState *cpu) { } #endif /* CONFIG USER ONLY */ bool tcg_cflags_has(CPUState *cpu, uint32_t flags) { return cpu->tcg_cflags & flags; } void tcg_cflags_set(CPUState *cpu, uint32_t flags) { cpu->tcg_cflags |= flags; } uint32_t curr_cflags(CPUState *cpu) { uint32_t cflags = cpu->tcg_cflags; /* * Record gdb single-step. We should be exiting the TB by raising * EXCP_DEBUG, but to simplify other tests, disable chaining too. * * For singlestep and -d nochain, suppress goto_tb so that * we can log -d cpu,exec after every TB. */ if (unlikely(cpu->singlestep_enabled)) { cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; } else if (qatomic_read(&one_insn_per_tb)) { cflags |= CF_NO_GOTO_TB | 1; } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { cflags |= CF_NO_GOTO_TB; } return cflags; } struct tb_desc { vaddr pc; uint64_t cs_base; CPUArchState *env; tb_page_addr_t page_addr0; uint32_t flags; uint32_t cflags; }; static bool tb_lookup_cmp(const void *p, const void *d) { const TranslationBlock *tb = p; const struct tb_desc *desc = d; if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && tb_page_addr0(tb) == desc->page_addr0 && tb->cs_base == desc->cs_base && tb->flags == desc->flags && tb_cflags(tb) == desc->cflags) { /* check next page if needed */ tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); if (tb_phys_page1 == -1) { return true; } else { tb_page_addr_t phys_page1; vaddr virt_page1; /* * We know that the first page matched, and an otherwise valid TB * encountered an incomplete instruction at the end of that page, * therefore we know that generating a new TB from the current PC * must also require reading from the next page -- even if the * second pages do not match, and therefore the resulting insn * is different for the new TB. Therefore any exception raised * here by the faulting lookup is not premature. */ virt_page1 = TARGET_PAGE_ALIGN(desc->pc); phys_page1 = get_page_addr_code(desc->env, virt_page1); if (tb_phys_page1 == phys_page1) { return true; } } } return false; } static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc, uint64_t cs_base, uint32_t flags, uint32_t cflags) { tb_page_addr_t phys_pc; struct tb_desc desc; uint32_t h; desc.env = cpu_env(cpu); desc.cs_base = cs_base; desc.flags = flags; desc.cflags = cflags; desc.pc = pc; phys_pc = get_page_addr_code(desc.env, pc); if (phys_pc == -1) { return NULL; } desc.page_addr0 = phys_pc; h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), flags, cs_base, cflags); return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); } /* Might cause an exception, so have a longjmp destination ready */ static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc, uint64_t cs_base, uint32_t flags, uint32_t cflags) { TranslationBlock *tb; CPUJumpCache *jc; uint32_t hash; /* we should never be trying to look up an INVALID tb */ tcg_debug_assert(!(cflags & CF_INVALID)); hash = tb_jmp_cache_hash_func(pc); jc = cpu->tb_jmp_cache; tb = qatomic_read(&jc->array[hash].tb); if (likely(tb && jc->array[hash].pc == pc && tb->cs_base == cs_base && tb->flags == flags && tb_cflags(tb) == cflags)) { goto hit; } tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); if (tb == NULL) { return NULL; } jc->array[hash].pc = pc; qatomic_set(&jc->array[hash].tb, tb); hit: /* * As long as tb is not NULL, the contents are consistent. Therefore, * the virtual PC has to match for non-CF_PCREL translations. */ assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc); return tb; } static void log_cpu_exec(vaddr pc, CPUState *cpu, const TranslationBlock *tb) { if (qemu_log_in_addr_range(pc)) { qemu_log_mask(CPU_LOG_EXEC, "Trace %d: %p [%08" PRIx64 "/%016" VADDR_PRIx "/%08x/%08x] %s\n", cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, tb->flags, tb->cflags, lookup_symbol(pc)); if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { FILE *logfile = qemu_log_trylock(); if (logfile) { int flags = 0; if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { flags |= CPU_DUMP_FPU; } #if defined(TARGET_I386) flags |= CPU_DUMP_CCOP; #endif if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { flags |= CPU_DUMP_VPU; } cpu_dump_state(cpu, logfile, flags); qemu_log_unlock(logfile); } } } } static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, uint32_t *cflags) { CPUBreakpoint *bp; bool match_page = false; /* * Singlestep overrides breakpoints. * This requirement is visible in the record-replay tests, where * we would fail to make forward progress in reverse-continue. * * TODO: gdb singlestep should only override gdb breakpoints, * so that one could (gdb) singlestep into the guest kernel's * architectural breakpoint handler. */ if (cpu->singlestep_enabled) { return false; } QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { /* * If we have an exact pc match, trigger the breakpoint. * Otherwise, note matches within the page. */ if (pc == bp->pc) { bool match_bp = false; if (bp->flags & BP_GDB) { match_bp = true; } else if (bp->flags & BP_CPU) { #ifdef CONFIG_USER_ONLY g_assert_not_reached(); #else const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; assert(tcg_ops->debug_check_breakpoint); match_bp = tcg_ops->debug_check_breakpoint(cpu); #endif } if (match_bp) { cpu->exception_index = EXCP_DEBUG; return true; } } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { match_page = true; } } /* * Within the same page as a breakpoint, single-step, * returning to helper_lookup_tb_ptr after each insn looking * for the actual breakpoint. * * TODO: Perhaps better to record all of the TBs associated * with a given virtual page that contains a breakpoint, and * then invalidate them when a new overlapping breakpoint is * set on the page. Non-overlapping TBs would not be * invalidated, nor would any TB need to be invalidated as * breakpoints are removed. */ if (match_page) { *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | CF_BP_PAGE | 1; } return false; } static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, uint32_t *cflags) { return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && check_for_breakpoints_slow(cpu, pc, cflags); } /** * helper_lookup_tb_ptr: quick check for next tb * @env: current cpu state * * Look for an existing TB matching the current cpu state. * If found, return the code pointer. If not found, return * the tcg epilogue so that we return into cpu_tb_exec. */ const void *HELPER(lookup_tb_ptr)(CPUArchState *env) { CPUState *cpu = env_cpu(env); TranslationBlock *tb; vaddr pc; uint64_t cs_base; uint32_t flags, cflags; /* * By definition we've just finished a TB, so I/O is OK. * Avoid the possibility of calling cpu_io_recompile() if * a page table walk triggered by tb_lookup() calling * probe_access_internal() happens to touch an MMIO device. * The next TB, if we chain to it, will clear the flag again. */ cpu->neg.can_do_io = true; cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); cflags = curr_cflags(cpu); if (check_for_breakpoints(cpu, pc, &cflags)) { cpu_loop_exit(cpu); } tb = tb_lookup(cpu, pc, cs_base, flags, cflags); if (tb == NULL) { return tcg_code_gen_epilogue; } if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { log_cpu_exec(pc, cpu, tb); } return tb->tc.ptr; } /* Execute a TB, and fix up the CPU state afterwards if necessary */ /* * Disable CFI checks. * TCG creates binary blobs at runtime, with the transformed code. * A TB is a blob of binary code, created at runtime and called with an * indirect function call. Since such function did not exist at compile time, * the CFI runtime has no way to verify its signature and would fail. * TCG is not considered a security-sensitive part of QEMU so this does not * affect the impact of CFI in environment with high security requirements */ static inline TranslationBlock * QEMU_DISABLE_CFI cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) { uintptr_t ret; TranslationBlock *last_tb; const void *tb_ptr = itb->tc.ptr; if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { log_cpu_exec(log_pc(cpu, itb), cpu, itb); } qemu_thread_jit_execute(); ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr); cpu->neg.can_do_io = true; qemu_plugin_disable_mem_helpers(cpu); /* * TODO: Delay swapping back to the read-write region of the TB * until we actually need to modify the TB. The read-only copy, * coming from the rx region, shares the same host TLB entry as * the code that executed the exit_tb opcode that arrived here. * If we insist on touching both the RX and the RW pages, we * double the host TLB pressure. */ last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); *tb_exit = ret & TB_EXIT_MASK; trace_exec_tb_exit(last_tb, *tb_exit); if (*tb_exit > TB_EXIT_IDX1) { /* We didn't start executing this TB (eg because the instruction * counter hit zero); we must restore the guest PC to the address * of the start of the TB. */ CPUClass *cc = cpu->cc; const TCGCPUOps *tcg_ops = cc->tcg_ops; if (tcg_ops->synchronize_from_tb) { tcg_ops->synchronize_from_tb(cpu, last_tb); } else { tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); assert(cc->set_pc); cc->set_pc(cpu, last_tb->pc); } if (qemu_loglevel_mask(CPU_LOG_EXEC)) { vaddr pc = log_pc(cpu, last_tb); if (qemu_log_in_addr_range(pc)) { qemu_log("Stopped execution of TB chain before %p [%016" VADDR_PRIx "] %s\n", last_tb->tc.ptr, pc, lookup_symbol(pc)); } } } /* * If gdb single-step, and we haven't raised another exception, * raise a debug exception. Single-step with another exception * is handled in cpu_handle_exception. */ if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { cpu->exception_index = EXCP_DEBUG; cpu_loop_exit(cpu); } return last_tb; } static void cpu_exec_enter(CPUState *cpu) { const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; if (tcg_ops->cpu_exec_enter) { tcg_ops->cpu_exec_enter(cpu); } } static void cpu_exec_exit(CPUState *cpu) { const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; if (tcg_ops->cpu_exec_exit) { tcg_ops->cpu_exec_exit(cpu); } } static void cpu_exec_longjmp_cleanup(CPUState *cpu) { /* Non-buggy compilers preserve this; assert the correct value. */ g_assert(cpu == current_cpu); #ifdef CONFIG_USER_ONLY clear_helper_retaddr(); if (have_mmap_lock()) { mmap_unlock(); } #else /* * For softmmu, a tlb_fill fault during translation will land here, * and we need to release any page locks held. In system mode we * have one tcg_ctx per thread, so we know it was this cpu doing * the translation. * * Alternative 1: Install a cleanup to be called via an exception * handling safe longjmp. It seems plausible that all our hosts * support such a thing. We'd have to properly register unwind info * for the JIT for EH, rather that just for GDB. * * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to * capture the cpu_loop_exit longjmp, perform the cleanup, and * jump again to arrive here. */ if (tcg_ctx->gen_tb) { tb_unlock_pages(tcg_ctx->gen_tb); tcg_ctx->gen_tb = NULL; } #endif if (bql_locked()) { bql_unlock(); } assert_no_pages_locked(); } void cpu_exec_step_atomic(CPUState *cpu) { CPUArchState *env = cpu_env(cpu); TranslationBlock *tb; vaddr pc; uint64_t cs_base; uint32_t flags, cflags; int tb_exit; if (sigsetjmp(cpu->jmp_env, 0) == 0) { start_exclusive(); g_assert(cpu == current_cpu); g_assert(!cpu->running); cpu->running = true; cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); cflags = curr_cflags(cpu); /* Execute in a serial context. */ cflags &= ~CF_PARALLEL; /* After 1 insn, return and release the exclusive lock. */ cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; /* * No need to check_for_breakpoints here. * We only arrive in cpu_exec_step_atomic after beginning execution * of an insn that includes an atomic operation we can't handle. * Any breakpoint for this insn will have been recognized earlier. */ tb = tb_lookup(cpu, pc, cs_base, flags, cflags); if (tb == NULL) { mmap_lock(); tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); mmap_unlock(); } cpu_exec_enter(cpu); /* execute the generated code */ trace_exec_tb(tb, pc); cpu_tb_exec(cpu, tb, &tb_exit); cpu_exec_exit(cpu); } else { cpu_exec_longjmp_cleanup(cpu); } /* * As we start the exclusive region before codegen we must still * be in the region if we longjump out of either the codegen or * the execution. */ g_assert(cpu_in_exclusive_context(cpu)); cpu->running = false; end_exclusive(); } void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) { /* * Get the rx view of the structure, from which we find the * executable code address, and tb_target_set_jmp_target can * produce a pc-relative displacement to jmp_target_addr[n]. */ const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); uintptr_t offset = tb->jmp_insn_offset[n]; uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; tb->jmp_target_addr[n] = addr; tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); } static inline void tb_add_jump(TranslationBlock *tb, int n, TranslationBlock *tb_next) { uintptr_t old; qemu_thread_jit_write(); assert(n < ARRAY_SIZE(tb->jmp_list_next)); qemu_spin_lock(&tb_next->jmp_lock); /* make sure the destination TB is valid */ if (tb_next->cflags & CF_INVALID) { goto out_unlock_next; } /* Atomically claim the jump destination slot only if it was NULL */ old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, (uintptr_t)tb_next); if (old) { goto out_unlock_next; } /* patch the native jump address */ tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); /* add in TB jmp list */ tb->jmp_list_next[n] = tb_next->jmp_list_head; tb_next->jmp_list_head = (uintptr_t)tb | n; qemu_spin_unlock(&tb_next->jmp_lock); qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", tb->tc.ptr, n, tb_next->tc.ptr); return; out_unlock_next: qemu_spin_unlock(&tb_next->jmp_lock); return; } static inline bool cpu_handle_halt(CPUState *cpu) { #ifndef CONFIG_USER_ONLY if (cpu->halted) { const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; bool leave_halt; if (tcg_ops->cpu_exec_halt) { leave_halt = tcg_ops->cpu_exec_halt(cpu); } else { leave_halt = cpu_has_work(cpu); } if (!leave_halt) { return true; } cpu->halted = 0; } #endif /* !CONFIG_USER_ONLY */ return false; } static inline void cpu_handle_debug_exception(CPUState *cpu) { const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; CPUWatchpoint *wp; if (!cpu->watchpoint_hit) { QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { wp->flags &= ~BP_WATCHPOINT_HIT; } } if (tcg_ops->debug_excp_handler) { tcg_ops->debug_excp_handler(cpu); } } static inline bool cpu_handle_exception(CPUState *cpu, int *ret) { if (cpu->exception_index < 0) { #ifndef CONFIG_USER_ONLY if (replay_has_exception() && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) { /* Execute just one insn to trigger exception pending in the log */ cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) | CF_NOIRQ | 1; } #endif return false; } if (cpu->exception_index >= EXCP_INTERRUPT) { /* exit request from the cpu execution loop */ *ret = cpu->exception_index; if (*ret == EXCP_DEBUG) { cpu_handle_debug_exception(cpu); } cpu->exception_index = -1; return true; } #if defined(CONFIG_USER_ONLY) /* * If user mode only, we simulate a fake exception which will be * handled outside the cpu execution loop. */ #if defined(TARGET_I386) const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; tcg_ops->fake_user_interrupt(cpu); #endif /* TARGET_I386 */ *ret = cpu->exception_index; cpu->exception_index = -1; return true; #else if (replay_exception()) { const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; bql_lock(); tcg_ops->do_interrupt(cpu); bql_unlock(); cpu->exception_index = -1; if (unlikely(cpu->singlestep_enabled)) { /* * After processing the exception, ensure an EXCP_DEBUG is * raised when single-stepping so that GDB doesn't miss the * next instruction. */ *ret = EXCP_DEBUG; cpu_handle_debug_exception(cpu); return true; } } else if (!replay_has_interrupt()) { /* give a chance to iothread in replay mode */ *ret = EXCP_INTERRUPT; return true; } #endif return false; } static inline bool icount_exit_request(CPUState *cpu) { if (!icount_enabled()) { return false; } if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) { return false; } return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0; } static inline bool cpu_handle_interrupt(CPUState *cpu, TranslationBlock **last_tb) { /* * If we have requested custom cflags with CF_NOIRQ we should * skip checking here. Any pending interrupts will get picked up * by the next TB we execute under normal cflags. */ if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { return false; } /* Clear the interrupt flag now since we're processing * cpu->interrupt_request and cpu->exit_request. * Ensure zeroing happens before reading cpu->exit_request or * cpu->interrupt_request (see also smp_wmb in cpu_exit()) */ qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0); if (unlikely(qatomic_read(&cpu->interrupt_request))) { int interrupt_request; bql_lock(); interrupt_request = cpu->interrupt_request; if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { /* Mask out external interrupts for this step. */ interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; } if (interrupt_request & CPU_INTERRUPT_DEBUG) { cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; cpu->exception_index = EXCP_DEBUG; bql_unlock(); return true; } #if !defined(CONFIG_USER_ONLY) if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { /* Do nothing */ } else if (interrupt_request & CPU_INTERRUPT_HALT) { replay_interrupt(); cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; cpu->halted = 1; cpu->exception_index = EXCP_HLT; bql_unlock(); return true; } #if defined(TARGET_I386) else if (interrupt_request & CPU_INTERRUPT_INIT) { X86CPU *x86_cpu = X86_CPU(cpu); CPUArchState *env = &x86_cpu->env; replay_interrupt(); cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); do_cpu_init(x86_cpu); cpu->exception_index = EXCP_HALTED; bql_unlock(); return true; } #else else if (interrupt_request & CPU_INTERRUPT_RESET) { replay_interrupt(); cpu_reset(cpu); bql_unlock(); return true; } #endif /* !TARGET_I386 */ /* The target hook has 3 exit conditions: False when the interrupt isn't processed, True when it is, and we should restart on a new TB, and via longjmp via cpu_loop_exit. */ else { const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; if (tcg_ops->cpu_exec_interrupt && tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { if (!tcg_ops->need_replay_interrupt || tcg_ops->need_replay_interrupt(interrupt_request)) { replay_interrupt(); } /* * After processing the interrupt, ensure an EXCP_DEBUG is * raised when single-stepping so that GDB doesn't miss the * next instruction. */ if (unlikely(cpu->singlestep_enabled)) { cpu->exception_index = EXCP_DEBUG; bql_unlock(); return true; } cpu->exception_index = -1; *last_tb = NULL; } /* The target hook may have updated the 'cpu->interrupt_request'; * reload the 'interrupt_request' value */ interrupt_request = cpu->interrupt_request; } #endif /* !CONFIG_USER_ONLY */ if (interrupt_request & CPU_INTERRUPT_EXITTB) { cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; /* ensure that no TB jump will be modified as the program flow was changed */ *last_tb = NULL; } /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ bql_unlock(); } /* Finally, check if we need to exit to the main loop. */ if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) { qatomic_set(&cpu->exit_request, 0); if (cpu->exception_index == -1) { cpu->exception_index = EXCP_INTERRUPT; } return true; } return false; } static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, vaddr pc, TranslationBlock **last_tb, int *tb_exit) { trace_exec_tb(tb, pc); tb = cpu_tb_exec(cpu, tb, tb_exit); if (*tb_exit != TB_EXIT_REQUESTED) { *last_tb = tb; return; } *last_tb = NULL; if (cpu_loop_exit_requested(cpu)) { /* Something asked us to stop executing chained TBs; just * continue round the main loop. Whatever requested the exit * will also have set something else (eg exit_request or * interrupt_request) which will be handled by * cpu_handle_interrupt. cpu_handle_interrupt will also * clear cpu->icount_decr.u16.high. */ return; } /* Instruction counter expired. */ assert(icount_enabled()); #ifndef CONFIG_USER_ONLY /* Ensure global icount has gone forward */ icount_update(cpu); /* Refill decrementer and continue execution. */ int32_t insns_left = MIN(0xffff, cpu->icount_budget); cpu->neg.icount_decr.u16.low = insns_left; cpu->icount_extra = cpu->icount_budget - insns_left; /* * If the next tb has more instructions than we have left to * execute we need to ensure we find/generate a TB with exactly * insns_left instructions in it. */ if (insns_left > 0 && insns_left < tb->icount) { assert(insns_left <= CF_COUNT_MASK); assert(cpu->icount_extra == 0); cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; } #endif } /* main execution loop */ static int __attribute__((noinline)) cpu_exec_loop(CPUState *cpu, SyncClocks *sc) { int ret; /* if an exception is pending, we execute it here */ while (!cpu_handle_exception(cpu, &ret)) { TranslationBlock *last_tb = NULL; int tb_exit = 0; while (!cpu_handle_interrupt(cpu, &last_tb)) { TranslationBlock *tb; vaddr pc; uint64_t cs_base; uint32_t flags, cflags; cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags); /* * When requested, use an exact setting for cflags for the next * execution. This is used for icount, precise smc, and stop- * after-access watchpoints. Since this request should never * have CF_INVALID set, -1 is a convenient invalid value that * does not require tcg headers for cpu_common_reset. */ cflags = cpu->cflags_next_tb; if (cflags == -1) { cflags = curr_cflags(cpu); } else { cpu->cflags_next_tb = -1; } if (check_for_breakpoints(cpu, pc, &cflags)) { break; } tb = tb_lookup(cpu, pc, cs_base, flags, cflags); if (tb == NULL) { CPUJumpCache *jc; uint32_t h; mmap_lock(); tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); mmap_unlock(); /* * We add the TB in the virtual pc hash table * for the fast lookup */ h = tb_jmp_cache_hash_func(pc); jc = cpu->tb_jmp_cache; jc->array[h].pc = pc; qatomic_set(&jc->array[h].tb, tb); } #ifndef CONFIG_USER_ONLY /* * We don't take care of direct jumps when address mapping * changes in system emulation. So it's not safe to make a * direct jump to a TB spanning two pages because the mapping * for the second page can change. */ if (tb_page_addr1(tb) != -1) { last_tb = NULL; } #endif /* See if we can patch the calling TB. */ if (last_tb) { tb_add_jump(last_tb, tb_exit, tb); } cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); /* Try to align the host and virtual clocks if the guest is in advance */ align_clocks(sc, cpu); } } return ret; } static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) { /* Prepare setjmp context for exception handling. */ if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { cpu_exec_longjmp_cleanup(cpu); } return cpu_exec_loop(cpu, sc); } int cpu_exec(CPUState *cpu) { int ret; SyncClocks sc = { 0 }; /* replay_interrupt may need current_cpu */ current_cpu = cpu; if (cpu_handle_halt(cpu)) { return EXCP_HALTED; } RCU_READ_LOCK_GUARD(); cpu_exec_enter(cpu); /* * Calculate difference between guest clock and host clock. * This delay includes the delay of the last cycle, so * what we have to do is sleep until it is 0. As for the * advance/delay we gain here, we try to fix it next time. */ init_delay_params(&sc, cpu); ret = cpu_exec_setjmp(cpu, &sc); cpu_exec_exit(cpu); return ret; } bool tcg_exec_realizefn(CPUState *cpu, Error **errp) { static bool tcg_target_initialized; if (!tcg_target_initialized) { cpu->cc->tcg_ops->initialize(); tcg_target_initialized = true; } cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); tlb_init(cpu); #ifndef CONFIG_USER_ONLY tcg_iommu_init_notifier_list(cpu); #endif /* !CONFIG_USER_ONLY */ /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ return true; } /* undo the initializations in reverse order */ void tcg_exec_unrealizefn(CPUState *cpu) { #ifndef CONFIG_USER_ONLY tcg_iommu_free_notifier_list(cpu); #endif /* !CONFIG_USER_ONLY */ tlb_destroy(cpu); g_free_rcu(cpu->tb_jmp_cache, rcu); }