/* * QEMU KVM support * * Copyright IBM, Corp. 2008 * Red Hat, Inc. 2008 * * Authors: * Anthony Liguori * Glauber Costa * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include #include #include #include "qemu/atomic.h" #include "qemu/option.h" #include "qemu/config-file.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "hw/pci/msi.h" #include "hw/pci/msix.h" #include "hw/s390x/adapter.h" #include "exec/gdbstub.h" #include "sysemu/kvm_int.h" #include "sysemu/runstate.h" #include "sysemu/cpus.h" #include "sysemu/accel-blocker.h" #include "qemu/bswap.h" #include "exec/memory.h" #include "exec/ram_addr.h" #include "qemu/event_notifier.h" #include "qemu/main-loop.h" #include "trace.h" #include "hw/irq.h" #include "qapi/visitor.h" #include "qapi/qapi-types-common.h" #include "qapi/qapi-visit-common.h" #include "sysemu/reset.h" #include "qemu/guest-random.h" #include "sysemu/hw_accel.h" #include "kvm-cpus.h" #include "sysemu/dirtylimit.h" #include "qemu/range.h" #include "hw/boards.h" #include "sysemu/stats.h" /* This check must be after config-host.h is included */ #ifdef CONFIG_EVENTFD #include #endif /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We * need to use the real host PAGE_SIZE, as that's what KVM will use. */ #ifdef PAGE_SIZE #undef PAGE_SIZE #endif #define PAGE_SIZE qemu_real_host_page_size() #ifndef KVM_GUESTDBG_BLOCKIRQ #define KVM_GUESTDBG_BLOCKIRQ 0 #endif //#define DEBUG_KVM #ifdef DEBUG_KVM #define DPRINTF(fmt, ...) \ do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) \ do { } while (0) #endif struct KVMParkedVcpu { unsigned long vcpu_id; int kvm_fd; QLIST_ENTRY(KVMParkedVcpu) node; }; KVMState *kvm_state; bool kvm_kernel_irqchip; bool kvm_split_irqchip; bool kvm_async_interrupts_allowed; bool kvm_halt_in_kernel_allowed; bool kvm_eventfds_allowed; bool kvm_irqfds_allowed; bool kvm_resamplefds_allowed; bool kvm_msi_via_irqfd_allowed; bool kvm_gsi_routing_allowed; bool kvm_gsi_direct_mapping; bool kvm_allowed; bool kvm_readonly_mem_allowed; bool kvm_vm_attributes_allowed; bool kvm_direct_msi_allowed; bool kvm_ioeventfd_any_length_allowed; bool kvm_msi_use_devid; bool kvm_has_guest_debug; static int kvm_sstep_flags; static bool kvm_immediate_exit; static hwaddr kvm_max_slot_size = ~0; static const KVMCapabilityInfo kvm_required_capabilites[] = { KVM_CAP_INFO(USER_MEMORY), KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), KVM_CAP_LAST_INFO }; static NotifierList kvm_irqchip_change_notifiers = NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); struct KVMResampleFd { int gsi; EventNotifier *resample_event; QLIST_ENTRY(KVMResampleFd) node; }; typedef struct KVMResampleFd KVMResampleFd; /* * Only used with split irqchip where we need to do the resample fd * kick for the kernel from userspace. */ static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); static QemuMutex kml_slots_lock; #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); static inline void kvm_resample_fd_remove(int gsi) { KVMResampleFd *rfd; QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { if (rfd->gsi == gsi) { QLIST_REMOVE(rfd, node); g_free(rfd); break; } } } static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) { KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); rfd->gsi = gsi; rfd->resample_event = event; QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); } void kvm_resample_fd_notify(int gsi) { KVMResampleFd *rfd; QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { if (rfd->gsi == gsi) { event_notifier_set(rfd->resample_event); trace_kvm_resample_fd_notify(gsi); return; } } } int kvm_get_max_memslots(void) { KVMState *s = KVM_STATE(current_accel()); return s->nr_slots; } /* Called with KVMMemoryListener.slots_lock held */ static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) { KVMState *s = kvm_state; int i; for (i = 0; i < s->nr_slots; i++) { if (kml->slots[i].memory_size == 0) { return &kml->slots[i]; } } return NULL; } bool kvm_has_free_slot(MachineState *ms) { KVMState *s = KVM_STATE(ms->accelerator); bool result; KVMMemoryListener *kml = &s->memory_listener; kvm_slots_lock(); result = !!kvm_get_free_slot(kml); kvm_slots_unlock(); return result; } /* Called with KVMMemoryListener.slots_lock held */ static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) { KVMSlot *slot = kvm_get_free_slot(kml); if (slot) { return slot; } fprintf(stderr, "%s: no free slot available\n", __func__); abort(); } static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, hwaddr start_addr, hwaddr size) { KVMState *s = kvm_state; int i; for (i = 0; i < s->nr_slots; i++) { KVMSlot *mem = &kml->slots[i]; if (start_addr == mem->start_addr && size == mem->memory_size) { return mem; } } return NULL; } /* * Calculate and align the start address and the size of the section. * Return the size. If the size is 0, the aligned section is empty. */ static hwaddr kvm_align_section(MemoryRegionSection *section, hwaddr *start) { hwaddr size = int128_get64(section->size); hwaddr delta, aligned; /* kvm works in page size chunks, but the function may be called with sub-page size and unaligned start address. Pad the start address to next and truncate size to previous page boundary. */ aligned = ROUND_UP(section->offset_within_address_space, qemu_real_host_page_size()); delta = aligned - section->offset_within_address_space; *start = aligned; if (delta > size) { return 0; } return (size - delta) & qemu_real_host_page_mask(); } int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, hwaddr *phys_addr) { KVMMemoryListener *kml = &s->memory_listener; int i, ret = 0; kvm_slots_lock(); for (i = 0; i < s->nr_slots; i++) { KVMSlot *mem = &kml->slots[i]; if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { *phys_addr = mem->start_addr + (ram - mem->ram); ret = 1; break; } } kvm_slots_unlock(); return ret; } static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) { KVMState *s = kvm_state; struct kvm_userspace_memory_region mem; int ret; mem.slot = slot->slot | (kml->as_id << 16); mem.guest_phys_addr = slot->start_addr; mem.userspace_addr = (unsigned long)slot->ram; mem.flags = slot->flags; if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { /* Set the slot size to 0 before setting the slot to the desired * value. This is needed based on KVM commit 75d61fbc. */ mem.memory_size = 0; ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); if (ret < 0) { goto err; } } mem.memory_size = slot->memory_size; ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); slot->old_flags = mem.flags; err: trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, mem.memory_size, mem.userspace_addr, ret); if (ret < 0) { error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", __func__, mem.slot, slot->start_addr, (uint64_t)mem.memory_size, strerror(errno)); } return ret; } static int do_kvm_destroy_vcpu(CPUState *cpu) { KVMState *s = kvm_state; long mmap_size; struct KVMParkedVcpu *vcpu = NULL; int ret = 0; DPRINTF("kvm_destroy_vcpu\n"); ret = kvm_arch_destroy_vcpu(cpu); if (ret < 0) { goto err; } mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); if (mmap_size < 0) { ret = mmap_size; DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); goto err; } ret = munmap(cpu->kvm_run, mmap_size); if (ret < 0) { goto err; } if (cpu->kvm_dirty_gfns) { ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); if (ret < 0) { goto err; } } vcpu = g_malloc0(sizeof(*vcpu)); vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); vcpu->kvm_fd = cpu->kvm_fd; QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); err: return ret; } void kvm_destroy_vcpu(CPUState *cpu) { if (do_kvm_destroy_vcpu(cpu) < 0) { error_report("kvm_destroy_vcpu failed"); exit(EXIT_FAILURE); } } static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) { struct KVMParkedVcpu *cpu; QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { if (cpu->vcpu_id == vcpu_id) { int kvm_fd; QLIST_REMOVE(cpu, node); kvm_fd = cpu->kvm_fd; g_free(cpu); return kvm_fd; } } return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); } int kvm_init_vcpu(CPUState *cpu, Error **errp) { KVMState *s = kvm_state; long mmap_size; int ret; trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); if (ret < 0) { error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", kvm_arch_vcpu_id(cpu)); goto err; } cpu->kvm_fd = ret; cpu->kvm_state = s; cpu->vcpu_dirty = true; cpu->dirty_pages = 0; cpu->throttle_us_per_full = 0; mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); if (mmap_size < 0) { ret = mmap_size; error_setg_errno(errp, -mmap_size, "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); goto err; } cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, cpu->kvm_fd, 0); if (cpu->kvm_run == MAP_FAILED) { ret = -errno; error_setg_errno(errp, ret, "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", kvm_arch_vcpu_id(cpu)); goto err; } if (s->coalesced_mmio && !s->coalesced_mmio_ring) { s->coalesced_mmio_ring = (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; } if (s->kvm_dirty_ring_size) { /* Use MAP_SHARED to share pages with the kernel */ cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, PROT_READ | PROT_WRITE, MAP_SHARED, cpu->kvm_fd, PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); if (cpu->kvm_dirty_gfns == MAP_FAILED) { ret = -errno; DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); goto err; } } ret = kvm_arch_init_vcpu(cpu); if (ret < 0) { error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", kvm_arch_vcpu_id(cpu)); } err: return ret; } /* * dirty pages logging control */ static int kvm_mem_flags(MemoryRegion *mr) { bool readonly = mr->readonly || memory_region_is_romd(mr); int flags = 0; if (memory_region_get_dirty_log_mask(mr) != 0) { flags |= KVM_MEM_LOG_DIRTY_PAGES; } if (readonly && kvm_readonly_mem_allowed) { flags |= KVM_MEM_READONLY; } return flags; } /* Called with KVMMemoryListener.slots_lock held */ static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, MemoryRegion *mr) { mem->flags = kvm_mem_flags(mr); /* If nothing changed effectively, no need to issue ioctl */ if (mem->flags == mem->old_flags) { return 0; } kvm_slot_init_dirty_bitmap(mem); return kvm_set_user_memory_region(kml, mem, false); } static int kvm_section_update_flags(KVMMemoryListener *kml, MemoryRegionSection *section) { hwaddr start_addr, size, slot_size; KVMSlot *mem; int ret = 0; size = kvm_align_section(section, &start_addr); if (!size) { return 0; } kvm_slots_lock(); while (size && !ret) { slot_size = MIN(kvm_max_slot_size, size); mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); if (!mem) { /* We don't have a slot if we want to trap every access. */ goto out; } ret = kvm_slot_update_flags(kml, mem, section->mr); start_addr += slot_size; size -= slot_size; } out: kvm_slots_unlock(); return ret; } static void kvm_log_start(MemoryListener *listener, MemoryRegionSection *section, int old, int new) { KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); int r; if (old != 0) { return; } r = kvm_section_update_flags(kml, section); if (r < 0) { abort(); } } static void kvm_log_stop(MemoryListener *listener, MemoryRegionSection *section, int old, int new) { KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); int r; if (new != 0) { return; } r = kvm_section_update_flags(kml, section); if (r < 0) { abort(); } } /* get kvm's dirty pages bitmap and update qemu's */ static void kvm_slot_sync_dirty_pages(KVMSlot *slot) { ram_addr_t start = slot->ram_start_offset; ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); } static void kvm_slot_reset_dirty_pages(KVMSlot *slot) { memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); } #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) /* Allocate the dirty bitmap for a slot */ static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) { if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { return; } /* * XXX bad kernel interface alert * For dirty bitmap, kernel allocates array of size aligned to * bits-per-long. But for case when the kernel is 64bits and * the userspace is 32bits, userspace can't align to the same * bits-per-long, since sizeof(long) is different between kernel * and user space. This way, userspace will provide buffer which * may be 4 bytes less than the kernel will use, resulting in * userspace memory corruption (which is not detectable by valgrind * too, in most cases). * So for now, let's align to 64 instead of HOST_LONG_BITS here, in * a hope that sizeof(long) won't become >8 any time soon. * * Note: the granule of kvm dirty log is qemu_real_host_page_size. * And mem->memory_size is aligned to it (otherwise this mem can't * be registered to KVM). */ hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), /*HOST_LONG_BITS*/ 64) / 8; mem->dirty_bmap = g_malloc0(bitmap_size); mem->dirty_bmap_size = bitmap_size; } /* * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if * succeeded, false otherwise */ static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) { struct kvm_dirty_log d = {}; int ret; d.dirty_bitmap = slot->dirty_bmap; d.slot = slot->slot | (slot->as_id << 16); ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); if (ret == -ENOENT) { /* kernel does not have dirty bitmap in this slot */ ret = 0; } if (ret) { error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", __func__, ret); } return ret == 0; } /* Should be with all slots_lock held for the address spaces. */ static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, uint32_t slot_id, uint64_t offset) { KVMMemoryListener *kml; KVMSlot *mem; if (as_id >= s->nr_as) { return; } kml = s->as[as_id].ml; mem = &kml->slots[slot_id]; if (!mem->memory_size || offset >= (mem->memory_size / qemu_real_host_page_size())) { return; } set_bit(offset, mem->dirty_bmap); } static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) { /* * Read the flags before the value. Pairs with barrier in * KVM's kvm_dirty_ring_push() function. */ return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; } static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) { /* * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS * sees the full content of the ring: * * CPU0 CPU1 CPU2 * ------------------------------------------------------------------------------ * fill gfn0 * store-rel flags for gfn0 * load-acq flags for gfn0 * store-rel RESET for gfn0 * ioctl(RESET_RINGS) * load-acq flags for gfn0 * check if flags have RESET * * The synchronization goes from CPU2 to CPU0 to CPU1. */ qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); } /* * Should be with all slots_lock held for the address spaces. It returns the * dirty page we've collected on this dirty ring. */ static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) { struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; uint32_t ring_size = s->kvm_dirty_ring_size; uint32_t count = 0, fetch = cpu->kvm_fetch_index; assert(dirty_gfns && ring_size); trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); while (true) { cur = &dirty_gfns[fetch % ring_size]; if (!dirty_gfn_is_dirtied(cur)) { break; } kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, cur->offset); dirty_gfn_set_collected(cur); trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); fetch++; count++; } cpu->kvm_fetch_index = fetch; cpu->dirty_pages += count; return count; } /* Must be with slots_lock held */ static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) { int ret; uint64_t total = 0; int64_t stamp; stamp = get_clock(); if (cpu) { total = kvm_dirty_ring_reap_one(s, cpu); } else { CPU_FOREACH(cpu) { total += kvm_dirty_ring_reap_one(s, cpu); } } if (total) { ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); assert(ret == total); } stamp = get_clock() - stamp; if (total) { trace_kvm_dirty_ring_reap(total, stamp / 1000); } return total; } /* * Currently for simplicity, we must hold BQL before calling this. We can * consider to drop the BQL if we're clear with all the race conditions. */ static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) { uint64_t total; /* * We need to lock all kvm slots for all address spaces here, * because: * * (1) We need to mark dirty for dirty bitmaps in multiple slots * and for tons of pages, so it's better to take the lock here * once rather than once per page. And more importantly, * * (2) We must _NOT_ publish dirty bits to the other threads * (e.g., the migration thread) via the kvm memory slot dirty * bitmaps before correctly re-protect those dirtied pages. * Otherwise we can have potential risk of data corruption if * the page data is read in the other thread before we do * reset below. */ kvm_slots_lock(); total = kvm_dirty_ring_reap_locked(s, cpu); kvm_slots_unlock(); return total; } static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) { /* No need to do anything */ } /* * Kick all vcpus out in a synchronized way. When returned, we * guarantee that every vcpu has been kicked and at least returned to * userspace once. */ static void kvm_cpu_synchronize_kick_all(void) { CPUState *cpu; CPU_FOREACH(cpu) { run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); } } /* * Flush all the existing dirty pages to the KVM slot buffers. When * this call returns, we guarantee that all the touched dirty pages * before calling this function have been put into the per-kvmslot * dirty bitmap. * * This function must be called with BQL held. */ static void kvm_dirty_ring_flush(void) { trace_kvm_dirty_ring_flush(0); /* * The function needs to be serialized. Since this function * should always be with BQL held, serialization is guaranteed. * However, let's be sure of it. */ assert(qemu_mutex_iothread_locked()); /* * First make sure to flush the hardware buffers by kicking all * vcpus out in a synchronous way. */ kvm_cpu_synchronize_kick_all(); kvm_dirty_ring_reap(kvm_state, NULL); trace_kvm_dirty_ring_flush(1); } /** * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space * * This function will first try to fetch dirty bitmap from the kernel, * and then updates qemu's dirty bitmap. * * NOTE: caller must be with kml->slots_lock held. * * @kml: the KVM memory listener object * @section: the memory section to sync the dirty bitmap with */ static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, MemoryRegionSection *section) { KVMState *s = kvm_state; KVMSlot *mem; hwaddr start_addr, size; hwaddr slot_size; size = kvm_align_section(section, &start_addr); while (size) { slot_size = MIN(kvm_max_slot_size, size); mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); if (!mem) { /* We don't have a slot if we want to trap every access. */ return; } if (kvm_slot_get_dirty_log(s, mem)) { kvm_slot_sync_dirty_pages(mem); } start_addr += slot_size; size -= slot_size; } } /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ #define KVM_CLEAR_LOG_SHIFT 6 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, uint64_t size) { KVMState *s = kvm_state; uint64_t end, bmap_start, start_delta, bmap_npages; struct kvm_clear_dirty_log d; unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); int ret; /* * We need to extend either the start or the size or both to * satisfy the KVM interface requirement. Firstly, do the start * page alignment on 64 host pages */ bmap_start = start & KVM_CLEAR_LOG_MASK; start_delta = start - bmap_start; bmap_start /= psize; /* * The kernel interface has restriction on the size too, that either: * * (1) the size is 64 host pages aligned (just like the start), or * (2) the size fills up until the end of the KVM memslot. */ bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) << KVM_CLEAR_LOG_SHIFT; end = mem->memory_size / psize; if (bmap_npages > end - bmap_start) { bmap_npages = end - bmap_start; } start_delta /= psize; /* * Prepare the bitmap to clear dirty bits. Here we must guarantee * that we won't clear any unknown dirty bits otherwise we might * accidentally clear some set bits which are not yet synced from * the kernel into QEMU's bitmap, then we'll lose track of the * guest modifications upon those pages (which can directly lead * to guest data loss or panic after migration). * * Layout of the KVMSlot.dirty_bmap: * * |<-------- bmap_npages -----------..>| * [1] * start_delta size * |----------------|-------------|------------------|------------| * ^ ^ ^ ^ * | | | | * start bmap_start (start) end * of memslot of memslot * * [1] bmap_npages can be aligned to either 64 pages or the end of slot */ assert(bmap_start % BITS_PER_LONG == 0); /* We should never do log_clear before log_sync */ assert(mem->dirty_bmap); if (start_delta || bmap_npages - size / psize) { /* Slow path - we need to manipulate a temp bitmap */ bmap_clear = bitmap_new(bmap_npages); bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, bmap_start, start_delta + size / psize); /* * We need to fill the holes at start because that was not * specified by the caller and we extended the bitmap only for * 64 pages alignment */ bitmap_clear(bmap_clear, 0, start_delta); d.dirty_bitmap = bmap_clear; } else { /* * Fast path - both start and size align well with BITS_PER_LONG * (or the end of memory slot) */ d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); } d.first_page = bmap_start; /* It should never overflow. If it happens, say something */ assert(bmap_npages <= UINT32_MAX); d.num_pages = bmap_npages; d.slot = mem->slot | (as_id << 16); ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); if (ret < 0 && ret != -ENOENT) { error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", __func__, d.slot, (uint64_t)d.first_page, (uint32_t)d.num_pages, ret); } else { ret = 0; trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); } /* * After we have updated the remote dirty bitmap, we update the * cached bitmap as well for the memslot, then if another user * clears the same region we know we shouldn't clear it again on * the remote otherwise it's data loss as well. */ bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, size / psize); /* This handles the NULL case well */ g_free(bmap_clear); return ret; } /** * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range * * NOTE: this will be a no-op if we haven't enabled manual dirty log * protection in the host kernel because in that case this operation * will be done within log_sync(). * * @kml: the kvm memory listener * @section: the memory range to clear dirty bitmap */ static int kvm_physical_log_clear(KVMMemoryListener *kml, MemoryRegionSection *section) { KVMState *s = kvm_state; uint64_t start, size, offset, count; KVMSlot *mem; int ret = 0, i; if (!s->manual_dirty_log_protect) { /* No need to do explicit clear */ return ret; } start = section->offset_within_address_space; size = int128_get64(section->size); if (!size) { /* Nothing more we can do... */ return ret; } kvm_slots_lock(); for (i = 0; i < s->nr_slots; i++) { mem = &kml->slots[i]; /* Discard slots that are empty or do not overlap the section */ if (!mem->memory_size || mem->start_addr > start + size - 1 || start > mem->start_addr + mem->memory_size - 1) { continue; } if (start >= mem->start_addr) { /* The slot starts before section or is aligned to it. */ offset = start - mem->start_addr; count = MIN(mem->memory_size - offset, size); } else { /* The slot starts after section. */ offset = 0; count = MIN(mem->memory_size, size - (mem->start_addr - start)); } ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); if (ret < 0) { break; } } kvm_slots_unlock(); return ret; } static void kvm_coalesce_mmio_region(MemoryListener *listener, MemoryRegionSection *secion, hwaddr start, hwaddr size) { KVMState *s = kvm_state; if (s->coalesced_mmio) { struct kvm_coalesced_mmio_zone zone; zone.addr = start; zone.size = size; zone.pad = 0; (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); } } static void kvm_uncoalesce_mmio_region(MemoryListener *listener, MemoryRegionSection *secion, hwaddr start, hwaddr size) { KVMState *s = kvm_state; if (s->coalesced_mmio) { struct kvm_coalesced_mmio_zone zone; zone.addr = start; zone.size = size; zone.pad = 0; (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); } } static void kvm_coalesce_pio_add(MemoryListener *listener, MemoryRegionSection *section, hwaddr start, hwaddr size) { KVMState *s = kvm_state; if (s->coalesced_pio) { struct kvm_coalesced_mmio_zone zone; zone.addr = start; zone.size = size; zone.pio = 1; (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); } } static void kvm_coalesce_pio_del(MemoryListener *listener, MemoryRegionSection *section, hwaddr start, hwaddr size) { KVMState *s = kvm_state; if (s->coalesced_pio) { struct kvm_coalesced_mmio_zone zone; zone.addr = start; zone.size = size; zone.pio = 1; (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); } } static MemoryListener kvm_coalesced_pio_listener = { .name = "kvm-coalesced-pio", .coalesced_io_add = kvm_coalesce_pio_add, .coalesced_io_del = kvm_coalesce_pio_del, }; int kvm_check_extension(KVMState *s, unsigned int extension) { int ret; ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); if (ret < 0) { ret = 0; } return ret; } int kvm_vm_check_extension(KVMState *s, unsigned int extension) { int ret; ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); if (ret < 0) { /* VM wide version not implemented, use global one instead */ ret = kvm_check_extension(s, extension); } return ret; } typedef struct HWPoisonPage { ram_addr_t ram_addr; QLIST_ENTRY(HWPoisonPage) list; } HWPoisonPage; static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = QLIST_HEAD_INITIALIZER(hwpoison_page_list); static void kvm_unpoison_all(void *param) { HWPoisonPage *page, *next_page; QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { QLIST_REMOVE(page, list); qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); g_free(page); } } void kvm_hwpoison_page_add(ram_addr_t ram_addr) { HWPoisonPage *page; QLIST_FOREACH(page, &hwpoison_page_list, list) { if (page->ram_addr == ram_addr) { return; } } page = g_new(HWPoisonPage, 1); page->ram_addr = ram_addr; QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); } static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) { #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN * endianness, but the memory core hands them in target endianness. * For example, PPC is always treated as big-endian even if running * on KVM and on PPC64LE. Correct here. */ switch (size) { case 2: val = bswap16(val); break; case 4: val = bswap32(val); break; } #endif return val; } static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, bool assign, uint32_t size, bool datamatch) { int ret; struct kvm_ioeventfd iofd = { .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, .addr = addr, .len = size, .flags = 0, .fd = fd, }; trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, datamatch); if (!kvm_enabled()) { return -ENOSYS; } if (datamatch) { iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; } if (!assign) { iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; } ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); if (ret < 0) { return -errno; } return 0; } static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, bool assign, uint32_t size, bool datamatch) { struct kvm_ioeventfd kick = { .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, .addr = addr, .flags = KVM_IOEVENTFD_FLAG_PIO, .len = size, .fd = fd, }; int r; trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); if (!kvm_enabled()) { return -ENOSYS; } if (datamatch) { kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; } if (!assign) { kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; } r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); if (r < 0) { return r; } return 0; } static int kvm_check_many_ioeventfds(void) { /* Userspace can use ioeventfd for io notification. This requires a host * that supports eventfd(2) and an I/O thread; since eventfd does not * support SIGIO it cannot interrupt the vcpu. * * Older kernels have a 6 device limit on the KVM io bus. Find out so we * can avoid creating too many ioeventfds. */ #if defined(CONFIG_EVENTFD) int ioeventfds[7]; int i, ret = 0; for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { ioeventfds[i] = eventfd(0, EFD_CLOEXEC); if (ioeventfds[i] < 0) { break; } ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); if (ret < 0) { close(ioeventfds[i]); break; } } /* Decide whether many devices are supported or not */ ret = i == ARRAY_SIZE(ioeventfds); while (i-- > 0) { kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); close(ioeventfds[i]); } return ret; #else return 0; #endif } static const KVMCapabilityInfo * kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) { while (list->name) { if (!kvm_check_extension(s, list->value)) { return list; } list++; } return NULL; } void kvm_set_max_memslot_size(hwaddr max_slot_size) { g_assert( ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size ); kvm_max_slot_size = max_slot_size; } /* Called with KVMMemoryListener.slots_lock held */ static void kvm_set_phys_mem(KVMMemoryListener *kml, MemoryRegionSection *section, bool add) { KVMSlot *mem; int err; MemoryRegion *mr = section->mr; bool writable = !mr->readonly && !mr->rom_device; hwaddr start_addr, size, slot_size, mr_offset; ram_addr_t ram_start_offset; void *ram; if (!memory_region_is_ram(mr)) { if (writable || !kvm_readonly_mem_allowed) { return; } else if (!mr->romd_mode) { /* If the memory device is not in romd_mode, then we actually want * to remove the kvm memory slot so all accesses will trap. */ add = false; } } size = kvm_align_section(section, &start_addr); if (!size) { return; } /* The offset of the kvmslot within the memory region */ mr_offset = section->offset_within_region + start_addr - section->offset_within_address_space; /* use aligned delta to align the ram address and offset */ ram = memory_region_get_ram_ptr(mr) + mr_offset; ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; if (!add) { do { slot_size = MIN(kvm_max_slot_size, size); mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); if (!mem) { return; } if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { /* * NOTE: We should be aware of the fact that here we're only * doing a best effort to sync dirty bits. No matter whether * we're using dirty log or dirty ring, we ignored two facts: * * (1) dirty bits can reside in hardware buffers (PML) * * (2) after we collected dirty bits here, pages can be dirtied * again before we do the final KVM_SET_USER_MEMORY_REGION to * remove the slot. * * Not easy. Let's cross the fingers until it's fixed. */ if (kvm_state->kvm_dirty_ring_size) { kvm_dirty_ring_reap_locked(kvm_state, NULL); } else { kvm_slot_get_dirty_log(kvm_state, mem); } kvm_slot_sync_dirty_pages(mem); } /* unregister the slot */ g_free(mem->dirty_bmap); mem->dirty_bmap = NULL; mem->memory_size = 0; mem->flags = 0; err = kvm_set_user_memory_region(kml, mem, false); if (err) { fprintf(stderr, "%s: error unregistering slot: %s\n", __func__, strerror(-err)); abort(); } start_addr += slot_size; size -= slot_size; } while (size); return; } /* register the new slot */ do { slot_size = MIN(kvm_max_slot_size, size); mem = kvm_alloc_slot(kml); mem->as_id = kml->as_id; mem->memory_size = slot_size; mem->start_addr = start_addr; mem->ram_start_offset = ram_start_offset; mem->ram = ram; mem->flags = kvm_mem_flags(mr); kvm_slot_init_dirty_bitmap(mem); err = kvm_set_user_memory_region(kml, mem, true); if (err) { fprintf(stderr, "%s: error registering slot: %s\n", __func__, strerror(-err)); abort(); } start_addr += slot_size; ram_start_offset += slot_size; ram += slot_size; size -= slot_size; } while (size); } static void *kvm_dirty_ring_reaper_thread(void *data) { KVMState *s = data; struct KVMDirtyRingReaper *r = &s->reaper; rcu_register_thread(); trace_kvm_dirty_ring_reaper("init"); while (true) { r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; trace_kvm_dirty_ring_reaper("wait"); /* * TODO: provide a smarter timeout rather than a constant? */ sleep(1); /* keep sleeping so that dirtylimit not be interfered by reaper */ if (dirtylimit_in_service()) { continue; } trace_kvm_dirty_ring_reaper("wakeup"); r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; qemu_mutex_lock_iothread(); kvm_dirty_ring_reap(s, NULL); qemu_mutex_unlock_iothread(); r->reaper_iteration++; } trace_kvm_dirty_ring_reaper("exit"); rcu_unregister_thread(); return NULL; } static int kvm_dirty_ring_reaper_init(KVMState *s) { struct KVMDirtyRingReaper *r = &s->reaper; qemu_thread_create(&r->reaper_thr, "kvm-reaper", kvm_dirty_ring_reaper_thread, s, QEMU_THREAD_JOINABLE); return 0; } static void kvm_region_add(MemoryListener *listener, MemoryRegionSection *section) { KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); KVMMemoryUpdate *update; update = g_new0(KVMMemoryUpdate, 1); update->section = *section; QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); } static void kvm_region_del(MemoryListener *listener, MemoryRegionSection *section) { KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); KVMMemoryUpdate *update; update = g_new0(KVMMemoryUpdate, 1); update->section = *section; QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); } static void kvm_region_commit(MemoryListener *listener) { KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); KVMMemoryUpdate *u1, *u2; bool need_inhibit = false; if (QSIMPLEQ_EMPTY(&kml->transaction_add) && QSIMPLEQ_EMPTY(&kml->transaction_del)) { return; } /* * We have to be careful when regions to add overlap with ranges to remove. * We have to simulate atomic KVM memslot updates by making sure no ioctl() * is currently active. * * The lists are order by addresses, so it's easy to find overlaps. */ u1 = QSIMPLEQ_FIRST(&kml->transaction_del); u2 = QSIMPLEQ_FIRST(&kml->transaction_add); while (u1 && u2) { Range r1, r2; range_init_nofail(&r1, u1->section.offset_within_address_space, int128_get64(u1->section.size)); range_init_nofail(&r2, u2->section.offset_within_address_space, int128_get64(u2->section.size)); if (range_overlaps_range(&r1, &r2)) { need_inhibit = true; break; } if (range_lob(&r1) < range_lob(&r2)) { u1 = QSIMPLEQ_NEXT(u1, next); } else { u2 = QSIMPLEQ_NEXT(u2, next); } } kvm_slots_lock(); if (need_inhibit) { accel_ioctl_inhibit_begin(); } /* Remove all memslots before adding the new ones. */ while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { u1 = QSIMPLEQ_FIRST(&kml->transaction_del); QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); kvm_set_phys_mem(kml, &u1->section, false); memory_region_unref(u1->section.mr); g_free(u1); } while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { u1 = QSIMPLEQ_FIRST(&kml->transaction_add); QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); memory_region_ref(u1->section.mr); kvm_set_phys_mem(kml, &u1->section, true); g_free(u1); } if (need_inhibit) { accel_ioctl_inhibit_end(); } kvm_slots_unlock(); } static void kvm_log_sync(MemoryListener *listener, MemoryRegionSection *section) { KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); kvm_slots_lock(); kvm_physical_sync_dirty_bitmap(kml, section); kvm_slots_unlock(); } static void kvm_log_sync_global(MemoryListener *l) { KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); KVMState *s = kvm_state; KVMSlot *mem; int i; /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ kvm_dirty_ring_flush(); /* * TODO: make this faster when nr_slots is big while there are * only a few used slots (small VMs). */ kvm_slots_lock(); for (i = 0; i < s->nr_slots; i++) { mem = &kml->slots[i]; if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { kvm_slot_sync_dirty_pages(mem); /* * This is not needed by KVM_GET_DIRTY_LOG because the * ioctl will unconditionally overwrite the whole region. * However kvm dirty ring has no such side effect. */ kvm_slot_reset_dirty_pages(mem); } } kvm_slots_unlock(); } static void kvm_log_clear(MemoryListener *listener, MemoryRegionSection *section) { KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); int r; r = kvm_physical_log_clear(kml, section); if (r < 0) { error_report_once("%s: kvm log clear failed: mr=%s " "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, section->mr->name, section->offset_within_region, int128_get64(section->size)); abort(); } } static void kvm_mem_ioeventfd_add(MemoryListener *listener, MemoryRegionSection *section, bool match_data, uint64_t data, EventNotifier *e) { int fd = event_notifier_get_fd(e); int r; r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, data, true, int128_get64(section->size), match_data); if (r < 0) { fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", __func__, strerror(-r), -r); abort(); } } static void kvm_mem_ioeventfd_del(MemoryListener *listener, MemoryRegionSection *section, bool match_data, uint64_t data, EventNotifier *e) { int fd = event_notifier_get_fd(e); int r; r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, data, false, int128_get64(section->size), match_data); if (r < 0) { fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", __func__, strerror(-r), -r); abort(); } } static void kvm_io_ioeventfd_add(MemoryListener *listener, MemoryRegionSection *section, bool match_data, uint64_t data, EventNotifier *e) { int fd = event_notifier_get_fd(e); int r; r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, data, true, int128_get64(section->size), match_data); if (r < 0) { fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", __func__, strerror(-r), -r); abort(); } } static void kvm_io_ioeventfd_del(MemoryListener *listener, MemoryRegionSection *section, bool match_data, uint64_t data, EventNotifier *e) { int fd = event_notifier_get_fd(e); int r; r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, data, false, int128_get64(section->size), match_data); if (r < 0) { fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", __func__, strerror(-r), -r); abort(); } } void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, AddressSpace *as, int as_id, const char *name) { int i; kml->slots = g_new0(KVMSlot, s->nr_slots); kml->as_id = as_id; for (i = 0; i < s->nr_slots; i++) { kml->slots[i].slot = i; } QSIMPLEQ_INIT(&kml->transaction_add); QSIMPLEQ_INIT(&kml->transaction_del); kml->listener.region_add = kvm_region_add; kml->listener.region_del = kvm_region_del; kml->listener.commit = kvm_region_commit; kml->listener.log_start = kvm_log_start; kml->listener.log_stop = kvm_log_stop; kml->listener.priority = 10; kml->listener.name = name; if (s->kvm_dirty_ring_size) { kml->listener.log_sync_global = kvm_log_sync_global; } else { kml->listener.log_sync = kvm_log_sync; kml->listener.log_clear = kvm_log_clear; } memory_listener_register(&kml->listener, as); for (i = 0; i < s->nr_as; ++i) { if (!s->as[i].as) { s->as[i].as = as; s->as[i].ml = kml; break; } } } static MemoryListener kvm_io_listener = { .name = "kvm-io", .eventfd_add = kvm_io_ioeventfd_add, .eventfd_del = kvm_io_ioeventfd_del, .priority = 10, }; int kvm_set_irq(KVMState *s, int irq, int level) { struct kvm_irq_level event; int ret; assert(kvm_async_interrupts_enabled()); event.level = level; event.irq = irq; ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); if (ret < 0) { perror("kvm_set_irq"); abort(); } return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; } #ifdef KVM_CAP_IRQ_ROUTING typedef struct KVMMSIRoute { struct kvm_irq_routing_entry kroute; QTAILQ_ENTRY(KVMMSIRoute) entry; } KVMMSIRoute; static void set_gsi(KVMState *s, unsigned int gsi) { set_bit(gsi, s->used_gsi_bitmap); } static void clear_gsi(KVMState *s, unsigned int gsi) { clear_bit(gsi, s->used_gsi_bitmap); } void kvm_init_irq_routing(KVMState *s) { int gsi_count, i; gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; if (gsi_count > 0) { /* Round up so we can search ints using ffs */ s->used_gsi_bitmap = bitmap_new(gsi_count); s->gsi_count = gsi_count; } s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); s->nr_allocated_irq_routes = 0; if (!kvm_direct_msi_allowed) { for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { QTAILQ_INIT(&s->msi_hashtab[i]); } } kvm_arch_init_irq_routing(s); } void kvm_irqchip_commit_routes(KVMState *s) { int ret; if (kvm_gsi_direct_mapping()) { return; } if (!kvm_gsi_routing_enabled()) { return; } s->irq_routes->flags = 0; trace_kvm_irqchip_commit_routes(); ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); assert(ret == 0); } static void kvm_add_routing_entry(KVMState *s, struct kvm_irq_routing_entry *entry) { struct kvm_irq_routing_entry *new; int n, size; if (s->irq_routes->nr == s->nr_allocated_irq_routes) { n = s->nr_allocated_irq_routes * 2; if (n < 64) { n = 64; } size = sizeof(struct kvm_irq_routing); size += n * sizeof(*new); s->irq_routes = g_realloc(s->irq_routes, size); s->nr_allocated_irq_routes = n; } n = s->irq_routes->nr++; new = &s->irq_routes->entries[n]; *new = *entry; set_gsi(s, entry->gsi); } static int kvm_update_routing_entry(KVMState *s, struct kvm_irq_routing_entry *new_entry) { struct kvm_irq_routing_entry *entry; int n; for (n = 0; n < s->irq_routes->nr; n++) { entry = &s->irq_routes->entries[n]; if (entry->gsi != new_entry->gsi) { continue; } if(!memcmp(entry, new_entry, sizeof *entry)) { return 0; } *entry = *new_entry; return 0; } return -ESRCH; } void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) { struct kvm_irq_routing_entry e = {}; assert(pin < s->gsi_count); e.gsi = irq; e.type = KVM_IRQ_ROUTING_IRQCHIP; e.flags = 0; e.u.irqchip.irqchip = irqchip; e.u.irqchip.pin = pin; kvm_add_routing_entry(s, &e); } void kvm_irqchip_release_virq(KVMState *s, int virq) { struct kvm_irq_routing_entry *e; int i; if (kvm_gsi_direct_mapping()) { return; } for (i = 0; i < s->irq_routes->nr; i++) { e = &s->irq_routes->entries[i]; if (e->gsi == virq) { s->irq_routes->nr--; *e = s->irq_routes->entries[s->irq_routes->nr]; } } clear_gsi(s, virq); kvm_arch_release_virq_post(virq); trace_kvm_irqchip_release_virq(virq); } void kvm_irqchip_add_change_notifier(Notifier *n) { notifier_list_add(&kvm_irqchip_change_notifiers, n); } void kvm_irqchip_remove_change_notifier(Notifier *n) { notifier_remove(n); } void kvm_irqchip_change_notify(void) { notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); } static unsigned int kvm_hash_msi(uint32_t data) { /* This is optimized for IA32 MSI layout. However, no other arch shall * repeat the mistake of not providing a direct MSI injection API. */ return data & 0xff; } static void kvm_flush_dynamic_msi_routes(KVMState *s) { KVMMSIRoute *route, *next; unsigned int hash; for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { kvm_irqchip_release_virq(s, route->kroute.gsi); QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); g_free(route); } } } static int kvm_irqchip_get_virq(KVMState *s) { int next_virq; /* * PIC and IOAPIC share the first 16 GSI numbers, thus the available * GSI numbers are more than the number of IRQ route. Allocating a GSI * number can succeed even though a new route entry cannot be added. * When this happens, flush dynamic MSI entries to free IRQ route entries. */ if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { kvm_flush_dynamic_msi_routes(s); } /* Return the lowest unused GSI in the bitmap */ next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); if (next_virq >= s->gsi_count) { return -ENOSPC; } else { return next_virq; } } static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) { unsigned int hash = kvm_hash_msi(msg.data); KVMMSIRoute *route; QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && route->kroute.u.msi.address_hi == (msg.address >> 32) && route->kroute.u.msi.data == le32_to_cpu(msg.data)) { return route; } } return NULL; } int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) { struct kvm_msi msi; KVMMSIRoute *route; if (kvm_direct_msi_allowed) { msi.address_lo = (uint32_t)msg.address; msi.address_hi = msg.address >> 32; msi.data = le32_to_cpu(msg.data); msi.flags = 0; memset(msi.pad, 0, sizeof(msi.pad)); return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); } route = kvm_lookup_msi_route(s, msg); if (!route) { int virq; virq = kvm_irqchip_get_virq(s); if (virq < 0) { return virq; } route = g_new0(KVMMSIRoute, 1); route->kroute.gsi = virq; route->kroute.type = KVM_IRQ_ROUTING_MSI; route->kroute.flags = 0; route->kroute.u.msi.address_lo = (uint32_t)msg.address; route->kroute.u.msi.address_hi = msg.address >> 32; route->kroute.u.msi.data = le32_to_cpu(msg.data); kvm_add_routing_entry(s, &route->kroute); kvm_irqchip_commit_routes(s); QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, entry); } assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); return kvm_set_irq(s, route->kroute.gsi, 1); } int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) { struct kvm_irq_routing_entry kroute = {}; int virq; KVMState *s = c->s; MSIMessage msg = {0, 0}; if (pci_available && dev) { msg = pci_get_msi_message(dev, vector); } if (kvm_gsi_direct_mapping()) { return kvm_arch_msi_data_to_gsi(msg.data); } if (!kvm_gsi_routing_enabled()) { return -ENOSYS; } virq = kvm_irqchip_get_virq(s); if (virq < 0) { return virq; } kroute.gsi = virq; kroute.type = KVM_IRQ_ROUTING_MSI; kroute.flags = 0; kroute.u.msi.address_lo = (uint32_t)msg.address; kroute.u.msi.address_hi = msg.address >> 32; kroute.u.msi.data = le32_to_cpu(msg.data); if (pci_available && kvm_msi_devid_required()) { kroute.flags = KVM_MSI_VALID_DEVID; kroute.u.msi.devid = pci_requester_id(dev); } if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { kvm_irqchip_release_virq(s, virq); return -EINVAL; } trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", vector, virq); kvm_add_routing_entry(s, &kroute); kvm_arch_add_msi_route_post(&kroute, vector, dev); c->changes++; return virq; } int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, PCIDevice *dev) { struct kvm_irq_routing_entry kroute = {}; if (kvm_gsi_direct_mapping()) { return 0; } if (!kvm_irqchip_in_kernel()) { return -ENOSYS; } kroute.gsi = virq; kroute.type = KVM_IRQ_ROUTING_MSI; kroute.flags = 0; kroute.u.msi.address_lo = (uint32_t)msg.address; kroute.u.msi.address_hi = msg.address >> 32; kroute.u.msi.data = le32_to_cpu(msg.data); if (pci_available && kvm_msi_devid_required()) { kroute.flags = KVM_MSI_VALID_DEVID; kroute.u.msi.devid = pci_requester_id(dev); } if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { return -EINVAL; } trace_kvm_irqchip_update_msi_route(virq); return kvm_update_routing_entry(s, &kroute); } static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, EventNotifier *resample, int virq, bool assign) { int fd = event_notifier_get_fd(event); int rfd = resample ? event_notifier_get_fd(resample) : -1; struct kvm_irqfd irqfd = { .fd = fd, .gsi = virq, .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, }; if (rfd != -1) { assert(assign); if (kvm_irqchip_is_split()) { /* * When the slow irqchip (e.g. IOAPIC) is in the * userspace, KVM kernel resamplefd will not work because * the EOI of the interrupt will be delivered to userspace * instead, so the KVM kernel resamplefd kick will be * skipped. The userspace here mimics what the kernel * provides with resamplefd, remember the resamplefd and * kick it when we receive EOI of this IRQ. * * This is hackery because IOAPIC is mostly bypassed * (except EOI broadcasts) when irqfd is used. However * this can bring much performance back for split irqchip * with INTx IRQs (for VFIO, this gives 93% perf of the * full fast path, which is 46% perf boost comparing to * the INTx slow path). */ kvm_resample_fd_insert(virq, resample); } else { irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; irqfd.resamplefd = rfd; } } else if (!assign) { if (kvm_irqchip_is_split()) { kvm_resample_fd_remove(virq); } } if (!kvm_irqfds_enabled()) { return -ENOSYS; } return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); } int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) { struct kvm_irq_routing_entry kroute = {}; int virq; if (!kvm_gsi_routing_enabled()) { return -ENOSYS; } virq = kvm_irqchip_get_virq(s); if (virq < 0) { return virq; } kroute.gsi = virq; kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; kroute.flags = 0; kroute.u.adapter.summary_addr = adapter->summary_addr; kroute.u.adapter.ind_addr = adapter->ind_addr; kroute.u.adapter.summary_offset = adapter->summary_offset; kroute.u.adapter.ind_offset = adapter->ind_offset; kroute.u.adapter.adapter_id = adapter->adapter_id; kvm_add_routing_entry(s, &kroute); return virq; } int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) { struct kvm_irq_routing_entry kroute = {}; int virq; if (!kvm_gsi_routing_enabled()) { return -ENOSYS; } if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { return -ENOSYS; } virq = kvm_irqchip_get_virq(s); if (virq < 0) { return virq; } kroute.gsi = virq; kroute.type = KVM_IRQ_ROUTING_HV_SINT; kroute.flags = 0; kroute.u.hv_sint.vcpu = vcpu; kroute.u.hv_sint.sint = sint; kvm_add_routing_entry(s, &kroute); kvm_irqchip_commit_routes(s); return virq; } #else /* !KVM_CAP_IRQ_ROUTING */ void kvm_init_irq_routing(KVMState *s) { } void kvm_irqchip_release_virq(KVMState *s, int virq) { } int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) { abort(); } int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) { return -ENOSYS; } int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) { return -ENOSYS; } int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) { return -ENOSYS; } static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, EventNotifier *resample, int virq, bool assign) { abort(); } int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) { return -ENOSYS; } #endif /* !KVM_CAP_IRQ_ROUTING */ int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, EventNotifier *rn, int virq) { return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); } int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, int virq) { return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); } int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, EventNotifier *rn, qemu_irq irq) { gpointer key, gsi; gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); if (!found) { return -ENXIO; } return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); } int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, qemu_irq irq) { gpointer key, gsi; gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); if (!found) { return -ENXIO; } return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); } void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) { g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); } static void kvm_irqchip_create(KVMState *s) { int ret; assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { ; } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); if (ret < 0) { fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); exit(1); } } else { return; } /* First probe and see if there's a arch-specific hook to create the * in-kernel irqchip for us */ ret = kvm_arch_irqchip_create(s); if (ret == 0) { if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { error_report("Split IRQ chip mode not supported."); exit(1); } else { ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); } } if (ret < 0) { fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); exit(1); } kvm_kernel_irqchip = true; /* If we have an in-kernel IRQ chip then we must have asynchronous * interrupt delivery (though the reverse is not necessarily true) */ kvm_async_interrupts_allowed = true; kvm_halt_in_kernel_allowed = true; kvm_init_irq_routing(s); s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); } /* Find number of supported CPUs using the recommended * procedure from the kernel API documentation to cope with * older kernels that may be missing capabilities. */ static int kvm_recommended_vcpus(KVMState *s) { int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); return (ret) ? ret : 4; } static int kvm_max_vcpus(KVMState *s) { int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); return (ret) ? ret : kvm_recommended_vcpus(s); } static int kvm_max_vcpu_id(KVMState *s) { int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); return (ret) ? ret : kvm_max_vcpus(s); } bool kvm_vcpu_id_is_valid(int vcpu_id) { KVMState *s = KVM_STATE(current_accel()); return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); } bool kvm_dirty_ring_enabled(void) { return kvm_state->kvm_dirty_ring_size ? true : false; } static void query_stats_cb(StatsResultList **result, StatsTarget target, strList *names, strList *targets, Error **errp); static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); uint32_t kvm_dirty_ring_size(void) { return kvm_state->kvm_dirty_ring_size; } static int kvm_init(MachineState *ms) { MachineClass *mc = MACHINE_GET_CLASS(ms); static const char upgrade_note[] = "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" "(see http://sourceforge.net/projects/kvm).\n"; struct { const char *name; int num; } num_cpus[] = { { "SMP", ms->smp.cpus }, { "hotpluggable", ms->smp.max_cpus }, { NULL, } }, *nc = num_cpus; int soft_vcpus_limit, hard_vcpus_limit; KVMState *s; const KVMCapabilityInfo *missing_cap; int ret; int type = 0; uint64_t dirty_log_manual_caps; qemu_mutex_init(&kml_slots_lock); s = KVM_STATE(ms->accelerator); /* * On systems where the kernel can support different base page * sizes, host page size may be different from TARGET_PAGE_SIZE, * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum * page size for the system though. */ assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); s->sigmask_len = 8; accel_blocker_init(); #ifdef KVM_CAP_SET_GUEST_DEBUG QTAILQ_INIT(&s->kvm_sw_breakpoints); #endif QLIST_INIT(&s->kvm_parked_vcpus); s->fd = qemu_open_old("/dev/kvm", O_RDWR); if (s->fd == -1) { fprintf(stderr, "Could not access KVM kernel module: %m\n"); ret = -errno; goto err; } ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); if (ret < KVM_API_VERSION) { if (ret >= 0) { ret = -EINVAL; } fprintf(stderr, "kvm version too old\n"); goto err; } if (ret > KVM_API_VERSION) { ret = -EINVAL; fprintf(stderr, "kvm version not supported\n"); goto err; } kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); /* If unspecified, use the default value */ if (!s->nr_slots) { s->nr_slots = 32; } s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); if (s->nr_as <= 1) { s->nr_as = 1; } s->as = g_new0(struct KVMAs, s->nr_as); if (object_property_find(OBJECT(current_machine), "kvm-type")) { g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), "kvm-type", &error_abort); type = mc->kvm_type(ms, kvm_type); } else if (mc->kvm_type) { type = mc->kvm_type(ms, NULL); } do { ret = kvm_ioctl(s, KVM_CREATE_VM, type); } while (ret == -EINTR); if (ret < 0) { fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, strerror(-ret)); #ifdef TARGET_S390X if (ret == -EINVAL) { fprintf(stderr, "Host kernel setup problem detected. Please verify:\n"); fprintf(stderr, "- for kernels supporting the switch_amode or" " user_mode parameters, whether\n"); fprintf(stderr, " user space is running in primary address space\n"); fprintf(stderr, "- for kernels supporting the vm.allocate_pgste sysctl, " "whether it is enabled\n"); } #elif defined(TARGET_PPC) if (ret == -EINVAL) { fprintf(stderr, "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", (type == 2) ? "pr" : "hv"); } #endif goto err; } s->vmfd = ret; /* check the vcpu limits */ soft_vcpus_limit = kvm_recommended_vcpus(s); hard_vcpus_limit = kvm_max_vcpus(s); while (nc->name) { if (nc->num > soft_vcpus_limit) { warn_report("Number of %s cpus requested (%d) exceeds " "the recommended cpus supported by KVM (%d)", nc->name, nc->num, soft_vcpus_limit); if (nc->num > hard_vcpus_limit) { fprintf(stderr, "Number of %s cpus requested (%d) exceeds " "the maximum cpus supported by KVM (%d)\n", nc->name, nc->num, hard_vcpus_limit); exit(1); } } nc++; } missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); if (!missing_cap) { missing_cap = kvm_check_extension_list(s, kvm_arch_required_capabilities); } if (missing_cap) { ret = -EINVAL; fprintf(stderr, "kvm does not support %s\n%s", missing_cap->name, upgrade_note); goto err; } s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); s->coalesced_pio = s->coalesced_mmio && kvm_check_extension(s, KVM_CAP_COALESCED_PIO); /* * Enable KVM dirty ring if supported, otherwise fall back to * dirty logging mode */ if (s->kvm_dirty_ring_size > 0) { uint64_t ring_bytes; ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn); /* Read the max supported pages */ ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING); if (ret > 0) { if (ring_bytes > ret) { error_report("KVM dirty ring size %" PRIu32 " too big " "(maximum is %ld). Please use a smaller value.", s->kvm_dirty_ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); ret = -EINVAL; goto err; } ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes); if (ret) { error_report("Enabling of KVM dirty ring failed: %s. " "Suggested minimum value is 1024.", strerror(-ret)); goto err; } s->kvm_dirty_ring_bytes = ring_bytes; } else { warn_report("KVM dirty ring not available, using bitmap method"); s->kvm_dirty_ring_size = 0; } } /* * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no * page is wr-protected initially, which is against how kvm dirty ring is * usage - kvm dirty ring requires all pages are wr-protected at the very * beginning. Enabling this feature for dirty ring causes data corruption. * * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, * we may expect a higher stall time when starting the migration. In the * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: * instead of clearing dirty bit, it can be a way to explicitly wr-protect * guest pages. */ if (!s->kvm_dirty_ring_size) { dirty_log_manual_caps = kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | KVM_DIRTY_LOG_INITIALLY_SET); s->manual_dirty_log_protect = dirty_log_manual_caps; if (dirty_log_manual_caps) { ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, dirty_log_manual_caps); if (ret) { warn_report("Trying to enable capability %"PRIu64" of " "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " "Falling back to the legacy mode. ", dirty_log_manual_caps); s->manual_dirty_log_protect = 0; } } } #ifdef KVM_CAP_VCPU_EVENTS s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); #endif s->robust_singlestep = kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); #ifdef KVM_CAP_DEBUGREGS s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); #endif s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); #ifdef KVM_CAP_IRQ_ROUTING kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); #endif s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); s->irq_set_ioctl = KVM_IRQ_LINE; if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; } kvm_readonly_mem_allowed = (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); kvm_eventfds_allowed = (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); kvm_irqfds_allowed = (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); kvm_resamplefds_allowed = (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); kvm_vm_attributes_allowed = (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); kvm_ioeventfd_any_length_allowed = (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); #ifdef KVM_CAP_SET_GUEST_DEBUG kvm_has_guest_debug = (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); #endif kvm_sstep_flags = 0; if (kvm_has_guest_debug) { kvm_sstep_flags = SSTEP_ENABLE; #if defined KVM_CAP_SET_GUEST_DEBUG2 int guest_debug_flags = kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { kvm_sstep_flags |= SSTEP_NOIRQ; } #endif } kvm_state = s; ret = kvm_arch_init(ms, s); if (ret < 0) { goto err; } if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; } qemu_register_reset(kvm_unpoison_all, NULL); if (s->kernel_irqchip_allowed) { kvm_irqchip_create(s); } if (kvm_eventfds_allowed) { s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; } s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; kvm_memory_listener_register(s, &s->memory_listener, &address_space_memory, 0, "kvm-memory"); if (kvm_eventfds_allowed) { memory_listener_register(&kvm_io_listener, &address_space_io); } memory_listener_register(&kvm_coalesced_pio_listener, &address_space_io); s->many_ioeventfds = kvm_check_many_ioeventfds(); s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); if (!s->sync_mmu) { ret = ram_block_discard_disable(true); assert(!ret); } if (s->kvm_dirty_ring_size) { ret = kvm_dirty_ring_reaper_init(s); if (ret) { goto err; } } if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, query_stats_schemas_cb); } return 0; err: assert(ret < 0); if (s->vmfd >= 0) { close(s->vmfd); } if (s->fd != -1) { close(s->fd); } g_free(s->memory_listener.slots); return ret; } void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) { s->sigmask_len = sigmask_len; } static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, int size, uint32_t count) { int i; uint8_t *ptr = data; for (i = 0; i < count; i++) { address_space_rw(&address_space_io, port, attrs, ptr, size, direction == KVM_EXIT_IO_OUT); ptr += size; } } static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) { fprintf(stderr, "KVM internal error. Suberror: %d\n", run->internal.suberror); if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { int i; for (i = 0; i < run->internal.ndata; ++i) { fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", i, (uint64_t)run->internal.data[i]); } } if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { fprintf(stderr, "emulation failure\n"); if (!kvm_arch_stop_on_emulation_error(cpu)) { cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); return EXCP_INTERRUPT; } } /* FIXME: Should trigger a qmp message to let management know * something went wrong. */ return -1; } void kvm_flush_coalesced_mmio_buffer(void) { KVMState *s = kvm_state; if (s->coalesced_flush_in_progress) { return; } s->coalesced_flush_in_progress = true; if (s->coalesced_mmio_ring) { struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; while (ring->first != ring->last) { struct kvm_coalesced_mmio *ent; ent = &ring->coalesced_mmio[ring->first]; if (ent->pio == 1) { address_space_write(&address_space_io, ent->phys_addr, MEMTXATTRS_UNSPECIFIED, ent->data, ent->len); } else { cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); } smp_wmb(); ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; } } s->coalesced_flush_in_progress = false; } bool kvm_cpu_check_are_resettable(void) { return kvm_arch_cpu_check_are_resettable(); } static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) { if (!cpu->vcpu_dirty) { kvm_arch_get_registers(cpu); cpu->vcpu_dirty = true; } } void kvm_cpu_synchronize_state(CPUState *cpu) { if (!cpu->vcpu_dirty) { run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); } } static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) { kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); cpu->vcpu_dirty = false; } void kvm_cpu_synchronize_post_reset(CPUState *cpu) { run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); } static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) { kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); cpu->vcpu_dirty = false; } void kvm_cpu_synchronize_post_init(CPUState *cpu) { run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); } static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) { cpu->vcpu_dirty = true; } void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) { run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); } #ifdef KVM_HAVE_MCE_INJECTION static __thread void *pending_sigbus_addr; static __thread int pending_sigbus_code; static __thread bool have_sigbus_pending; #endif static void kvm_cpu_kick(CPUState *cpu) { qatomic_set(&cpu->kvm_run->immediate_exit, 1); } static void kvm_cpu_kick_self(void) { if (kvm_immediate_exit) { kvm_cpu_kick(current_cpu); } else { qemu_cpu_kick_self(); } } static void kvm_eat_signals(CPUState *cpu) { struct timespec ts = { 0, 0 }; siginfo_t siginfo; sigset_t waitset; sigset_t chkset; int r; if (kvm_immediate_exit) { qatomic_set(&cpu->kvm_run->immediate_exit, 0); /* Write kvm_run->immediate_exit before the cpu->exit_request * write in kvm_cpu_exec. */ smp_wmb(); return; } sigemptyset(&waitset); sigaddset(&waitset, SIG_IPI); do { r = sigtimedwait(&waitset, &siginfo, &ts); if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { perror("sigtimedwait"); exit(1); } r = sigpending(&chkset); if (r == -1) { perror("sigpending"); exit(1); } } while (sigismember(&chkset, SIG_IPI)); } int kvm_cpu_exec(CPUState *cpu) { struct kvm_run *run = cpu->kvm_run; int ret, run_ret; DPRINTF("kvm_cpu_exec()\n"); if (kvm_arch_process_async_events(cpu)) { qatomic_set(&cpu->exit_request, 0); return EXCP_HLT; } qemu_mutex_unlock_iothread(); cpu_exec_start(cpu); do { MemTxAttrs attrs; if (cpu->vcpu_dirty) { kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); cpu->vcpu_dirty = false; } kvm_arch_pre_run(cpu, run); if (qatomic_read(&cpu->exit_request)) { DPRINTF("interrupt exit requested\n"); /* * KVM requires us to reenter the kernel after IO exits to complete * instruction emulation. This self-signal will ensure that we * leave ASAP again. */ kvm_cpu_kick_self(); } /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. * Matching barrier in kvm_eat_signals. */ smp_rmb(); run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); attrs = kvm_arch_post_run(cpu, run); #ifdef KVM_HAVE_MCE_INJECTION if (unlikely(have_sigbus_pending)) { qemu_mutex_lock_iothread(); kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, pending_sigbus_addr); have_sigbus_pending = false; qemu_mutex_unlock_iothread(); } #endif if (run_ret < 0) { if (run_ret == -EINTR || run_ret == -EAGAIN) { DPRINTF("io window exit\n"); kvm_eat_signals(cpu); ret = EXCP_INTERRUPT; break; } fprintf(stderr, "error: kvm run failed %s\n", strerror(-run_ret)); #ifdef TARGET_PPC if (run_ret == -EBUSY) { fprintf(stderr, "This is probably because your SMT is enabled.\n" "VCPU can only run on primary threads with all " "secondary threads offline.\n"); } #endif ret = -1; break; } trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); switch (run->exit_reason) { case KVM_EXIT_IO: DPRINTF("handle_io\n"); /* Called outside BQL */ kvm_handle_io(run->io.port, attrs, (uint8_t *)run + run->io.data_offset, run->io.direction, run->io.size, run->io.count); ret = 0; break; case KVM_EXIT_MMIO: DPRINTF("handle_mmio\n"); /* Called outside BQL */ address_space_rw(&address_space_memory, run->mmio.phys_addr, attrs, run->mmio.data, run->mmio.len, run->mmio.is_write); ret = 0; break; case KVM_EXIT_IRQ_WINDOW_OPEN: DPRINTF("irq_window_open\n"); ret = EXCP_INTERRUPT; break; case KVM_EXIT_SHUTDOWN: DPRINTF("shutdown\n"); qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); ret = EXCP_INTERRUPT; break; case KVM_EXIT_UNKNOWN: fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", (uint64_t)run->hw.hardware_exit_reason); ret = -1; break; case KVM_EXIT_INTERNAL_ERROR: ret = kvm_handle_internal_error(cpu, run); break; case KVM_EXIT_DIRTY_RING_FULL: /* * We shouldn't continue if the dirty ring of this vcpu is * still full. Got kicked by KVM_RESET_DIRTY_RINGS. */ trace_kvm_dirty_ring_full(cpu->cpu_index); qemu_mutex_lock_iothread(); /* * We throttle vCPU by making it sleep once it exit from kernel * due to dirty ring full. In the dirtylimit scenario, reaping * all vCPUs after a single vCPU dirty ring get full result in * the miss of sleep, so just reap the ring-fulled vCPU. */ if (dirtylimit_in_service()) { kvm_dirty_ring_reap(kvm_state, cpu); } else { kvm_dirty_ring_reap(kvm_state, NULL); } qemu_mutex_unlock_iothread(); dirtylimit_vcpu_execute(cpu); ret = 0; break; case KVM_EXIT_SYSTEM_EVENT: switch (run->system_event.type) { case KVM_SYSTEM_EVENT_SHUTDOWN: qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); ret = EXCP_INTERRUPT; break; case KVM_SYSTEM_EVENT_RESET: qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); ret = EXCP_INTERRUPT; break; case KVM_SYSTEM_EVENT_CRASH: kvm_cpu_synchronize_state(cpu); qemu_mutex_lock_iothread(); qemu_system_guest_panicked(cpu_get_crash_info(cpu)); qemu_mutex_unlock_iothread(); ret = 0; break; default: DPRINTF("kvm_arch_handle_exit\n"); ret = kvm_arch_handle_exit(cpu, run); break; } break; default: DPRINTF("kvm_arch_handle_exit\n"); ret = kvm_arch_handle_exit(cpu, run); break; } } while (ret == 0); cpu_exec_end(cpu); qemu_mutex_lock_iothread(); if (ret < 0) { cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); vm_stop(RUN_STATE_INTERNAL_ERROR); } qatomic_set(&cpu->exit_request, 0); return ret; } int kvm_ioctl(KVMState *s, int type, ...) { int ret; void *arg; va_list ap; va_start(ap, type); arg = va_arg(ap, void *); va_end(ap); trace_kvm_ioctl(type, arg); ret = ioctl(s->fd, type, arg); if (ret == -1) { ret = -errno; } return ret; } int kvm_vm_ioctl(KVMState *s, int type, ...) { int ret; void *arg; va_list ap; va_start(ap, type); arg = va_arg(ap, void *); va_end(ap); trace_kvm_vm_ioctl(type, arg); accel_ioctl_begin(); ret = ioctl(s->vmfd, type, arg); accel_ioctl_end(); if (ret == -1) { ret = -errno; } return ret; } int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) { int ret; void *arg; va_list ap; va_start(ap, type); arg = va_arg(ap, void *); va_end(ap); trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); accel_cpu_ioctl_begin(cpu); ret = ioctl(cpu->kvm_fd, type, arg); accel_cpu_ioctl_end(cpu); if (ret == -1) { ret = -errno; } return ret; } int kvm_device_ioctl(int fd, int type, ...) { int ret; void *arg; va_list ap; va_start(ap, type); arg = va_arg(ap, void *); va_end(ap); trace_kvm_device_ioctl(fd, type, arg); accel_ioctl_begin(); ret = ioctl(fd, type, arg); accel_ioctl_end(); if (ret == -1) { ret = -errno; } return ret; } int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) { int ret; struct kvm_device_attr attribute = { .group = group, .attr = attr, }; if (!kvm_vm_attributes_allowed) { return 0; } ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); /* kvm returns 0 on success for HAS_DEVICE_ATTR */ return ret ? 0 : 1; } int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) { struct kvm_device_attr attribute = { .group = group, .attr = attr, .flags = 0, }; return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; } int kvm_device_access(int fd, int group, uint64_t attr, void *val, bool write, Error **errp) { struct kvm_device_attr kvmattr; int err; kvmattr.flags = 0; kvmattr.group = group; kvmattr.attr = attr; kvmattr.addr = (uintptr_t)val; err = kvm_device_ioctl(fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, &kvmattr); if (err < 0) { error_setg_errno(errp, -err, "KVM_%s_DEVICE_ATTR failed: Group %d " "attr 0x%016" PRIx64, write ? "SET" : "GET", group, attr); } return err; } bool kvm_has_sync_mmu(void) { return kvm_state->sync_mmu; } int kvm_has_vcpu_events(void) { return kvm_state->vcpu_events; } int kvm_has_robust_singlestep(void) { return kvm_state->robust_singlestep; } int kvm_has_debugregs(void) { return kvm_state->debugregs; } int kvm_max_nested_state_length(void) { return kvm_state->max_nested_state_len; } int kvm_has_many_ioeventfds(void) { if (!kvm_enabled()) { return 0; } return kvm_state->many_ioeventfds; } int kvm_has_gsi_routing(void) { #ifdef KVM_CAP_IRQ_ROUTING return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); #else return false; #endif } int kvm_has_intx_set_mask(void) { return kvm_state->intx_set_mask; } bool kvm_arm_supports_user_irq(void) { return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); } #ifdef KVM_CAP_SET_GUEST_DEBUG struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, target_ulong pc) { struct kvm_sw_breakpoint *bp; QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { if (bp->pc == pc) { return bp; } } return NULL; } int kvm_sw_breakpoints_active(CPUState *cpu) { return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); } struct kvm_set_guest_debug_data { struct kvm_guest_debug dbg; int err; }; static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) { struct kvm_set_guest_debug_data *dbg_data = (struct kvm_set_guest_debug_data *) data.host_ptr; dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); } int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) { struct kvm_set_guest_debug_data data; data.dbg.control = reinject_trap; if (cpu->singlestep_enabled) { data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; if (cpu->singlestep_enabled & SSTEP_NOIRQ) { data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; } } kvm_arch_update_guest_debug(cpu, &data.dbg); run_on_cpu(cpu, kvm_invoke_set_guest_debug, RUN_ON_CPU_HOST_PTR(&data)); return data.err; } bool kvm_supports_guest_debug(void) { /* probed during kvm_init() */ return kvm_has_guest_debug; } int kvm_insert_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len) { struct kvm_sw_breakpoint *bp; int err; if (type == GDB_BREAKPOINT_SW) { bp = kvm_find_sw_breakpoint(cpu, addr); if (bp) { bp->use_count++; return 0; } bp = g_new(struct kvm_sw_breakpoint, 1); bp->pc = addr; bp->use_count = 1; err = kvm_arch_insert_sw_breakpoint(cpu, bp); if (err) { g_free(bp); return err; } QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); } else { err = kvm_arch_insert_hw_breakpoint(addr, len, type); if (err) { return err; } } CPU_FOREACH(cpu) { err = kvm_update_guest_debug(cpu, 0); if (err) { return err; } } return 0; } int kvm_remove_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len) { struct kvm_sw_breakpoint *bp; int err; if (type == GDB_BREAKPOINT_SW) { bp = kvm_find_sw_breakpoint(cpu, addr); if (!bp) { return -ENOENT; } if (bp->use_count > 1) { bp->use_count--; return 0; } err = kvm_arch_remove_sw_breakpoint(cpu, bp); if (err) { return err; } QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); g_free(bp); } else { err = kvm_arch_remove_hw_breakpoint(addr, len, type); if (err) { return err; } } CPU_FOREACH(cpu) { err = kvm_update_guest_debug(cpu, 0); if (err) { return err; } } return 0; } void kvm_remove_all_breakpoints(CPUState *cpu) { struct kvm_sw_breakpoint *bp, *next; KVMState *s = cpu->kvm_state; CPUState *tmpcpu; QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { /* Try harder to find a CPU that currently sees the breakpoint. */ CPU_FOREACH(tmpcpu) { if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { break; } } } QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); g_free(bp); } kvm_arch_remove_all_hw_breakpoints(); CPU_FOREACH(cpu) { kvm_update_guest_debug(cpu, 0); } } #endif /* !KVM_CAP_SET_GUEST_DEBUG */ static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) { KVMState *s = kvm_state; struct kvm_signal_mask *sigmask; int r; sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); sigmask->len = s->sigmask_len; memcpy(sigmask->sigset, sigset, sizeof(*sigset)); r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); g_free(sigmask); return r; } static void kvm_ipi_signal(int sig) { if (current_cpu) { assert(kvm_immediate_exit); kvm_cpu_kick(current_cpu); } } void kvm_init_cpu_signals(CPUState *cpu) { int r; sigset_t set; struct sigaction sigact; memset(&sigact, 0, sizeof(sigact)); sigact.sa_handler = kvm_ipi_signal; sigaction(SIG_IPI, &sigact, NULL); pthread_sigmask(SIG_BLOCK, NULL, &set); #if defined KVM_HAVE_MCE_INJECTION sigdelset(&set, SIGBUS); pthread_sigmask(SIG_SETMASK, &set, NULL); #endif sigdelset(&set, SIG_IPI); if (kvm_immediate_exit) { r = pthread_sigmask(SIG_SETMASK, &set, NULL); } else { r = kvm_set_signal_mask(cpu, &set); } if (r) { fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); exit(1); } } /* Called asynchronously in VCPU thread. */ int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) { #ifdef KVM_HAVE_MCE_INJECTION if (have_sigbus_pending) { return 1; } have_sigbus_pending = true; pending_sigbus_addr = addr; pending_sigbus_code = code; qatomic_set(&cpu->exit_request, 1); return 0; #else return 1; #endif } /* Called synchronously (via signalfd) in main thread. */ int kvm_on_sigbus(int code, void *addr) { #ifdef KVM_HAVE_MCE_INJECTION /* Action required MCE kills the process if SIGBUS is blocked. Because * that's what happens in the I/O thread, where we handle MCE via signalfd, * we can only get action optional here. */ assert(code != BUS_MCEERR_AR); kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); return 0; #else return 1; #endif } int kvm_create_device(KVMState *s, uint64_t type, bool test) { int ret; struct kvm_create_device create_dev; create_dev.type = type; create_dev.fd = -1; create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { return -ENOTSUP; } ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); if (ret) { return ret; } return test ? 0 : create_dev.fd; } bool kvm_device_supported(int vmfd, uint64_t type) { struct kvm_create_device create_dev = { .type = type, .fd = -1, .flags = KVM_CREATE_DEVICE_TEST, }; if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { return false; } return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); } int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) { struct kvm_one_reg reg; int r; reg.id = id; reg.addr = (uintptr_t) source; r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (r) { trace_kvm_failed_reg_set(id, strerror(-r)); } return r; } int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) { struct kvm_one_reg reg; int r; reg.id = id; reg.addr = (uintptr_t) target; r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (r) { trace_kvm_failed_reg_get(id, strerror(-r)); } return r; } static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, hwaddr start_addr, hwaddr size) { KVMState *kvm = KVM_STATE(ms->accelerator); int i; for (i = 0; i < kvm->nr_as; ++i) { if (kvm->as[i].as == as && kvm->as[i].ml) { size = MIN(kvm_max_slot_size, size); return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, start_addr, size); } } return false; } static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { KVMState *s = KVM_STATE(obj); int64_t value = s->kvm_shadow_mem; visit_type_int(v, name, &value, errp); } static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { KVMState *s = KVM_STATE(obj); int64_t value; if (s->fd != -1) { error_setg(errp, "Cannot set properties after the accelerator has been initialized"); return; } if (!visit_type_int(v, name, &value, errp)) { return; } s->kvm_shadow_mem = value; } static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { KVMState *s = KVM_STATE(obj); OnOffSplit mode; if (s->fd != -1) { error_setg(errp, "Cannot set properties after the accelerator has been initialized"); return; } if (!visit_type_OnOffSplit(v, name, &mode, errp)) { return; } switch (mode) { case ON_OFF_SPLIT_ON: s->kernel_irqchip_allowed = true; s->kernel_irqchip_required = true; s->kernel_irqchip_split = ON_OFF_AUTO_OFF; break; case ON_OFF_SPLIT_OFF: s->kernel_irqchip_allowed = false; s->kernel_irqchip_required = false; s->kernel_irqchip_split = ON_OFF_AUTO_OFF; break; case ON_OFF_SPLIT_SPLIT: s->kernel_irqchip_allowed = true; s->kernel_irqchip_required = true; s->kernel_irqchip_split = ON_OFF_AUTO_ON; break; default: /* The value was checked in visit_type_OnOffSplit() above. If * we get here, then something is wrong in QEMU. */ abort(); } } bool kvm_kernel_irqchip_allowed(void) { return kvm_state->kernel_irqchip_allowed; } bool kvm_kernel_irqchip_required(void) { return kvm_state->kernel_irqchip_required; } bool kvm_kernel_irqchip_split(void) { return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; } static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { KVMState *s = KVM_STATE(obj); uint32_t value = s->kvm_dirty_ring_size; visit_type_uint32(v, name, &value, errp); } static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { KVMState *s = KVM_STATE(obj); uint32_t value; if (s->fd != -1) { error_setg(errp, "Cannot set properties after the accelerator has been initialized"); return; } if (!visit_type_uint32(v, name, &value, errp)) { return; } if (value & (value - 1)) { error_setg(errp, "dirty-ring-size must be a power of two."); return; } s->kvm_dirty_ring_size = value; } static void kvm_accel_instance_init(Object *obj) { KVMState *s = KVM_STATE(obj); s->fd = -1; s->vmfd = -1; s->kvm_shadow_mem = -1; s->kernel_irqchip_allowed = true; s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; /* KVM dirty ring is by default off */ s->kvm_dirty_ring_size = 0; s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; s->notify_window = 0; } /** * kvm_gdbstub_sstep_flags(): * * Returns: SSTEP_* flags that KVM supports for guest debug. The * support is probed during kvm_init() */ static int kvm_gdbstub_sstep_flags(void) { return kvm_sstep_flags; } static void kvm_accel_class_init(ObjectClass *oc, void *data) { AccelClass *ac = ACCEL_CLASS(oc); ac->name = "KVM"; ac->init_machine = kvm_init; ac->has_memory = kvm_accel_has_memory; ac->allowed = &kvm_allowed; ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; object_class_property_add(oc, "kernel-irqchip", "on|off|split", NULL, kvm_set_kernel_irqchip, NULL, NULL); object_class_property_set_description(oc, "kernel-irqchip", "Configure KVM in-kernel irqchip"); object_class_property_add(oc, "kvm-shadow-mem", "int", kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, NULL, NULL); object_class_property_set_description(oc, "kvm-shadow-mem", "KVM shadow MMU size"); object_class_property_add(oc, "dirty-ring-size", "uint32", kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, NULL, NULL); object_class_property_set_description(oc, "dirty-ring-size", "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); kvm_arch_accel_class_init(oc); } static const TypeInfo kvm_accel_type = { .name = TYPE_KVM_ACCEL, .parent = TYPE_ACCEL, .instance_init = kvm_accel_instance_init, .class_init = kvm_accel_class_init, .instance_size = sizeof(KVMState), }; static void kvm_type_init(void) { type_register_static(&kvm_accel_type); } type_init(kvm_type_init); typedef struct StatsArgs { union StatsResultsType { StatsResultList **stats; StatsSchemaList **schema; } result; strList *names; Error **errp; } StatsArgs; static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, uint64_t *stats_data, StatsList *stats_list, Error **errp) { Stats *stats; uint64List *val_list = NULL; /* Only add stats that we understand. */ switch (pdesc->flags & KVM_STATS_TYPE_MASK) { case KVM_STATS_TYPE_CUMULATIVE: case KVM_STATS_TYPE_INSTANT: case KVM_STATS_TYPE_PEAK: case KVM_STATS_TYPE_LINEAR_HIST: case KVM_STATS_TYPE_LOG_HIST: break; default: return stats_list; } switch (pdesc->flags & KVM_STATS_UNIT_MASK) { case KVM_STATS_UNIT_NONE: case KVM_STATS_UNIT_BYTES: case KVM_STATS_UNIT_CYCLES: case KVM_STATS_UNIT_SECONDS: case KVM_STATS_UNIT_BOOLEAN: break; default: return stats_list; } switch (pdesc->flags & KVM_STATS_BASE_MASK) { case KVM_STATS_BASE_POW10: case KVM_STATS_BASE_POW2: break; default: return stats_list; } /* Alloc and populate data list */ stats = g_new0(Stats, 1); stats->name = g_strdup(pdesc->name); stats->value = g_new0(StatsValue, 1);; if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { stats->value->u.boolean = *stats_data; stats->value->type = QTYPE_QBOOL; } else if (pdesc->size == 1) { stats->value->u.scalar = *stats_data; stats->value->type = QTYPE_QNUM; } else { int i; for (i = 0; i < pdesc->size; i++) { QAPI_LIST_PREPEND(val_list, stats_data[i]); } stats->value->u.list = val_list; stats->value->type = QTYPE_QLIST; } QAPI_LIST_PREPEND(stats_list, stats); return stats_list; } static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, StatsSchemaValueList *list, Error **errp) { StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); schema_entry->value = g_new0(StatsSchemaValue, 1); switch (pdesc->flags & KVM_STATS_TYPE_MASK) { case KVM_STATS_TYPE_CUMULATIVE: schema_entry->value->type = STATS_TYPE_CUMULATIVE; break; case KVM_STATS_TYPE_INSTANT: schema_entry->value->type = STATS_TYPE_INSTANT; break; case KVM_STATS_TYPE_PEAK: schema_entry->value->type = STATS_TYPE_PEAK; break; case KVM_STATS_TYPE_LINEAR_HIST: schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; schema_entry->value->bucket_size = pdesc->bucket_size; schema_entry->value->has_bucket_size = true; break; case KVM_STATS_TYPE_LOG_HIST: schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; break; default: goto exit; } switch (pdesc->flags & KVM_STATS_UNIT_MASK) { case KVM_STATS_UNIT_NONE: break; case KVM_STATS_UNIT_BOOLEAN: schema_entry->value->has_unit = true; schema_entry->value->unit = STATS_UNIT_BOOLEAN; break; case KVM_STATS_UNIT_BYTES: schema_entry->value->has_unit = true; schema_entry->value->unit = STATS_UNIT_BYTES; break; case KVM_STATS_UNIT_CYCLES: schema_entry->value->has_unit = true; schema_entry->value->unit = STATS_UNIT_CYCLES; break; case KVM_STATS_UNIT_SECONDS: schema_entry->value->has_unit = true; schema_entry->value->unit = STATS_UNIT_SECONDS; break; default: goto exit; } schema_entry->value->exponent = pdesc->exponent; if (pdesc->exponent) { switch (pdesc->flags & KVM_STATS_BASE_MASK) { case KVM_STATS_BASE_POW10: schema_entry->value->has_base = true; schema_entry->value->base = 10; break; case KVM_STATS_BASE_POW2: schema_entry->value->has_base = true; schema_entry->value->base = 2; break; default: goto exit; } } schema_entry->value->name = g_strdup(pdesc->name); schema_entry->next = list; return schema_entry; exit: g_free(schema_entry->value); g_free(schema_entry); return list; } /* Cached stats descriptors */ typedef struct StatsDescriptors { const char *ident; /* cache key, currently the StatsTarget */ struct kvm_stats_desc *kvm_stats_desc; struct kvm_stats_header kvm_stats_header; QTAILQ_ENTRY(StatsDescriptors) next; } StatsDescriptors; static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = QTAILQ_HEAD_INITIALIZER(stats_descriptors); /* * Return the descriptors for 'target', that either have already been read * or are retrieved from 'stats_fd'. */ static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, Error **errp) { StatsDescriptors *descriptors; const char *ident; struct kvm_stats_desc *kvm_stats_desc; struct kvm_stats_header *kvm_stats_header; size_t size_desc; ssize_t ret; ident = StatsTarget_str(target); QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { if (g_str_equal(descriptors->ident, ident)) { return descriptors; } } descriptors = g_new0(StatsDescriptors, 1); /* Read stats header */ kvm_stats_header = &descriptors->kvm_stats_header; ret = read(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header)); if (ret != sizeof(*kvm_stats_header)) { error_setg(errp, "KVM stats: failed to read stats header: " "expected %zu actual %zu", sizeof(*kvm_stats_header), ret); g_free(descriptors); return NULL; } size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; /* Read stats descriptors */ kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); ret = pread(stats_fd, kvm_stats_desc, size_desc * kvm_stats_header->num_desc, kvm_stats_header->desc_offset); if (ret != size_desc * kvm_stats_header->num_desc) { error_setg(errp, "KVM stats: failed to read stats descriptors: " "expected %zu actual %zu", size_desc * kvm_stats_header->num_desc, ret); g_free(descriptors); g_free(kvm_stats_desc); return NULL; } descriptors->kvm_stats_desc = kvm_stats_desc; descriptors->ident = ident; QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); return descriptors; } static void query_stats(StatsResultList **result, StatsTarget target, strList *names, int stats_fd, Error **errp) { struct kvm_stats_desc *kvm_stats_desc; struct kvm_stats_header *kvm_stats_header; StatsDescriptors *descriptors; g_autofree uint64_t *stats_data = NULL; struct kvm_stats_desc *pdesc; StatsList *stats_list = NULL; size_t size_desc, size_data = 0; ssize_t ret; int i; descriptors = find_stats_descriptors(target, stats_fd, errp); if (!descriptors) { return; } kvm_stats_header = &descriptors->kvm_stats_header; kvm_stats_desc = descriptors->kvm_stats_desc; size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; /* Tally the total data size; read schema data */ for (i = 0; i < kvm_stats_header->num_desc; ++i) { pdesc = (void *)kvm_stats_desc + i * size_desc; size_data += pdesc->size * sizeof(*stats_data); } stats_data = g_malloc0(size_data); ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); if (ret != size_data) { error_setg(errp, "KVM stats: failed to read data: " "expected %zu actual %zu", size_data, ret); return; } for (i = 0; i < kvm_stats_header->num_desc; ++i) { uint64_t *stats; pdesc = (void *)kvm_stats_desc + i * size_desc; /* Add entry to the list */ stats = (void *)stats_data + pdesc->offset; if (!apply_str_list_filter(pdesc->name, names)) { continue; } stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); } if (!stats_list) { return; } switch (target) { case STATS_TARGET_VM: add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); break; case STATS_TARGET_VCPU: add_stats_entry(result, STATS_PROVIDER_KVM, current_cpu->parent_obj.canonical_path, stats_list); break; default: g_assert_not_reached(); } } static void query_stats_schema(StatsSchemaList **result, StatsTarget target, int stats_fd, Error **errp) { struct kvm_stats_desc *kvm_stats_desc; struct kvm_stats_header *kvm_stats_header; StatsDescriptors *descriptors; struct kvm_stats_desc *pdesc; StatsSchemaValueList *stats_list = NULL; size_t size_desc; int i; descriptors = find_stats_descriptors(target, stats_fd, errp); if (!descriptors) { return; } kvm_stats_header = &descriptors->kvm_stats_header; kvm_stats_desc = descriptors->kvm_stats_desc; size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; /* Tally the total data size; read schema data */ for (i = 0; i < kvm_stats_header->num_desc; ++i) { pdesc = (void *)kvm_stats_desc + i * size_desc; stats_list = add_kvmschema_entry(pdesc, stats_list, errp); } add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); } static void query_stats_vcpu(CPUState *cpu, run_on_cpu_data data) { StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr; int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); Error *local_err = NULL; if (stats_fd == -1) { error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); error_propagate(kvm_stats_args->errp, local_err); return; } query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, kvm_stats_args->names, stats_fd, kvm_stats_args->errp); close(stats_fd); } static void query_stats_schema_vcpu(CPUState *cpu, run_on_cpu_data data) { StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr; int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); Error *local_err = NULL; if (stats_fd == -1) { error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); error_propagate(kvm_stats_args->errp, local_err); return; } query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, kvm_stats_args->errp); close(stats_fd); } static void query_stats_cb(StatsResultList **result, StatsTarget target, strList *names, strList *targets, Error **errp) { KVMState *s = kvm_state; CPUState *cpu; int stats_fd; switch (target) { case STATS_TARGET_VM: { stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); if (stats_fd == -1) { error_setg_errno(errp, errno, "KVM stats: ioctl failed"); return; } query_stats(result, target, names, stats_fd, errp); close(stats_fd); break; } case STATS_TARGET_VCPU: { StatsArgs stats_args; stats_args.result.stats = result; stats_args.names = names; stats_args.errp = errp; CPU_FOREACH(cpu) { if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { continue; } run_on_cpu(cpu, query_stats_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args)); } break; } default: break; } } void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) { StatsArgs stats_args; KVMState *s = kvm_state; int stats_fd; stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); if (stats_fd == -1) { error_setg_errno(errp, errno, "KVM stats: ioctl failed"); return; } query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); close(stats_fd); if (first_cpu) { stats_args.result.schema = result; stats_args.errp = errp; run_on_cpu(first_cpu, query_stats_schema_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args)); } }