#include "config.h" #include "power_supply.hpp" #include "types.hpp" #include "util.hpp" #include #include // sleep_for() #include #include // uint8_t... #include #include #include #include // sleep_for() namespace phosphor::power::psu { // Amount of time in milliseconds to delay between power supply going from // missing to present before running the bind command(s). constexpr auto bindDelay = 1000; using namespace phosphor::logging; using namespace sdbusplus::xyz::openbmc_project::Common::Device::Error; PowerSupply::PowerSupply( sdbusplus::bus_t& bus, const std::string& invpath, std::uint8_t i2cbus, std::uint16_t i2caddr, const std::string& driver, const std::string& gpioLineName, std::function&& callback) : bus(bus), inventoryPath(invpath), bindPath("/sys/bus/i2c/drivers/" + driver), isPowerOn(std::move(callback)), driverName(driver) { if (inventoryPath.empty()) { throw std::invalid_argument{"Invalid empty inventoryPath"}; } if (gpioLineName.empty()) { throw std::invalid_argument{"Invalid empty gpioLineName"}; } shortName = findShortName(inventoryPath); log( std::format("{} gpioLineName: {}", shortName, gpioLineName).c_str()); presenceGPIO = createGPIO(gpioLineName); std::ostringstream ss; ss << std::hex << std::setw(4) << std::setfill('0') << i2caddr; std::string addrStr = ss.str(); std::string busStr = std::to_string(i2cbus); bindDevice = busStr; bindDevice.append("-"); bindDevice.append(addrStr); pmbusIntf = phosphor::pmbus::createPMBus(i2cbus, addrStr); // Get the current state of the Present property. try { updatePresenceGPIO(); } catch (...) { // If the above attempt to use the GPIO failed, it likely means that the // GPIOs are in use by the kernel, meaning it is using gpio-keys. // So, I should rely on phosphor-gpio-presence to update D-Bus, and // work that way for power supply presence. presenceGPIO = nullptr; // Setup the functions to call when the D-Bus inventory path for the // Present property changes. presentMatch = std::make_unique( bus, sdbusplus::bus::match::rules::propertiesChanged(inventoryPath, INVENTORY_IFACE), [this](auto& msg) { this->inventoryChanged(msg); }); presentAddedMatch = std::make_unique( bus, sdbusplus::bus::match::rules::interfacesAdded() + sdbusplus::bus::match::rules::argNpath(0, inventoryPath), [this](auto& msg) { this->inventoryAdded(msg); }); updatePresence(); updateInventory(); setupSensors(); } setInputVoltageRating(); } void PowerSupply::bindOrUnbindDriver(bool present) { // Symbolic link to the device will exist if the driver is bound. // So exit no action required if both the link and PSU are present // or neither is present. namespace fs = std::filesystem; fs::path path; auto action = (present) ? "bind" : "unbind"; // This case should not happen, if no device driver name return. if (driverName.empty()) { log("No device driver name found"); return; } if (bindPath.string().find(driverName) != std::string::npos) { // bindPath has driver name path = bindPath / action; } else { // Add driver name to bindPath path = bindPath / driverName / action; bindPath = bindPath / driverName; } if ((std::filesystem::exists(bindPath / bindDevice) && present) || (!std::filesystem::exists(bindPath / bindDevice) && !present)) { return; } if (present) { std::this_thread::sleep_for(std::chrono::milliseconds(bindDelay)); log( std::format("Binding device driver. path: {} device: {}", path.string(), bindDevice) .c_str()); } else { log( std::format("Unbinding device driver. path: {} device: {}", path.string(), bindDevice) .c_str()); } std::ofstream file; file.exceptions(std::ofstream::failbit | std::ofstream::badbit | std::ofstream::eofbit); try { file.open(path); file << bindDevice; file.close(); } catch (const std::exception& e) { auto err = errno; log( std::format("Failed binding or unbinding device. errno={}", err) .c_str()); } } void PowerSupply::updatePresence() { try { present = getPresence(bus, inventoryPath); } catch (const sdbusplus::exception_t& e) { // Relying on property change or interface added to retry. // Log an informational trace to the journal. log( std::format("D-Bus property {} access failure exception", inventoryPath) .c_str()); } } void PowerSupply::updatePresenceGPIO() { bool presentOld = present; try { if (presenceGPIO->read() > 0) { present = true; } else { present = false; } } catch (const std::exception& e) { log( std::format("presenceGPIO read fail: {}", e.what()).c_str()); throw; } if (presentOld != present) { log(std::format("{} presentOld: {} present: {}", shortName, presentOld, present) .c_str()); auto invpath = inventoryPath.substr(strlen(INVENTORY_OBJ_PATH)); bindOrUnbindDriver(present); if (present) { // If the power supply was present, then missing, and present again, // the hwmon path may have changed. We will need the correct/updated // path before any reads or writes are attempted. pmbusIntf->findHwmonDir(); } setPresence(bus, invpath, present, shortName); setupSensors(); updateInventory(); // Need Functional to already be correct before calling this. checkAvailability(); if (present) { onOffConfig(phosphor::pmbus::ON_OFF_CONFIG_CONTROL_PIN_ONLY); clearFaults(); // Indicate that the input history data and timestamps between all // the power supplies that are present in the system need to be // synchronized. syncHistoryRequired = true; } else { setSensorsNotAvailable(); } } } void PowerSupply::analyzeCMLFault() { if (statusWord & phosphor::pmbus::status_word::CML_FAULT) { if (cmlFault < DEGLITCH_LIMIT) { if (statusWord != statusWordOld) { log( std::format("{} CML fault: STATUS_WORD = {:#06x}, " "STATUS_CML = {:#02x}", shortName, statusWord, statusCML) .c_str()); } cmlFault++; } } else { cmlFault = 0; } } void PowerSupply::analyzeInputFault() { if (statusWord & phosphor::pmbus::status_word::INPUT_FAULT_WARN) { if (inputFault < DEGLITCH_LIMIT) { if (statusWord != statusWordOld) { log( std::format("{} INPUT fault: STATUS_WORD = {:#06x}, " "STATUS_MFR_SPECIFIC = {:#04x}, " "STATUS_INPUT = {:#04x}", shortName, statusWord, statusMFR, statusInput) .c_str()); } inputFault++; } } // If had INPUT/VIN_UV fault, and now off. // Trace that odd behavior. if (inputFault && !(statusWord & phosphor::pmbus::status_word::INPUT_FAULT_WARN)) { log( std::format("{} INPUT fault cleared: STATUS_WORD = {:#06x}, " "STATUS_MFR_SPECIFIC = {:#04x}, " "STATUS_INPUT = {:#04x}", shortName, statusWord, statusMFR, statusInput) .c_str()); inputFault = 0; } } void PowerSupply::analyzeVoutOVFault() { if (statusWord & phosphor::pmbus::status_word::VOUT_OV_FAULT) { if (voutOVFault < DEGLITCH_LIMIT) { if (statusWord != statusWordOld) { log( std::format( "{} VOUT_OV_FAULT fault: STATUS_WORD = {:#06x}, " "STATUS_MFR_SPECIFIC = {:#04x}, " "STATUS_VOUT = {:#02x}", shortName, statusWord, statusMFR, statusVout) .c_str()); } voutOVFault++; } } else { voutOVFault = 0; } } void PowerSupply::analyzeIoutOCFault() { if (statusWord & phosphor::pmbus::status_word::IOUT_OC_FAULT) { if (ioutOCFault < DEGLITCH_LIMIT) { if (statusWord != statusWordOld) { log( std::format("{} IOUT fault: STATUS_WORD = {:#06x}, " "STATUS_MFR_SPECIFIC = {:#04x}, " "STATUS_IOUT = {:#04x}", shortName, statusWord, statusMFR, statusIout) .c_str()); } ioutOCFault++; } } else { ioutOCFault = 0; } } void PowerSupply::analyzeVoutUVFault() { if ((statusWord & phosphor::pmbus::status_word::VOUT_FAULT) && !(statusWord & phosphor::pmbus::status_word::VOUT_OV_FAULT)) { if (voutUVFault < DEGLITCH_LIMIT) { if (statusWord != statusWordOld) { log( std::format( "{} VOUT_UV_FAULT fault: STATUS_WORD = {:#06x}, " "STATUS_MFR_SPECIFIC = {:#04x}, " "STATUS_VOUT = {:#04x}", shortName, statusWord, statusMFR, statusVout) .c_str()); } voutUVFault++; } } else { voutUVFault = 0; } } void PowerSupply::analyzeFanFault() { if (statusWord & phosphor::pmbus::status_word::FAN_FAULT) { if (fanFault < DEGLITCH_LIMIT) { if (statusWord != statusWordOld) { log( std::format("{} FANS fault/warning: " "STATUS_WORD = {:#06x}, " "STATUS_MFR_SPECIFIC = {:#04x}, " "STATUS_FANS_1_2 = {:#04x}", shortName, statusWord, statusMFR, statusFans12) .c_str()); } fanFault++; } } else { fanFault = 0; } } void PowerSupply::analyzeTemperatureFault() { if (statusWord & phosphor::pmbus::status_word::TEMPERATURE_FAULT_WARN) { if (tempFault < DEGLITCH_LIMIT) { if (statusWord != statusWordOld) { log(std::format("{} TEMPERATURE fault/warning: " "STATUS_WORD = {:#06x}, " "STATUS_MFR_SPECIFIC = {:#04x}, " "STATUS_TEMPERATURE = {:#04x}", shortName, statusWord, statusMFR, statusTemperature) .c_str()); } tempFault++; } } else { tempFault = 0; } } void PowerSupply::analyzePgoodFault() { if ((statusWord & phosphor::pmbus::status_word::POWER_GOOD_NEGATED) || (statusWord & phosphor::pmbus::status_word::UNIT_IS_OFF)) { if (pgoodFault < PGOOD_DEGLITCH_LIMIT) { if (statusWord != statusWordOld) { log(std::format("{} PGOOD fault: " "STATUS_WORD = {:#06x}, " "STATUS_MFR_SPECIFIC = {:#04x}", shortName, statusWord, statusMFR) .c_str()); } pgoodFault++; } } else { pgoodFault = 0; } } void PowerSupply::determineMFRFault() { if (bindPath.string().find(IBMCFFPS_DD_NAME) != std::string::npos) { // IBM MFR_SPECIFIC[4] is PS_Kill fault if (statusMFR & 0x10) { if (psKillFault < DEGLITCH_LIMIT) { psKillFault++; } } else { psKillFault = 0; } // IBM MFR_SPECIFIC[6] is 12Vcs fault. if (statusMFR & 0x40) { if (ps12VcsFault < DEGLITCH_LIMIT) { ps12VcsFault++; } } else { ps12VcsFault = 0; } // IBM MFR_SPECIFIC[7] is 12V Current-Share fault. if (statusMFR & 0x80) { if (psCS12VFault < DEGLITCH_LIMIT) { psCS12VFault++; } } else { psCS12VFault = 0; } } } void PowerSupply::analyzeMFRFault() { if (statusWord & phosphor::pmbus::status_word::MFR_SPECIFIC_FAULT) { if (mfrFault < DEGLITCH_LIMIT) { if (statusWord != statusWordOld) { log(std::format("{} MFR fault: " "STATUS_WORD = {:#06x} " "STATUS_MFR_SPECIFIC = {:#04x}", shortName, statusWord, statusMFR) .c_str()); } mfrFault++; } determineMFRFault(); } else { mfrFault = 0; } } void PowerSupply::analyzeVinUVFault() { if (statusWord & phosphor::pmbus::status_word::VIN_UV_FAULT) { if (vinUVFault < DEGLITCH_LIMIT) { if (statusWord != statusWordOld) { log( std::format("{} VIN_UV fault: STATUS_WORD = {:#06x}, " "STATUS_MFR_SPECIFIC = {:#04x}, " "STATUS_INPUT = {:#04x}", shortName, statusWord, statusMFR, statusInput) .c_str()); } vinUVFault++; } // Remember that this PSU has seen an AC fault acFault = AC_FAULT_LIMIT; } else { if (vinUVFault != 0) { log( std::format("{} VIN_UV fault cleared: STATUS_WORD = {:#06x}, " "STATUS_MFR_SPECIFIC = {:#04x}, " "STATUS_INPUT = {:#04x}", shortName, statusWord, statusMFR, statusInput) .c_str()); vinUVFault = 0; } // No AC fail, decrement counter if (acFault != 0) { --acFault; } } } void PowerSupply::analyze() { using namespace phosphor::pmbus; if (presenceGPIO) { updatePresenceGPIO(); } if (present) { try { statusWordOld = statusWord; statusWord = pmbusIntf->read(STATUS_WORD, Type::Debug, (readFail < LOG_LIMIT)); // Read worked, reset the fail count. readFail = 0; if (statusWord) { statusInput = pmbusIntf->read(STATUS_INPUT, Type::Debug); if (bindPath.string().find(IBMCFFPS_DD_NAME) != std::string::npos) { statusMFR = pmbusIntf->read(STATUS_MFR, Type::Debug); } statusCML = pmbusIntf->read(STATUS_CML, Type::Debug); auto status0Vout = pmbusIntf->insertPageNum(STATUS_VOUT, 0); statusVout = pmbusIntf->read(status0Vout, Type::Debug); statusIout = pmbusIntf->read(STATUS_IOUT, Type::Debug); statusFans12 = pmbusIntf->read(STATUS_FANS_1_2, Type::Debug); statusTemperature = pmbusIntf->read(STATUS_TEMPERATURE, Type::Debug); analyzeCMLFault(); analyzeInputFault(); analyzeVoutOVFault(); analyzeIoutOCFault(); analyzeVoutUVFault(); analyzeFanFault(); analyzeTemperatureFault(); analyzePgoodFault(); analyzeMFRFault(); analyzeVinUVFault(); } else { if (statusWord != statusWordOld) { log(std::format("{} STATUS_WORD = {:#06x}", shortName, statusWord) .c_str()); } // if INPUT/VIN_UV fault was on, it cleared, trace it. if (inputFault) { log( std::format( "{} INPUT fault cleared: STATUS_WORD = {:#06x}", shortName, statusWord) .c_str()); } if (vinUVFault) { log( std::format("{} VIN_UV cleared: STATUS_WORD = {:#06x}", shortName, statusWord) .c_str()); } if (pgoodFault > 0) { log( std::format("{} pgoodFault cleared", shortName) .c_str()); } clearFaultFlags(); // No AC fail, decrement counter if (acFault != 0) { --acFault; } } // Save off old inputVoltage value. // Get latest inputVoltage. // If voltage went from below minimum, and now is not, clear faults. // Note: getInputVoltage() has its own try/catch. int inputVoltageOld = inputVoltage; double actualInputVoltageOld = actualInputVoltage; getInputVoltage(actualInputVoltage, inputVoltage); if ((inputVoltageOld == in_input::VIN_VOLTAGE_0) && (inputVoltage != in_input::VIN_VOLTAGE_0)) { log( std::format( "{} READ_VIN back in range: actualInputVoltageOld = {} " "actualInputVoltage = {}", shortName, actualInputVoltageOld, actualInputVoltage) .c_str()); clearVinUVFault(); } else if (vinUVFault && (inputVoltage != in_input::VIN_VOLTAGE_0)) { log( std::format( "{} CLEAR_FAULTS: vinUVFault {} actualInputVoltage {}", shortName, vinUVFault, actualInputVoltage) .c_str()); // Do we have a VIN_UV fault latched that can now be cleared // due to voltage back in range? Attempt to clear the // fault(s), re-check faults on next call. clearVinUVFault(); } else if (std::abs(actualInputVoltageOld - actualInputVoltage) > 10.0) { log( std::format( "{} actualInputVoltageOld = {} actualInputVoltage = {}", shortName, actualInputVoltageOld, actualInputVoltage) .c_str()); } monitorSensors(); checkAvailability(); } catch (const ReadFailure& e) { if (readFail < SIZE_MAX) { readFail++; } if (readFail == LOG_LIMIT) { phosphor::logging::commit(); } } } } void PowerSupply::onOffConfig(uint8_t data) { using namespace phosphor::pmbus; if (present && driverName != ACBEL_FSG032_DD_NAME) { log("ON_OFF_CONFIG write", entry("DATA=0x%02X", data)); try { std::vector configData{data}; pmbusIntf->writeBinary(ON_OFF_CONFIG, configData, Type::HwmonDeviceDebug); } catch (...) { // The underlying code in writeBinary will log a message to the // journal if the write fails. If the ON_OFF_CONFIG is not setup // as desired, later fault detection and analysis code should // catch any of the fall out. We should not need to terminate // the application if this write fails. } } } void PowerSupply::clearVinUVFault() { // Read in1_lcrit_alarm to clear bits 3 and 4 of STATUS_INPUT. // The fault bits in STAUTS_INPUT roll-up to STATUS_WORD. Clearing those // bits in STATUS_INPUT should result in the corresponding STATUS_WORD bits // also clearing. // // Do not care about return value. Should be 1 if active, 0 if not. if (driverName != ACBEL_FSG032_DD_NAME) { static_cast( pmbusIntf->read("in1_lcrit_alarm", phosphor::pmbus::Type::Hwmon)); } else { static_cast( pmbusIntf->read("curr1_crit_alarm", phosphor::pmbus::Type::Hwmon)); } vinUVFault = 0; } void PowerSupply::clearFaults() { log( std::format("clearFaults() inventoryPath: {}", inventoryPath).c_str()); faultLogged = false; // The PMBus device driver does not allow for writing CLEAR_FAULTS // directly. However, the pmbus hwmon device driver code will send a // CLEAR_FAULTS after reading from any of the hwmon "files" in sysfs, so // reading in1_input should result in clearing the fault bits in // STATUS_BYTE/STATUS_WORD. // I do not care what the return value is. if (present) { clearFaultFlags(); checkAvailability(); readFail = 0; try { clearVinUVFault(); static_cast( pmbusIntf->read("in1_input", phosphor::pmbus::Type::Hwmon)); } catch (const ReadFailure& e) { // Since I do not care what the return value is, I really do not // care much if it gets a ReadFailure either. However, this // should not prevent the application from continuing to run, so // catching the read failure. } } } void PowerSupply::inventoryChanged(sdbusplus::message_t& msg) { std::string msgSensor; std::map> msgData; msg.read(msgSensor, msgData); // Check if it was the Present property that changed. auto valPropMap = msgData.find(PRESENT_PROP); if (valPropMap != msgData.end()) { if (std::get(valPropMap->second)) { present = true; // TODO: Immediately trying to read or write the "files" causes // read or write failures. using namespace std::chrono_literals; std::this_thread::sleep_for(20ms); pmbusIntf->findHwmonDir(); onOffConfig(phosphor::pmbus::ON_OFF_CONFIG_CONTROL_PIN_ONLY); clearFaults(); updateInventory(); } else { present = false; // Clear out the now outdated inventory properties updateInventory(); } checkAvailability(); } } void PowerSupply::inventoryAdded(sdbusplus::message_t& msg) { sdbusplus::message::object_path path; msg.read(path); // Make sure the signal is for the PSU inventory path if (path == inventoryPath) { std::map>> interfaces; // Get map of interfaces and their properties msg.read(interfaces); auto properties = interfaces.find(INVENTORY_IFACE); if (properties != interfaces.end()) { auto property = properties->second.find(PRESENT_PROP); if (property != properties->second.end()) { present = std::get(property->second); log(std::format("Power Supply {} Present {}", inventoryPath, present) .c_str()); updateInventory(); checkAvailability(); } } } } auto PowerSupply::readVPDValue(const std::string& vpdName, const phosphor::pmbus::Type& type, const std::size_t& vpdSize) { std::string vpdValue; const std::regex illegalVPDRegex = std::regex("[^[:alnum:]]", std::regex::basic); try { vpdValue = pmbusIntf->readString(vpdName, type); } catch (const ReadFailure& e) { // Ignore the read failure, let pmbus code indicate failure, // path... // TODO - ibm918 // https://github.com/openbmc/docs/blob/master/designs/vpd-collection.md // The BMC must log errors if any of the VPD cannot be properly // parsed or fails ECC checks. } if (vpdValue.size() != vpdSize) { log(std::format("{} {} resize needed. size: {}", shortName, vpdName, vpdValue.size()) .c_str()); vpdValue.resize(vpdSize, ' '); } // Replace any illegal values with space(s). std::regex_replace(vpdValue.begin(), vpdValue.begin(), vpdValue.end(), illegalVPDRegex, " "); return vpdValue; } void PowerSupply::updateInventory() { using namespace phosphor::pmbus; #if IBM_VPD std::string pn; std::string fn; std::string header; std::string sn; // The IBM power supply splits the full serial number into two parts. // Each part is 6 bytes long, which should match up with SN_KW_SIZE. const auto HEADER_SIZE = 6; const auto SERIAL_SIZE = 6; // The IBM PSU firmware version size is a bit complicated. It was originally // 1-byte, per command. It was later expanded to 2-bytes per command, then // up to 8-bytes per command. The device driver only reads up to 2 bytes per // command, but combines all three of the 2-byte reads, or all 4 of the // 1-byte reads into one string. So, the maximum size expected is 6 bytes. // However, it is formatted by the driver as a hex string with two ASCII // characters per byte. So the maximum ASCII string size is 12. const auto IBMCFFPS_FW_VERSION_SIZE = 12; const auto ACBEL_FSG032_FW_VERSION_SIZE = 6; using PropertyMap = std::map, bool>>; PropertyMap assetProps; PropertyMap operProps; PropertyMap versionProps; PropertyMap ipzvpdDINFProps; PropertyMap ipzvpdVINIProps; using InterfaceMap = std::map; InterfaceMap interfaces; using ObjectMap = std::map; ObjectMap object; #endif log( std::format("updateInventory() inventoryPath: {}", inventoryPath) .c_str()); if (present) { // TODO: non-IBM inventory updates? #if IBM_VPD if (driverName == ACBEL_FSG032_DD_NAME) { getPsuVpdFromDbus("CC", modelName); getPsuVpdFromDbus("PN", pn); getPsuVpdFromDbus("FN", fn); getPsuVpdFromDbus("SN", sn); assetProps.emplace(SN_PROP, sn); fwVersion = readVPDValue(FW_VERSION, Type::Debug, ACBEL_FSG032_FW_VERSION_SIZE); versionProps.emplace(VERSION_PROP, fwVersion); } else { modelName = readVPDValue(CCIN, Type::HwmonDeviceDebug, CC_KW_SIZE); pn = readVPDValue(PART_NUMBER, Type::Debug, PN_KW_SIZE); fn = readVPDValue(FRU_NUMBER, Type::Debug, FN_KW_SIZE); header = readVPDValue(SERIAL_HEADER, Type::Debug, HEADER_SIZE); sn = readVPDValue(SERIAL_NUMBER, Type::Debug, SERIAL_SIZE); assetProps.emplace(SN_PROP, header + sn); fwVersion = readVPDValue(FW_VERSION, Type::HwmonDeviceDebug, IBMCFFPS_FW_VERSION_SIZE); versionProps.emplace(VERSION_PROP, fwVersion); } assetProps.emplace(MODEL_PROP, modelName); assetProps.emplace(PN_PROP, pn); assetProps.emplace(SPARE_PN_PROP, fn); ipzvpdVINIProps.emplace( "CC", std::vector(modelName.begin(), modelName.end())); ipzvpdVINIProps.emplace("PN", std::vector(pn.begin(), pn.end())); ipzvpdVINIProps.emplace("FN", std::vector(fn.begin(), fn.end())); std::string header_sn = header + sn; ipzvpdVINIProps.emplace( "SN", std::vector(header_sn.begin(), header_sn.end())); std::string description = "IBM PS"; ipzvpdVINIProps.emplace( "DR", std::vector(description.begin(), description.end())); // Populate the VINI Resource Type (RT) keyword ipzvpdVINIProps.emplace("RT", std::vector{'V', 'I', 'N', 'I'}); // Update the Resource Identifier (RI) keyword // 2 byte FRC: 0x0003 // 2 byte RID: 0x1000, 0x1001... std::uint8_t num = std::stoul( inventoryPath.substr(inventoryPath.size() - 1, 1), nullptr, 0); std::vector ri{0x00, 0x03, 0x10, num}; ipzvpdDINFProps.emplace("RI", ri); // Fill in the FRU Label (FL) keyword. std::string fl = "E"; fl.push_back(inventoryPath.back()); fl.resize(FL_KW_SIZE, ' '); ipzvpdDINFProps.emplace("FL", std::vector(fl.begin(), fl.end())); // Populate the DINF Resource Type (RT) keyword ipzvpdDINFProps.emplace("RT", std::vector{'D', 'I', 'N', 'F'}); interfaces.emplace(ASSET_IFACE, std::move(assetProps)); interfaces.emplace(VERSION_IFACE, std::move(versionProps)); interfaces.emplace(DINF_IFACE, std::move(ipzvpdDINFProps)); interfaces.emplace(VINI_IFACE, std::move(ipzvpdVINIProps)); // Update the Functional operProps.emplace(FUNCTIONAL_PROP, present); interfaces.emplace(OPERATIONAL_STATE_IFACE, std::move(operProps)); auto path = inventoryPath.substr(strlen(INVENTORY_OBJ_PATH)); object.emplace(path, std::move(interfaces)); try { auto service = util::getService(INVENTORY_OBJ_PATH, INVENTORY_MGR_IFACE, bus); if (service.empty()) { log("Unable to get inventory manager service"); return; } auto method = bus.new_method_call(service.c_str(), INVENTORY_OBJ_PATH, INVENTORY_MGR_IFACE, "Notify"); method.append(std::move(object)); auto reply = bus.call(method); } catch (const std::exception& e) { log( std::string(e.what() + std::string(" PATH=") + inventoryPath) .c_str()); } #endif } } auto PowerSupply::getMaxPowerOut() const { using namespace phosphor::pmbus; auto maxPowerOut = 0; if (present) { try { // Read max_power_out, should be direct format auto maxPowerOutStr = pmbusIntf->readString(MFR_POUT_MAX, Type::HwmonDeviceDebug); log(std::format("{} MFR_POUT_MAX read {}", shortName, maxPowerOutStr) .c_str()); maxPowerOut = std::stod(maxPowerOutStr); } catch (const std::exception& e) { log(std::format("{} MFR_POUT_MAX read error: {}", shortName, e.what()) .c_str()); } } return maxPowerOut; } void PowerSupply::setupSensors() { setupInputPowerPeakSensor(); } void PowerSupply::setupInputPowerPeakSensor() { if (peakInputPowerSensor || !present || (bindPath.string().find(IBMCFFPS_DD_NAME) == std::string::npos)) { return; } // This PSU has problems with the input_history command if (getMaxPowerOut() == phosphor::pmbus::IBM_CFFPS_1400W) { return; } auto sensorPath = std::format("/xyz/openbmc_project/sensors/power/ps{}_input_power_peak", shortName.back()); peakInputPowerSensor = std::make_unique( bus, sensorPath.c_str(), PowerSensorObject::action::defer_emit); // The others can remain at the defaults. peakInputPowerSensor->functional(true, true); peakInputPowerSensor->available(true, true); peakInputPowerSensor->value(0, true); peakInputPowerSensor->unit( sdbusplus::xyz::openbmc_project::Sensor::server::Value::Unit::Watts, true); auto associations = getSensorAssociations(); peakInputPowerSensor->associations(associations, true); peakInputPowerSensor->emit_object_added(); } void PowerSupply::setSensorsNotAvailable() { if (peakInputPowerSensor) { peakInputPowerSensor->value(std::numeric_limits::quiet_NaN()); peakInputPowerSensor->available(false); } } void PowerSupply::monitorSensors() { monitorPeakInputPowerSensor(); } void PowerSupply::monitorPeakInputPowerSensor() { if (!peakInputPowerSensor) { return; } constexpr size_t recordSize = 5; std::vector data; // Get the peak input power with input history command. // New data only shows up every 30s, but just try to read it every 1s // anyway so we always have the most up to date value. try { data = pmbusIntf->readBinary(INPUT_HISTORY, pmbus::Type::HwmonDeviceDebug, recordSize); } catch (const ReadFailure& e) { peakInputPowerSensor->value(std::numeric_limits::quiet_NaN()); peakInputPowerSensor->functional(false); throw; } if (data.size() != recordSize) { log( std::format("Input history command returned {} bytes instead of 5", data.size()) .c_str()); peakInputPowerSensor->value(std::numeric_limits::quiet_NaN()); peakInputPowerSensor->functional(false); return; } // The format is SSAAAAPPPP: // SS = packet sequence number // AAAA = average power (linear format, little endian) // PPPP = peak power (linear format, little endian) auto peak = static_cast(data[4]) << 8 | data[3]; auto peakPower = linearToInteger(peak); peakInputPowerSensor->value(peakPower); peakInputPowerSensor->functional(true); peakInputPowerSensor->available(true); } void PowerSupply::getInputVoltage(double& actualInputVoltage, int& inputVoltage) const { using namespace phosphor::pmbus; actualInputVoltage = in_input::VIN_VOLTAGE_0; inputVoltage = in_input::VIN_VOLTAGE_0; if (present) { try { // Read input voltage in millivolts auto inputVoltageStr = pmbusIntf->readString(READ_VIN, Type::Hwmon); // Convert to volts actualInputVoltage = std::stod(inputVoltageStr) / 1000; // Calculate the voltage based on voltage thresholds if (actualInputVoltage < in_input::VIN_VOLTAGE_MIN) { inputVoltage = in_input::VIN_VOLTAGE_0; } else if (actualInputVoltage < in_input::VIN_VOLTAGE_110_THRESHOLD) { inputVoltage = in_input::VIN_VOLTAGE_110; } else { inputVoltage = in_input::VIN_VOLTAGE_220; } } catch (const std::exception& e) { log( std::format("{} READ_VIN read error: {}", shortName, e.what()) .c_str()); } } } void PowerSupply::checkAvailability() { bool origAvailability = available; bool faulted = isPowerOn() && (hasPSKillFault() || hasIoutOCFault()); available = present && !hasInputFault() && !hasVINUVFault() && !faulted; if (origAvailability != available) { auto invpath = inventoryPath.substr(strlen(INVENTORY_OBJ_PATH)); phosphor::power::psu::setAvailable(bus, invpath, available); // Check if the health rollup needs to change based on the // new availability value. phosphor::power::psu::handleChassisHealthRollup(bus, inventoryPath, !available); } } void PowerSupply::setInputVoltageRating() { if (!present) { if (inputVoltageRatingIface) { inputVoltageRatingIface->value(0); inputVoltageRatingIface.reset(); } return; } double inputVoltageValue{}; int inputVoltageRating{}; getInputVoltage(inputVoltageValue, inputVoltageRating); if (!inputVoltageRatingIface) { auto path = std::format( "/xyz/openbmc_project/sensors/voltage/ps{}_input_voltage_rating", shortName.back()); inputVoltageRatingIface = std::make_unique( bus, path.c_str(), SensorObject::action::defer_emit); // Leave other properties at their defaults inputVoltageRatingIface->unit(SensorInterface::Unit::Volts, true); inputVoltageRatingIface->value(static_cast(inputVoltageRating), true); inputVoltageRatingIface->emit_object_added(); } else { inputVoltageRatingIface->value(static_cast(inputVoltageRating)); } } void PowerSupply::getPsuVpdFromDbus(const std::string& keyword, std::string& vpdStr) { try { std::vector value; vpdStr.clear(); util::getProperty(VINI_IFACE, keyword, inventoryPath, INVENTORY_MGR_IFACE, bus, value); for (char c : value) { vpdStr += c; } } catch (const sdbusplus::exception_t& e) { log( std::format("Failed getProperty error: {}", e.what()).c_str()); } } double PowerSupply::linearToInteger(uint16_t data) { // The exponent is the first 5 bits, followed by 11 bits of mantissa. int8_t exponent = (data & 0xF800) >> 11; int16_t mantissa = (data & 0x07FF); // If exponent's MSB on, then it's negative. // Convert from two's complement. if (exponent & 0x10) { exponent = (~exponent) & 0x1F; exponent = (exponent + 1) * -1; } // If mantissa's MSB on, then it's negative. // Convert from two's complement. if (mantissa & 0x400) { mantissa = (~mantissa) & 0x07FF; mantissa = (mantissa + 1) * -1; } auto value = static_cast(mantissa) * pow(2, exponent); return value; } std::vector PowerSupply::getSensorAssociations() { std::vector associations; associations.emplace_back("inventory", "sensors", inventoryPath); auto chassis = getChassis(bus, inventoryPath); associations.emplace_back("chassis", "all_sensors", std::move(chassis)); return associations; } } // namespace phosphor::power::psu