/** * Copyright 2017 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* Configuration. */ #include "zone.hpp" #include "conf.hpp" #include "pid/controller.hpp" #include "pid/ec/pid.hpp" #include "pid/fancontroller.hpp" #include "pid/stepwisecontroller.hpp" #include "pid/thermalcontroller.hpp" #include "pid/tuning.hpp" #include #include #include #include #include #include namespace pid_control { using tstamp = std::chrono::high_resolution_clock::time_point; using namespace std::literals::chrono_literals; double PIDZone::getMaxSetPointRequest(void) const { return _maximumSetPoint; } bool PIDZone::getManualMode(void) const { return _manualMode; } void PIDZone::setManualMode(bool mode) { _manualMode = mode; } bool PIDZone::getFailSafeMode(void) const { // If any keys are present at least one sensor is in fail safe mode. return !_failSafeSensors.empty(); } int64_t PIDZone::getZoneID(void) const { return _zoneId; } void PIDZone::addSetPoint(double setpoint) { _SetPoints.push_back(setpoint); } void PIDZone::addRPMCeiling(double ceiling) { _RPMCeilings.push_back(ceiling); } void PIDZone::clearRPMCeilings(void) { _RPMCeilings.clear(); } void PIDZone::clearSetPoints(void) { _SetPoints.clear(); } double PIDZone::getFailSafePercent(void) const { return _failSafePercent; } double PIDZone::getMinThermalSetpoint(void) const { return _minThermalOutputSetPt; } void PIDZone::addFanPID(std::unique_ptr pid) { _fans.push_back(std::move(pid)); } void PIDZone::addThermalPID(std::unique_ptr pid) { _thermals.push_back(std::move(pid)); } double PIDZone::getCachedValue(const std::string& name) { return _cachedValuesByName.at(name); } void PIDZone::addFanInput(const std::string& fan) { _fanInputs.push_back(fan); } void PIDZone::addThermalInput(const std::string& therm) { _thermalInputs.push_back(therm); } void PIDZone::determineMaxSetPointRequest(void) { double max = 0; std::vector::iterator result; if (_SetPoints.size() > 0) { result = std::max_element(_SetPoints.begin(), _SetPoints.end()); max = *result; } if (_RPMCeilings.size() > 0) { result = std::min_element(_RPMCeilings.begin(), _RPMCeilings.end()); max = std::min(max, *result); } /* * If the maximum RPM setpoint output is below the minimum RPM * setpoint, set it to the minimum. */ max = std::max(getMinThermalSetpoint(), max); if (tuningEnabled) { /* * We received no setpoints from thermal sensors. * This is a case experienced during tuning where they only specify * fan sensors and one large fan PID for all the fans. */ static constexpr auto setpointpath = "/etc/thermal.d/setpoint"; try { std::ifstream ifs; ifs.open(setpointpath); if (ifs.good()) { int value; ifs >> value; /* expecting RPM setpoint, not pwm% */ max = static_cast(value); } } catch (const std::exception& e) { /* This exception is uninteresting. */ std::cerr << "Unable to read from '" << setpointpath << "'\n"; } } _maximumSetPoint = max; return; } void PIDZone::initializeLog(void) { /* Print header for log file: * epoch_ms,setpt,fan1,fan2,fanN,sensor1,sensor2,sensorN,failsafe */ _log << "epoch_ms,setpt"; for (const auto& f : _fanInputs) { _log << "," << f; } for (const auto& t : _thermalInputs) { _log << "," << t; } _log << ",failsafe"; _log << std::endl; return; } std::ofstream& PIDZone::getLogHandle(void) { return _log; } /* * TODO(venture) This is effectively updating the cache and should check if the * values they're using to update it are new or old, or whatnot. For instance, * if we haven't heard from the host in X time we need to detect this failure. * * I haven't decided if the Sensor should have a lastUpdated method or whether * that should be for the ReadInterface or etc... */ /** * We want the PID loop to run with values cached, so this will get all the * fan tachs for the loop. */ void PIDZone::updateFanTelemetry(void) { /* TODO(venture): Should I just make _log point to /dev/null when logging * is disabled? I think it's a waste to try and log things even if the * data is just being dropped though. */ tstamp now = std::chrono::high_resolution_clock::now(); if (loggingEnabled) { _log << std::chrono::duration_cast( now.time_since_epoch()) .count(); _log << "," << _maximumSetPoint; } for (const auto& f : _fanInputs) { auto sensor = _mgr.getSensor(f); ReadReturn r = sensor->read(); _cachedValuesByName[f] = r.value; int64_t timeout = sensor->getTimeout(); tstamp then = r.updated; auto duration = std::chrono::duration_cast(now - then) .count(); auto period = std::chrono::seconds(timeout).count(); /* * TODO(venture): We should check when these were last read. * However, these are the fans, so if I'm not getting updated values * for them... what should I do? */ if (loggingEnabled) { _log << "," << r.value; } // check if fan fail. if (sensor->getFailed()) { _failSafeSensors.insert(f); } else if (timeout != 0 && duration >= period) { _failSafeSensors.insert(f); } else { // Check if it's in there: remove it. auto kt = _failSafeSensors.find(f); if (kt != _failSafeSensors.end()) { _failSafeSensors.erase(kt); } } } if (loggingEnabled) { for (const auto& t : _thermalInputs) { _log << "," << _cachedValuesByName[t]; } } return; } void PIDZone::updateSensors(void) { using namespace std::chrono; /* margin and temp are stored as temp */ tstamp now = high_resolution_clock::now(); for (const auto& t : _thermalInputs) { auto sensor = _mgr.getSensor(t); ReadReturn r = sensor->read(); int64_t timeout = sensor->getTimeout(); _cachedValuesByName[t] = r.value; tstamp then = r.updated; auto duration = duration_cast(now - then).count(); auto period = std::chrono::seconds(timeout).count(); if (sensor->getFailed()) { _failSafeSensors.insert(t); } else if (timeout != 0 && duration >= period) { // std::cerr << "Entering fail safe mode.\n"; _failSafeSensors.insert(t); } else { // Check if it's in there: remove it. auto kt = _failSafeSensors.find(t); if (kt != _failSafeSensors.end()) { _failSafeSensors.erase(kt); } } } return; } void PIDZone::initializeCache(void) { for (const auto& f : _fanInputs) { _cachedValuesByName[f] = 0; // Start all fans in fail-safe mode. _failSafeSensors.insert(f); } for (const auto& t : _thermalInputs) { _cachedValuesByName[t] = 0; // Start all sensors in fail-safe mode. _failSafeSensors.insert(t); } } void PIDZone::dumpCache(void) { std::cerr << "Cache values now: \n"; for (const auto& k : _cachedValuesByName) { std::cerr << k.first << ": " << k.second << "\n"; } } void PIDZone::processFans(void) { for (auto& p : _fans) { p->process(); } } void PIDZone::processThermals(void) { for (auto& p : _thermals) { p->process(); } } Sensor* PIDZone::getSensor(const std::string& name) { return _mgr.getSensor(name); } bool PIDZone::manual(bool value) { std::cerr << "manual: " << value << std::endl; setManualMode(value); return ModeObject::manual(value); } bool PIDZone::failSafe() const { return getFailSafeMode(); } } // namespace pid_control