/** * Copyright 2017 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* Configuration. */ #include "zone.hpp" #include "conf.hpp" #include "pid/controller.hpp" #include "pid/ec/pid.hpp" #include "pid/fancontroller.hpp" #include "pid/stepwisecontroller.hpp" #include "pid/thermalcontroller.hpp" #include "pid/tuning.hpp" #include #include #include #include #include #include #include #include using tstamp = std::chrono::high_resolution_clock::time_point; using namespace std::literals::chrono_literals; // Enforces minimum duration between events // Rreturns true if event should be allowed, false if disallowed bool allowThrottle(const tstamp& now, const std::chrono::seconds& pace) { static tstamp then; static bool first = true; if (first) { // Special case initialization then = now; first = false; // Initialization, always allow return true; } auto elapsed = now - then; if (elapsed < pace) { // Too soon since last time, disallow return false; } // It has been long enough, allow then = now; return true; } namespace pid_control { double DbusPidZone::getMaxSetPointRequest(void) const { return _maximumSetPoint; } bool DbusPidZone::getManualMode(void) const { return _manualMode; } void DbusPidZone::setManualMode(bool mode) { _manualMode = mode; // If returning to automatic mode, need to restore PWM from PID loop if (!mode) { _redundantWrite = true; } } bool DbusPidZone::getFailSafeMode(void) const { // If any keys are present at least one sensor is in fail safe mode. return !_failSafeSensors.empty(); } void DbusPidZone::markSensorMissing(const std::string& name) { if (_missingAcceptable.find(name) != _missingAcceptable.end()) { // Disallow sensors in MissingIsAcceptable list from causing failsafe return; } if (_sensorFailSafePercent[name] == 0) { _failSafeSensors[name] = _zoneFailSafePercent; } else { _failSafeSensors[name] = _sensorFailSafePercent[name]; } if (debugEnabled) { std::cerr << "Sensor " << name << " marked missing\n"; } } int64_t DbusPidZone::getZoneID(void) const { return _zoneId; } void DbusPidZone::addSetPoint(double setPoint, const std::string& name) { /* exclude disabled pidloop from _maximumSetPoint calculation*/ if (!isPidProcessEnabled(name)) { return; } auto profileName = name; if (getAccSetPoint()) { /* * If the name of controller is Linear_Temp_CPU0. * The profile name will be Temp_CPU0. */ profileName = name.substr(name.find("_") + 1); _SetPoints[profileName] += setPoint; } else { if (_SetPoints[profileName] < setPoint) { _SetPoints[profileName] = setPoint; } } /* * if there are multiple thermal controllers with the same * value, pick the first one in the iterator */ if (_maximumSetPoint < _SetPoints[profileName]) { _maximumSetPoint = _SetPoints[profileName]; _maximumSetPointName = profileName; } } void DbusPidZone::addRPMCeiling(double ceiling) { _RPMCeilings.push_back(ceiling); } void DbusPidZone::clearRPMCeilings(void) { _RPMCeilings.clear(); } void DbusPidZone::clearSetPoints(void) { _SetPoints.clear(); _maximumSetPoint = 0; _maximumSetPointName.clear(); } double DbusPidZone::getFailSafePercent(void) { std::map::iterator maxData = std::max_element( _failSafeSensors.begin(), _failSafeSensors.end(), [](const std::pair firstData, const std::pair secondData) { return firstData.second < secondData.second; }); // In dbus/dbusconfiguration.cpp, the default sensor failsafepercent is 0 if // there is no setting in json. // Therfore, if the max failsafe duty in _failSafeSensors is 0, set final // failsafe duty to _zoneFailSafePercent. if ((*maxData).second == 0) { return _zoneFailSafePercent; } else { return (*maxData).second; } } double DbusPidZone::getMinThermalSetPoint(void) const { return _minThermalOutputSetPt; } uint64_t DbusPidZone::getCycleIntervalTime(void) const { return _cycleTime.cycleIntervalTimeMS; } uint64_t DbusPidZone::getUpdateThermalsCycle(void) const { return _cycleTime.updateThermalsTimeMS; } void DbusPidZone::addFanPID(std::unique_ptr pid) { _fans.push_back(std::move(pid)); } void DbusPidZone::addThermalPID(std::unique_ptr pid) { _thermals.push_back(std::move(pid)); } double DbusPidZone::getCachedValue(const std::string& name) { return _cachedValuesByName.at(name).scaled; } ValueCacheEntry DbusPidZone::getCachedValues(const std::string& name) { return _cachedValuesByName.at(name); } void DbusPidZone::setOutputCache(std::string_view name, const ValueCacheEntry& values) { _cachedFanOutputs[std::string{name}] = values; } void DbusPidZone::addFanInput(const std::string& fan, bool missingAcceptable) { _fanInputs.push_back(fan); if (missingAcceptable) { _missingAcceptable.emplace(fan); } } void DbusPidZone::addThermalInput(const std::string& therm, bool missingAcceptable) { /* * One sensor may have stepwise and PID at the same time. * Searching the sensor name before inserting it to avoid duplicated sensor * names. */ if (std::find(_thermalInputs.begin(), _thermalInputs.end(), therm) == _thermalInputs.end()) { _thermalInputs.push_back(therm); } if (missingAcceptable) { _missingAcceptable.emplace(therm); } } // Updates desired RPM setpoint from optional text file // Returns true if rpmValue updated, false if left unchanged static bool fileParseRpm(const std::string& fileName, double& rpmValue) { static constexpr std::chrono::seconds throttlePace{3}; std::string errText; try { std::ifstream ifs; ifs.open(fileName); if (ifs) { int value; ifs >> value; if (value <= 0) { errText = "File content could not be parsed to a number"; } else if (value <= 100) { errText = "File must contain RPM value, not PWM value"; } else { rpmValue = static_cast(value); return true; } } } catch (const std::exception& e) { errText = "Exception: "; errText += e.what(); } // The file is optional, intentionally not an error if file not found if (!(errText.empty())) { tstamp now = std::chrono::high_resolution_clock::now(); if (allowThrottle(now, throttlePace)) { std::cerr << "Unable to read from '" << fileName << "': " << errText << "\n"; } } return false; } void DbusPidZone::determineMaxSetPointRequest(void) { std::vector::iterator result; double minThermalThreshold = getMinThermalSetPoint(); if (_RPMCeilings.size() > 0) { result = std::min_element(_RPMCeilings.begin(), _RPMCeilings.end()); // if Max set point is larger than the lowest ceiling, reset to lowest // ceiling. if (*result < _maximumSetPoint) { _maximumSetPoint = *result; // When using lowest ceiling, controller name is ceiling. _maximumSetPointName = "Ceiling"; } } /* * Combine the maximum SetPoint Name if the controllers have same profile * name. e.g., PID_BB_INLET_TEMP_C + Stepwise_BB_INLET_TEMP_C. */ if (getAccSetPoint()) { auto profileName = _maximumSetPointName; _maximumSetPointName = ""; for (auto& p : _thermals) { auto controllerID = p->getID(); auto found = controllerID.find(profileName); if (found != std::string::npos) { if (_maximumSetPointName.empty()) { _maximumSetPointName = controllerID; } else { _maximumSetPointName += " + " + controllerID; } } } } /* * If the maximum RPM setpoint output is below the minimum RPM * setpoint, set it to the minimum. */ if (minThermalThreshold >= _maximumSetPoint) { _maximumSetPoint = minThermalThreshold; _maximumSetPointName = "Minimum"; } else if (_maximumSetPointName.compare(_maximumSetPointNamePrev)) { std::cerr << "PID Zone " << _zoneId << " max SetPoint " << _maximumSetPoint << " requested by " << _maximumSetPointName; for (const auto& sensor : _failSafeSensors) { if (sensor.first.find("Fan") == std::string::npos) { std::cerr << " " << sensor.first; } } std::cerr << "\n"; _maximumSetPointNamePrev.assign(_maximumSetPointName); } if (tuningEnabled) { /* * We received no setpoints from thermal sensors. * This is a case experienced during tuning where they only specify * fan sensors and one large fan PID for all the fans. */ static constexpr auto setpointpath = "/etc/thermal.d/setpoint"; fileParseRpm(setpointpath, _maximumSetPoint); // Allow per-zone setpoint files to override overall setpoint file std::ostringstream zoneSuffix; zoneSuffix << ".zone" << _zoneId; std::string zoneSetpointPath = setpointpath + zoneSuffix.str(); fileParseRpm(zoneSetpointPath, _maximumSetPoint); } return; } void DbusPidZone::initializeLog(void) { /* Print header for log file: * epoch_ms,setpt,fan1,fan1_raw,fan1_pwm,fan1_pwm_raw,fan2,fan2_raw,fan2_pwm,fan2_pwm_raw,fanN,fanN_raw,fanN_pwm,fanN_pwm_raw,sensor1,sensor1_raw,sensor2,sensor2_raw,sensorN,sensorN_raw,failsafe */ _log << "epoch_ms,setpt,requester"; for (const auto& f : _fanInputs) { _log << "," << f << "," << f << "_raw"; _log << "," << f << "_pwm," << f << "_pwm_raw"; } for (const auto& t : _thermalInputs) { _log << "," << t << "," << t << "_raw"; } _log << ",failsafe"; _log << std::endl; } void DbusPidZone::writeLog(const std::string& value) { _log << value; } /* * TODO(venture) This is effectively updating the cache and should check if the * values they're using to update it are new or old, or whatnot. For instance, * if we haven't heard from the host in X time we need to detect this failure. * * I haven't decided if the Sensor should have a lastUpdated method or whether * that should be for the ReadInterface or etc... */ /** * We want the PID loop to run with values cached, so this will get all the * fan tachs for the loop. */ void DbusPidZone::updateFanTelemetry(void) { /* TODO(venture): Should I just make _log point to /dev/null when logging * is disabled? I think it's a waste to try and log things even if the * data is just being dropped though. */ const auto now = std::chrono::high_resolution_clock::now(); if (loggingEnabled) { _log << std::chrono::duration_cast( now.time_since_epoch()) .count(); _log << "," << _maximumSetPoint; _log << "," << _maximumSetPointName; } processSensorInputs(_fanInputs, now); if (loggingEnabled) { for (const auto& t : _thermalInputs) { const auto& v = _cachedValuesByName[t]; _log << "," << v.scaled << "," << v.unscaled; } } return; } void DbusPidZone::updateSensors(void) { processSensorInputs( _thermalInputs, std::chrono::high_resolution_clock::now()); return; } void DbusPidZone::initializeCache(void) { auto nan = std::numeric_limits::quiet_NaN(); for (const auto& f : _fanInputs) { _cachedValuesByName[f] = {nan, nan}; _cachedFanOutputs[f] = {nan, nan}; // Start all fans in fail-safe mode. markSensorMissing(f); } for (const auto& t : _thermalInputs) { _cachedValuesByName[t] = {nan, nan}; // Start all sensors in fail-safe mode. markSensorMissing(t); } } void DbusPidZone::dumpCache(void) { std::cerr << "Cache values now: \n"; for (const auto& [name, value] : _cachedValuesByName) { std::cerr << name << ": " << value.scaled << " " << value.unscaled << "\n"; } std::cerr << "Fan outputs now: \n"; for (const auto& [name, value] : _cachedFanOutputs) { std::cerr << name << ": " << value.scaled << " " << value.unscaled << "\n"; } } void DbusPidZone::processFans(void) { for (auto& p : _fans) { p->process(); } if (_redundantWrite) { // This is only needed once _redundantWrite = false; } } void DbusPidZone::processThermals(void) { for (auto& p : _thermals) { p->process(); } } Sensor* DbusPidZone::getSensor(const std::string& name) { return _mgr.getSensor(name); } bool DbusPidZone::getRedundantWrite(void) const { return _redundantWrite; } bool DbusPidZone::manual(bool value) { std::cerr << "manual: " << value << std::endl; setManualMode(value); return ModeObject::manual(value); } bool DbusPidZone::failSafe() const { return getFailSafeMode(); } void DbusPidZone::addPidControlProcess(std::string name, std::string type, double setpoint, sdbusplus::bus_t& bus, std::string objPath, bool defer) { _pidsControlProcess[name] = std::make_unique( bus, objPath.c_str(), defer ? ProcessObject::action::defer_emit : ProcessObject::action::emit_object_added); // Default enable setting = true _pidsControlProcess[name]->enabled(true); _pidsControlProcess[name]->setpoint(setpoint); if (type == "temp") { _pidsControlProcess[name]->classType("Temperature"); } else if (type == "margin") { _pidsControlProcess[name]->classType("Margin"); } else if (type == "power") { _pidsControlProcess[name]->classType("Power"); } else if (type == "powersum") { _pidsControlProcess[name]->classType("PowerSum"); } } bool DbusPidZone::isPidProcessEnabled(std::string name) { return _pidsControlProcess[name]->enabled(); } void DbusPidZone::addPidFailSafePercent(std::vector inputs, double percent) { for (const auto& sensorName : inputs) { if (_sensorFailSafePercent.find(sensorName) != _sensorFailSafePercent.end()) { _sensorFailSafePercent[sensorName] = std::max(_sensorFailSafePercent[sensorName], percent); if (debugEnabled) { std::cerr << "Sensor " << sensorName << " failsafe percent updated to " << _sensorFailSafePercent[sensorName] << "\n"; } } else { _sensorFailSafePercent[sensorName] = percent; if (debugEnabled) { std::cerr << "Sensor " << sensorName << " failsafe percent set to " << percent << "\n"; } } } } std::string DbusPidZone::leader() const { return _maximumSetPointName; } void DbusPidZone::updateThermalPowerDebugInterface( std::string pidName, std::string leader, double input, double output) { if (leader.empty()) { _pidsControlProcess[pidName]->output(output); } else { _pidsControlProcess[pidName]->leader(leader); _pidsControlProcess[pidName]->input(input); } } bool DbusPidZone::getAccSetPoint(void) const { return _accumulateSetPoint; } } // namespace pid_control