/** * Copyright 2017 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dbuspassive.hpp" #include "dbushelper_interface.hpp" #include "dbuspassiveredundancy.hpp" #include "dbusutil.hpp" #include "util.hpp" #include #include #include #include #include #include #include namespace pid_control { std::unique_ptr DbusPassive::createDbusPassive( sdbusplus::bus::bus& bus, const std::string& type, const std::string& id, std::unique_ptr helper, const conf::SensorConfig* info, const std::shared_ptr& redundancy) { if (helper == nullptr) { return nullptr; } if (!validType(type)) { return nullptr; } /* Need to get the scale and initial value */ /* service == busname */ std::string path = getSensorPath(type, id); SensorProperties settings; bool failed; try { std::string service = helper->getService(sensorintf, path); helper->getProperties(service, path, &settings); failed = helper->thresholdsAsserted(service, path); } catch (const std::exception& e) { return nullptr; } /* if these values are zero, they're ignored. */ if (info->ignoreDbusMinMax) { settings.min = 0; settings.max = 0; } settings.unavailableAsFailed = info->unavailableAsFailed; return std::make_unique(bus, type, id, std::move(helper), settings, failed, path, redundancy); } DbusPassive::DbusPassive( sdbusplus::bus::bus& bus, const std::string& type, const std::string& id, std::unique_ptr helper, const SensorProperties& settings, bool failed, const std::string& path, const std::shared_ptr& redundancy) : ReadInterface(), _signal(bus, getMatch(type, id).c_str(), dbusHandleSignal, this), _id(id), _helper(std::move(helper)), _failed(failed), path(path), redundancy(redundancy) { _scale = settings.scale; _min = settings.min * std::pow(10.0, _scale); _max = settings.max * std::pow(10.0, _scale); _available = settings.available; _unavailableAsFailed = settings.unavailableAsFailed; // Cache this type knowledge, to avoid repeated string comparison _typeMargin = (type == "margin"); _typeFan = (type == "fan"); // Force value to be stored, otherwise member would be uninitialized updateValue(settings.value, true); } ReadReturn DbusPassive::read(void) { std::lock_guard guard(_lock); ReadReturn r = {_value, _updated}; return r; } void DbusPassive::setValue(double value) { std::lock_guard guard(_lock); _value = value; _updated = std::chrono::high_resolution_clock::now(); } bool DbusPassive::getFailed(void) const { if (redundancy) { const std::set& failures = redundancy->getFailed(); if (failures.find(path) != failures.end()) { return true; } } /* * Unavailable thermal sensors, who are not present or * power-state-not-matching, should not trigger the failSafe mode. For * example, when a system stays at a powered-off state, its CPU Temp * sensors will be unavailable, these unavailable sensors should not be * treated as failed and trigger failSafe. * This is important for systems whose Fans are always on. */ if (!_typeFan && !_available && !_unavailableAsFailed) { return false; } // If a reading has came in, // but its value bad in some way (determined by sensor type), // indicate this sensor has failed, // until another value comes in that is no longer bad. // This is different from the overall _failed flag, // which is set and cleared by other causes. if (_badReading) { return true; } // If a reading has came in, and it is not a bad reading, // but it indicates there is no more thermal margin left, // that is bad, something is wrong with the PID loops, // they are not cooling the system, enable failsafe mode also. if (_marginHot) { return true; } return _failed || !_available || !_functional; } void DbusPassive::setFailed(bool value) { _failed = value; } void DbusPassive::setFunctional(bool value) { _functional = value; } void DbusPassive::setAvailable(bool value) { _available = value; } int64_t DbusPassive::getScale(void) { return _scale; } std::string DbusPassive::getID(void) { return _id; } double DbusPassive::getMax(void) { return _max; } double DbusPassive::getMin(void) { return _min; } void DbusPassive::updateValue(double value, bool force) { _badReading = false; // Do not let a NAN, or other floating-point oddity, be used to update // the value, as that indicates the sensor has no valid reading. if (!(std::isfinite(value))) { _badReading = true; // Do not continue with a bad reading, unless caller forcing if (!force) { return; } } value *= std::pow(10.0, _scale); auto unscaled = value; scaleSensorReading(_min, _max, value); if (_typeMargin) { _marginHot = false; // Unlike an absolute temperature sensor, // where 0 degrees C is a good reading, // a value received of 0 (or negative) margin is worrisome, // and should be flagged. // Either it indicates margin not calculated properly, // or somebody forgot to set the margin-zero setpoint, // or the system is really overheating that much. // This is a different condition from _failed // and _badReading, so it merits its own flag. // The sensor has not failed, the reading is good, but the zone // still needs to know that it should go to failsafe mode. if (unscaled <= 0.0) { _marginHot = true; } } setValue(value); } int handleSensorValue(sdbusplus::message::message& msg, DbusPassive* owner) { std::string msgSensor; std::map> msgData; msg.read(msgSensor, msgData); if (msgSensor == "xyz.openbmc_project.Sensor.Value") { auto valPropMap = msgData.find("Value"); if (valPropMap != msgData.end()) { double value = std::visit(VariantToDoubleVisitor(), valPropMap->second); owner->updateValue(value, false); } } else if (msgSensor == "xyz.openbmc_project.Sensor.Threshold.Critical") { auto criticalAlarmLow = msgData.find("CriticalAlarmLow"); auto criticalAlarmHigh = msgData.find("CriticalAlarmHigh"); if (criticalAlarmHigh == msgData.end() && criticalAlarmLow == msgData.end()) { return 0; } bool asserted = false; if (criticalAlarmLow != msgData.end()) { asserted = std::get(criticalAlarmLow->second); } // checking both as in theory you could de-assert one threshold and // assert the other at the same moment if (!asserted && criticalAlarmHigh != msgData.end()) { asserted = std::get(criticalAlarmHigh->second); } owner->setFailed(asserted); } else if (msgSensor == "xyz.openbmc_project.State.Decorator.Availability") { auto available = msgData.find("Available"); if (available == msgData.end()) { return 0; } bool asserted = std::get(available->second); owner->setAvailable(asserted); if (!asserted) { // A thermal controller will continue its PID calculation and not // trigger a 'failsafe' when some inputs are unavailable. // So, forced to clear the value here to prevent a historical // value to participate in a latter PID calculation. owner->updateValue(std::numeric_limits::quiet_NaN(), true); } } else if (msgSensor == "xyz.openbmc_project.State.Decorator.OperationalStatus") { auto functional = msgData.find("Functional"); if (functional == msgData.end()) { return 0; } bool asserted = std::get(functional->second); owner->setFunctional(asserted); } return 0; } int dbusHandleSignal(sd_bus_message* msg, void* usrData, sd_bus_error* err) { auto sdbpMsg = sdbusplus::message::message(msg); DbusPassive* obj = static_cast(usrData); return handleSensorValue(sdbpMsg, obj); } } // namespace pid_control