/* // Copyright (c) 2018 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. */ #include "conf.hpp" #include "dbus/util.hpp" #include #include #include #include #include #include #include #include #include #include static constexpr bool DEBUG = false; // enable to print found configuration std::map SensorConfig = {}; std::map ZoneConfig = {}; std::map ZoneDetailsConfig = {}; constexpr const char* pidConfigurationInterface = "xyz.openbmc_project.Configuration.Pid"; constexpr const char* objectManagerInterface = "org.freedesktop.DBus.ObjectManager"; constexpr const char* pidZoneConfigurationInterface = "xyz.openbmc_project.Configuration.Pid.Zone"; constexpr const char* stepwiseConfigurationInterface = "xyz.openbmc_project.Configuration.Stepwise"; constexpr const char* sensorInterface = "xyz.openbmc_project.Sensor.Value"; constexpr const char* pwmInterface = "xyz.openbmc_project.Control.FanPwm"; namespace dbus_configuration { namespace variant_ns = sdbusplus::message::variant_ns; bool findSensor(const std::unordered_map& sensors, const std::string& search, std::pair& sensor) { auto found = std::find_if(sensors.begin(), sensors.end(), [&search](const auto& s) { return (s.first.find(search) != std::string::npos); }); if (found != sensors.end()) { sensor = *found; return true; } return false; } // this function prints the configuration into a form similar to the cpp // generated code to help in verification, should be turned off during normal // use void debugPrint(void) { // print sensor config std::cout << "sensor config:\n"; std::cout << "{\n"; for (auto& pair : SensorConfig) { std::cout << "\t{" << pair.first << ",\n\t\t{"; std::cout << pair.second.type << ", "; std::cout << pair.second.readpath << ", "; std::cout << pair.second.writepath << ", "; std::cout << pair.second.min << ", "; std::cout << pair.second.max << ", "; std::cout << pair.second.timeout << "},\n\t},\n"; } std::cout << "}\n\n"; std::cout << "ZoneDetailsConfig\n"; std::cout << "{\n"; for (auto& zone : ZoneDetailsConfig) { std::cout << "\t{" << zone.first << ",\n"; std::cout << "\t\t{" << zone.second.minthermalrpm << ", "; std::cout << zone.second.failsafepercent << "}\n\t},\n"; } std::cout << "}\n\n"; std::cout << "ZoneConfig\n"; std::cout << "{\n"; for (auto& zone : ZoneConfig) { std::cout << "\t{" << zone.first << "\n"; for (auto& pidconf : zone.second) { std::cout << "\t\t{" << pidconf.first << ",\n"; std::cout << "\t\t\t{" << pidconf.second.type << ",\n"; std::cout << "\t\t\t{"; for (auto& input : pidconf.second.inputs) { std::cout << "\n\t\t\t" << input << ",\n"; } std::cout << "\t\t\t}\n"; std::cout << "\t\t\t" << pidconf.second.setpoint << ",\n"; std::cout << "\t\t\t{" << pidconf.second.pidInfo.ts << ",\n"; std::cout << "\t\t\t" << pidconf.second.pidInfo.p_c << ",\n"; std::cout << "\t\t\t" << pidconf.second.pidInfo.i_c << ",\n"; std::cout << "\t\t\t" << pidconf.second.pidInfo.ff_off << ",\n"; std::cout << "\t\t\t" << pidconf.second.pidInfo.ff_gain << ",\n"; std::cout << "\t\t\t{" << pidconf.second.pidInfo.i_lim.min << "," << pidconf.second.pidInfo.i_lim.max << "},\n"; std::cout << "\t\t\t{" << pidconf.second.pidInfo.out_lim.min << "," << pidconf.second.pidInfo.out_lim.max << "},\n"; std::cout << "\t\t\t" << pidconf.second.pidInfo.slew_neg << ",\n"; std::cout << "\t\t\t" << pidconf.second.pidInfo.slew_pos << ",\n"; std::cout << "\t\t\t}\n\t\t}\n"; } std::cout << "\t},\n"; } std::cout << "}\n\n"; } int eventHandler(sd_bus_message*, void*, sd_bus_error*) { // do a brief sleep as we tend to get a bunch of these events at // once std::this_thread::sleep_for(std::chrono::seconds(5)); std::cout << "New configuration detected, restarting\n."; std::exit(EXIT_SUCCESS); // service file should make us restart return 1; } void init(sdbusplus::bus::bus& bus) { using DbusVariantType = sdbusplus::message::variant, std::vector>; using ManagedObjectType = std::unordered_map< sdbusplus::message::object_path, std::unordered_map>>; // restart on configuration properties changed static sdbusplus::bus::match::match configMatch( bus, "type='signal',member='PropertiesChanged',arg0namespace='" + std::string(pidConfigurationInterface) + "'", eventHandler); // restart on sensors changed static sdbusplus::bus::match::match sensorAdded( bus, "type='signal',member='InterfacesAdded',arg0path='/xyz/openbmc_project/" "sensors/'", eventHandler); auto mapper = bus.new_method_call("xyz.openbmc_project.ObjectMapper", "/xyz/openbmc_project/object_mapper", "xyz.openbmc_project.ObjectMapper", "GetSubTree"); mapper.append("", 0, std::array{objectManagerInterface, pidConfigurationInterface, pidZoneConfigurationInterface, stepwiseConfigurationInterface, sensorInterface, pwmInterface}); std::unordered_map< std::string, std::unordered_map>> respData; try { auto resp = bus.call(mapper); if (resp.is_method_error()) { throw std::runtime_error("ObjectMapper Call Failure"); } resp.read(respData); } catch (sdbusplus::exception_t&) { // can't do anything without mapper call data throw std::runtime_error("ObjectMapper Call Failure"); } if (respData.empty()) { // can't do anything without mapper call data throw std::runtime_error("No configuration data available from Mapper"); } // create a map of pair of std::unordered_map> owners; // and a map of for sensors std::unordered_map sensors; for (const auto& objectPair : respData) { for (const auto& ownerPair : objectPair.second) { auto& owner = owners[ownerPair.first]; for (const std::string& interface : ownerPair.second) { if (interface == objectManagerInterface) { owner.second = objectPair.first; } if (interface == pidConfigurationInterface || interface == pidZoneConfigurationInterface || interface == stepwiseConfigurationInterface) { owner.first = true; } if (interface == sensorInterface || interface == pwmInterface) { // we're not interested in pwm sensors, just pwm control if (interface == sensorInterface && objectPair.first.find("pwm") != std::string::npos) { continue; } sensors[objectPair.first] = interface; } } } } ManagedObjectType configurations; for (const auto& owner : owners) { // skip if no pid configuration (means probably a sensor) if (!owner.second.first) { continue; } auto endpoint = bus.new_method_call( owner.first.c_str(), owner.second.second.c_str(), "org.freedesktop.DBus.ObjectManager", "GetManagedObjects"); ManagedObjectType configuration; try { auto responce = bus.call(endpoint); if (responce.is_method_error()) { throw std::runtime_error("Error getting managed objects from " + owner.first); } responce.read(configuration); } catch (sdbusplus::exception_t&) { // this shouldn't happen, probably means daemon crashed throw std::runtime_error("Error getting managed objects from " + owner.first); } for (auto& pathPair : configuration) { if (pathPair.second.find(pidConfigurationInterface) != pathPair.second.end() || pathPair.second.find(pidZoneConfigurationInterface) != pathPair.second.end() || pathPair.second.find(stepwiseConfigurationInterface) != pathPair.second.end()) { configurations.emplace(pathPair); } } } // on dbus having an index field is a bit strange, so randomly // assign index based on name property std::vector zoneIndex; for (const auto& configuration : configurations) { auto findZone = configuration.second.find(pidZoneConfigurationInterface); if (findZone != configuration.second.end()) { const auto& zone = findZone->second; size_t index = 1; const std::string& name = variant_ns::get(zone.at("Name")); auto it = std::find(zoneIndex.begin(), zoneIndex.end(), name); if (it == zoneIndex.end()) { zoneIndex.emplace_back(name); index = zoneIndex.size(); } else { index = zoneIndex.end() - it; } auto& details = ZoneDetailsConfig[index]; details.minthermalrpm = variant_ns::apply_visitor( VariantToFloatVisitor(), zone.at("MinThermalRpm")); details.failsafepercent = variant_ns::apply_visitor( VariantToFloatVisitor(), zone.at("FailSafePercent")); } auto findBase = configuration.second.find(pidConfigurationInterface); if (findBase != configuration.second.end()) { const auto& base = configuration.second.at(pidConfigurationInterface); const std::vector& zones = variant_ns::get>(base.at("Zones")); for (const std::string& zone : zones) { auto it = std::find(zoneIndex.begin(), zoneIndex.end(), zone); size_t index = 1; if (it == zoneIndex.end()) { zoneIndex.emplace_back(zone); index = zoneIndex.size(); } else { index = zoneIndex.end() - it; } PIDConf& conf = ZoneConfig[index]; std::vector sensorNames = variant_ns::get>( base.at("Inputs")); auto findOutputs = base.find("Outputs"); // currently only fans have outputs if (findOutputs != base.end()) { std::vector outputs = variant_ns::get>( findOutputs->second); sensorNames.insert(sensorNames.end(), outputs.begin(), outputs.end()); } bool sensorsAvailable = sensorNames.size(); std::vector inputs; for (const std::string& sensorName : sensorNames) { std::string name = sensorName; // replace spaces with underscores to be legal on dbus std::replace(name.begin(), name.end(), ' ', '_'); std::pair sensorPathIfacePair; if (!findSensor(sensors, name, sensorPathIfacePair)) { sensorsAvailable = false; break; } if (sensorPathIfacePair.second == sensorInterface) { inputs.push_back(name); auto& config = SensorConfig[name]; config.type = variant_ns::get(base.at("Class")); config.readpath = sensorPathIfacePair.first; // todo: maybe un-hardcode this if we run into slower // timeouts with sensors if (config.type == "temp") { config.timeout = 500; } } else if (sensorPathIfacePair.second == pwmInterface) { // copy so we can modify it for (std::string otherSensor : sensorNames) { if (otherSensor == sensorName) { continue; } std::replace(otherSensor.begin(), otherSensor.end(), ' ', '_'); auto& config = SensorConfig[otherSensor]; config.writepath = sensorPathIfacePair.first; // todo: un-hardcode this if there are fans with // different ranges config.max = 255; config.min = 0; } } } // if the sensors aren't available in the current state, don't // add them to the configuration. if (!sensorsAvailable) { continue; } struct controller_info& info = conf[variant_ns::get(base.at("Name"))]; info.inputs = std::move(inputs); info.type = variant_ns::get(base.at("Class")); // todo: auto generation yaml -> c script seems to discard this // value for fans, verify this is okay if (info.type == "fan") { info.setpoint = 0; } else { info.setpoint = variant_ns::apply_visitor( VariantToFloatVisitor(), base.at("SetPoint")); } info.pidInfo.ts = 1.0; // currently unused info.pidInfo.p_c = variant_ns::apply_visitor( VariantToFloatVisitor(), base.at("PCoefficient")); info.pidInfo.i_c = variant_ns::apply_visitor( VariantToFloatVisitor(), base.at("ICoefficient")); info.pidInfo.ff_off = variant_ns::apply_visitor( VariantToFloatVisitor(), base.at("FFOffCoefficient")); info.pidInfo.ff_gain = variant_ns::apply_visitor( VariantToFloatVisitor(), base.at("FFGainCoefficient")); info.pidInfo.i_lim.max = variant_ns::apply_visitor( VariantToFloatVisitor(), base.at("ILimitMax")); info.pidInfo.i_lim.min = variant_ns::apply_visitor( VariantToFloatVisitor(), base.at("ILimitMin")); info.pidInfo.out_lim.max = variant_ns::apply_visitor( VariantToFloatVisitor(), base.at("OutLimitMax")); info.pidInfo.out_lim.min = variant_ns::apply_visitor( VariantToFloatVisitor(), base.at("OutLimitMin")); info.pidInfo.slew_neg = variant_ns::apply_visitor( VariantToFloatVisitor(), base.at("SlewNeg")); info.pidInfo.slew_pos = variant_ns::apply_visitor( VariantToFloatVisitor(), base.at("SlewPos")); } } auto findStepwise = configuration.second.find(stepwiseConfigurationInterface); if (findStepwise != configuration.second.end()) { const auto& base = findStepwise->second; const std::vector& zones = variant_ns::get>(base.at("Zones")); for (const std::string& zone : zones) { auto it = std::find(zoneIndex.begin(), zoneIndex.end(), zone); size_t index = 1; if (it == zoneIndex.end()) { zoneIndex.emplace_back(zone); index = zoneIndex.size(); } else { index = zoneIndex.end() - it; } PIDConf& conf = ZoneConfig[index]; std::vector inputs; std::vector sensorNames = variant_ns::get>( base.at("Inputs")); bool sensorFound = sensorNames.size(); for (const std::string& sensorName : sensorNames) { std::string name = sensorName; // replace spaces with underscores to be legal on dbus std::replace(name.begin(), name.end(), ' ', '_'); std::pair sensorPathIfacePair; if (!findSensor(sensors, name, sensorPathIfacePair)) { sensorFound = false; break; } inputs.push_back(name); auto& config = SensorConfig[name]; config.readpath = sensorPathIfacePair.first; config.type = "temp"; // todo: maybe un-hardcode this if we run into slower // timeouts with sensors config.timeout = 500; } if (!sensorFound) { continue; } struct controller_info& info = conf[variant_ns::get(base.at("Name"))]; info.inputs = std::move(inputs); info.type = "stepwise"; info.stepwiseInfo.ts = 1.0; // currently unused info.stepwiseInfo.positiveHysteresis = 0.0; info.stepwiseInfo.negativeHysteresis = 0.0; auto findPosHyst = base.find("PositiveHysteresis"); auto findNegHyst = base.find("NegativeHysteresis"); if (findPosHyst != base.end()) { info.stepwiseInfo.positiveHysteresis = variant_ns::apply_visitor(VariantToFloatVisitor(), findPosHyst->second); } if (findNegHyst != base.end()) { info.stepwiseInfo.positiveHysteresis = variant_ns::apply_visitor(VariantToFloatVisitor(), findNegHyst->second); } std::vector readings = variant_ns::get>(base.at("Reading")); if (readings.size() > ec::maxStepwisePoints) { throw std::invalid_argument("Too many stepwise points."); } if (readings.empty()) { throw std::invalid_argument( "Must have one stepwise point."); } std::copy(readings.begin(), readings.end(), info.stepwiseInfo.reading); if (readings.size() < ec::maxStepwisePoints) { info.stepwiseInfo.reading[readings.size()] = std::numeric_limits::quiet_NaN(); } std::vector outputs = variant_ns::get>(base.at("Output")); if (readings.size() != outputs.size()) { throw std::invalid_argument( "Outputs size must match readings"); } std::copy(outputs.begin(), outputs.end(), info.stepwiseInfo.output); if (outputs.size() < ec::maxStepwisePoints) { info.stepwiseInfo.output[outputs.size()] = std::numeric_limits::quiet_NaN(); } } } } if (DEBUG) { debugPrint(); } if (ZoneConfig.empty()) { std::cerr << "No fan zones, application pausing until reboot\n"; while (1) { bus.process_discard(); } } } } // namespace dbus_configuration