/* // Copyright (c) 2018 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. */ #include "conf.hpp" #include "dbushelper.hpp" #include "dbusutil.hpp" #include "util.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include namespace pid_control { static constexpr bool DEBUG = false; // enable to print found configuration extern std::map sensorConfig; extern std::map zoneConfig; extern std::map zoneDetailsConfig; constexpr const char* pidConfigurationInterface = "xyz.openbmc_project.Configuration.Pid"; constexpr const char* objectManagerInterface = "org.freedesktop.DBus.ObjectManager"; constexpr const char* pidZoneConfigurationInterface = "xyz.openbmc_project.Configuration.Pid.Zone"; constexpr const char* stepwiseConfigurationInterface = "xyz.openbmc_project.Configuration.Stepwise"; constexpr const char* thermalControlIface = "xyz.openbmc_project.Control.ThermalMode"; constexpr const char* sensorInterface = "xyz.openbmc_project.Sensor.Value"; constexpr const char* defaultPwmInterface = "xyz.openbmc_project.Control.FanPwm"; using Association = std::tuple; using Associations = std::vector; namespace thresholds { constexpr const char* warningInterface = "xyz.openbmc_project.Sensor.Threshold.Warning"; constexpr const char* criticalInterface = "xyz.openbmc_project.Sensor.Threshold.Critical"; const std::array types = {"CriticalLow", "CriticalHigh", "WarningLow", "WarningHigh"}; } // namespace thresholds namespace dbus_configuration { using DbusVariantType = std::variant, std::vector>; using SensorInterfaceType = std::pair; inline std::string getSensorNameFromPath(const std::string& dbusPath) { return dbusPath.substr(dbusPath.find_last_of("/") + 1); } inline std::string sensorNameToDbusName(const std::string& sensorName) { std::string retString = sensorName; std::replace(retString.begin(), retString.end(), ' ', '_'); return retString; } bool findSensors(const std::unordered_map& sensors, const std::string& search, std::vector>& matches) { std::smatch match; std::regex reg(search + '$'); for (const auto& sensor : sensors) { if (std::regex_search(sensor.first, match, reg)) { matches.push_back(sensor); } } return matches.size() > 0; } // this function prints the configuration into a form similar to the cpp // generated code to help in verification, should be turned off during normal // use void debugPrint(void) { // print sensor config std::cout << "sensor config:\n"; std::cout << "{\n"; for (const auto& pair : sensorConfig) { std::cout << "\t{" << pair.first << ",\n\t\t{"; std::cout << pair.second.type << ", "; std::cout << pair.second.readPath << ", "; std::cout << pair.second.writePath << ", "; std::cout << pair.second.min << ", "; std::cout << pair.second.max << ", "; std::cout << pair.second.timeout << "},\n\t},\n"; } std::cout << "}\n\n"; std::cout << "ZoneDetailsConfig\n"; std::cout << "{\n"; for (const auto& zone : zoneDetailsConfig) { std::cout << "\t{" << zone.first << ",\n"; std::cout << "\t\t{" << zone.second.minThermalOutput << ", "; std::cout << zone.second.failsafePercent << "}\n\t},\n"; } std::cout << "}\n\n"; std::cout << "ZoneConfig\n"; std::cout << "{\n"; for (const auto& zone : zoneConfig) { std::cout << "\t{" << zone.first << "\n"; for (const auto& pidconf : zone.second) { std::cout << "\t\t{" << pidconf.first << ",\n"; std::cout << "\t\t\t{" << pidconf.second.type << ",\n"; std::cout << "\t\t\t{"; for (const auto& input : pidconf.second.inputs) { std::cout << "\n\t\t\t" << input << ",\n"; } std::cout << "\t\t\t}\n"; std::cout << "\t\t\t" << pidconf.second.setpoint << ",\n"; std::cout << "\t\t\t{" << pidconf.second.pidInfo.ts << ",\n"; std::cout << "\t\t\t" << pidconf.second.pidInfo.proportionalCoeff << ",\n"; std::cout << "\t\t\t" << pidconf.second.pidInfo.integralCoeff << ",\n"; std::cout << "\t\t\t" << pidconf.second.pidInfo.feedFwdOffset << ",\n"; std::cout << "\t\t\t" << pidconf.second.pidInfo.feedFwdGain << ",\n"; std::cout << "\t\t\t{" << pidconf.second.pidInfo.integralLimit.min << "," << pidconf.second.pidInfo.integralLimit.max << "},\n"; std::cout << "\t\t\t{" << pidconf.second.pidInfo.outLim.min << "," << pidconf.second.pidInfo.outLim.max << "},\n"; std::cout << "\t\t\t" << pidconf.second.pidInfo.slewNeg << ",\n"; std::cout << "\t\t\t" << pidconf.second.pidInfo.slewPos << ",\n"; std::cout << "\t\t\t}\n\t\t}\n"; } std::cout << "\t},\n"; } std::cout << "}\n\n"; } size_t getZoneIndex(const std::string& name, std::vector& zones) { auto it = std::find(zones.begin(), zones.end(), name); if (it == zones.end()) { zones.emplace_back(name); it = zones.end() - 1; } return it - zones.begin(); } std::vector getSelectedProfiles(sdbusplus::bus::bus& bus) { std::vector ret; auto mapper = bus.new_method_call("xyz.openbmc_project.ObjectMapper", "/xyz/openbmc_project/object_mapper", "xyz.openbmc_project.ObjectMapper", "GetSubTree"); mapper.append("/", 0, std::array{thermalControlIface}); std::unordered_map< std::string, std::unordered_map>> respData; try { auto resp = bus.call(mapper); resp.read(respData); } catch (sdbusplus::exception_t&) { // can't do anything without mapper call data throw std::runtime_error("ObjectMapper Call Failure"); } if (respData.empty()) { // if the user has profiles but doesn't expose the interface to select // one, just go ahead without using profiles return ret; } // assumption is that we should only have a small handful of selected // profiles at a time (probably only 1), so calling each individually should // not incur a large cost for (const auto& objectPair : respData) { const std::string& path = objectPair.first; for (const auto& ownerPair : objectPair.second) { const std::string& busName = ownerPair.first; auto getProfile = bus.new_method_call(busName.c_str(), path.c_str(), "org.freedesktop.DBus.Properties", "Get"); getProfile.append(thermalControlIface, "Current"); std::variant variantResp; try { auto resp = bus.call(getProfile); resp.read(variantResp); } catch (sdbusplus::exception_t&) { throw std::runtime_error("Failure getting profile"); } std::string mode = std::get(variantResp); ret.emplace_back(std::move(mode)); } } if constexpr (DEBUG) { std::cout << "Profiles selected: "; for (const auto& profile : ret) { std::cout << profile << " "; } std::cout << "\n"; } return ret; } int eventHandler(sd_bus_message* m, void* context, sd_bus_error*) { if (context == nullptr || m == nullptr) { throw std::runtime_error("Invalid match"); } // we skip associations because the mapper populates these, not the sensors const std::array skipList = { "xyz.openbmc_project.Association"}; sdbusplus::message::message message(m); if (std::string(message.get_member()) == "InterfacesAdded") { sdbusplus::message::object_path path; std::unordered_map< std::string, std::unordered_map>> data; message.read(path, data); for (const char* skip : skipList) { auto find = data.find(skip); if (find != data.end()) { data.erase(find); if (data.empty()) { return 1; } } } } boost::asio::steady_timer* timer = static_cast(context); // do a brief sleep as we tend to get a bunch of these events at // once timer->expires_after(std::chrono::seconds(2)); timer->async_wait([](const boost::system::error_code ec) { if (ec == boost::asio::error::operation_aborted) { /* another timer started*/ return; } std::cout << "New configuration detected, reloading\n."; tryRestartControlLoops(); }); return 1; } void createMatches(sdbusplus::bus::bus& bus, boost::asio::steady_timer& timer) { // this is a list because the matches can't be moved static std::list matches; const std::array interfaces = { thermalControlIface, pidConfigurationInterface, pidZoneConfigurationInterface, stepwiseConfigurationInterface}; // this list only needs to be created once if (!matches.empty()) { return; } // we restart when the configuration changes or there are new sensors for (const auto& interface : interfaces) { matches.emplace_back( bus, "type='signal',member='PropertiesChanged',arg0namespace='" + interface + "'", eventHandler, &timer); } matches.emplace_back( bus, "type='signal',member='InterfacesAdded',arg0path='/xyz/openbmc_project/" "sensors/'", eventHandler, &timer); } /** * retrieve an attribute from the pid configuration map * @param[in] base - the PID configuration map, keys are the attributes and * value is the variant associated with that attribute. * @param attributeName - the name of the attribute * @return a variant holding the value associated with a key * @throw runtime_error : attributeName is not in base */ inline DbusVariantType getPIDAttribute( const std::unordered_map& base, const std::string& attributeName) { auto search = base.find(attributeName); if (search == base.end()) { throw std::runtime_error("missing attribute " + attributeName); } return search->second; } void populatePidInfo( sdbusplus::bus::bus& bus, const std::unordered_map& base, struct conf::ControllerInfo& info, const std::string* thresholdProperty) { info.type = std::get(getPIDAttribute(base, "Class")); if (info.type == "fan") { info.setpoint = 0; } else { info.setpoint = std::visit(VariantToDoubleVisitor(), getPIDAttribute(base, "SetPoint")); } if (thresholdProperty != nullptr) { std::string interface; if (*thresholdProperty == "WarningHigh" || *thresholdProperty == "WarningLow") { interface = thresholds::warningInterface; } else { interface = thresholds::criticalInterface; } const std::string& path = sensorConfig[info.inputs.front()].readPath; DbusHelper helper(sdbusplus::bus::new_system()); std::string service = helper.getService(interface, path); double reading = 0; try { helper.getProperty(service, path, interface, *thresholdProperty, reading); } catch (const sdbusplus::exception::SdBusError& ex) { // unsupported threshold, leaving reading at 0 } info.setpoint += reading; } info.pidInfo.ts = 1.0; // currently unused info.pidInfo.proportionalCoeff = std::visit( VariantToDoubleVisitor(), getPIDAttribute(base, "PCoefficient")); info.pidInfo.integralCoeff = std::visit( VariantToDoubleVisitor(), getPIDAttribute(base, "ICoefficient")); info.pidInfo.feedFwdOffset = std::visit( VariantToDoubleVisitor(), getPIDAttribute(base, "FFOffCoefficient")); info.pidInfo.feedFwdGain = std::visit( VariantToDoubleVisitor(), getPIDAttribute(base, "FFGainCoefficient")); info.pidInfo.integralLimit.max = std::visit( VariantToDoubleVisitor(), getPIDAttribute(base, "ILimitMax")); info.pidInfo.integralLimit.min = std::visit( VariantToDoubleVisitor(), getPIDAttribute(base, "ILimitMin")); info.pidInfo.outLim.max = std::visit(VariantToDoubleVisitor(), getPIDAttribute(base, "OutLimitMax")); info.pidInfo.outLim.min = std::visit(VariantToDoubleVisitor(), getPIDAttribute(base, "OutLimitMin")); info.pidInfo.slewNeg = std::visit(VariantToDoubleVisitor(), getPIDAttribute(base, "SlewNeg")); info.pidInfo.slewPos = std::visit(VariantToDoubleVisitor(), getPIDAttribute(base, "SlewPos")); double negativeHysteresis = 0; double positiveHysteresis = 0; auto findNeg = base.find("NegativeHysteresis"); auto findPos = base.find("PositiveHysteresis"); if (findNeg != base.end()) { negativeHysteresis = std::visit(VariantToDoubleVisitor(), findNeg->second); } if (findPos != base.end()) { positiveHysteresis = std::visit(VariantToDoubleVisitor(), findPos->second); } info.pidInfo.negativeHysteresis = negativeHysteresis; info.pidInfo.positiveHysteresis = positiveHysteresis; } bool init(sdbusplus::bus::bus& bus, boost::asio::steady_timer& timer) { sensorConfig.clear(); zoneConfig.clear(); zoneDetailsConfig.clear(); createMatches(bus, timer); using DbusVariantType = std::variant, std::vector>; using ManagedObjectType = std::unordered_map< sdbusplus::message::object_path, std::unordered_map>>; auto mapper = bus.new_method_call("xyz.openbmc_project.ObjectMapper", "/xyz/openbmc_project/object_mapper", "xyz.openbmc_project.ObjectMapper", "GetSubTree"); mapper.append("/", 0, std::array{ objectManagerInterface, pidConfigurationInterface, pidZoneConfigurationInterface, stepwiseConfigurationInterface, sensorInterface, defaultPwmInterface}); std::unordered_map< std::string, std::unordered_map>> respData; try { auto resp = bus.call(mapper); resp.read(respData); } catch (sdbusplus::exception_t&) { // can't do anything without mapper call data throw std::runtime_error("ObjectMapper Call Failure"); } if (respData.empty()) { // can't do anything without mapper call data throw std::runtime_error("No configuration data available from Mapper"); } // create a map of pair of std::unordered_map> owners; // and a map of for sensors std::unordered_map sensors; for (const auto& objectPair : respData) { for (const auto& ownerPair : objectPair.second) { auto& owner = owners[ownerPair.first]; for (const std::string& interface : ownerPair.second) { if (interface == objectManagerInterface) { owner.second = objectPair.first; } if (interface == pidConfigurationInterface || interface == pidZoneConfigurationInterface || interface == stepwiseConfigurationInterface) { owner.first = true; } if (interface == sensorInterface || interface == defaultPwmInterface) { // we're not interested in pwm sensors, just pwm control if (interface == sensorInterface && objectPair.first.find("pwm") != std::string::npos) { continue; } sensors[objectPair.first] = interface; } } } } ManagedObjectType configurations; for (const auto& owner : owners) { // skip if no pid configuration (means probably a sensor) if (!owner.second.first) { continue; } auto endpoint = bus.new_method_call( owner.first.c_str(), owner.second.second.c_str(), "org.freedesktop.DBus.ObjectManager", "GetManagedObjects"); ManagedObjectType configuration; try { auto responce = bus.call(endpoint); responce.read(configuration); } catch (sdbusplus::exception_t&) { // this shouldn't happen, probably means daemon crashed throw std::runtime_error("Error getting managed objects from " + owner.first); } for (auto& pathPair : configuration) { if (pathPair.second.find(pidConfigurationInterface) != pathPair.second.end() || pathPair.second.find(pidZoneConfigurationInterface) != pathPair.second.end() || pathPair.second.find(stepwiseConfigurationInterface) != pathPair.second.end()) { configurations.emplace(pathPair); } } } // remove controllers from config that aren't in the current profile(s) std::vector selectedProfiles = getSelectedProfiles(bus); if (selectedProfiles.size()) { for (auto pathIt = configurations.begin(); pathIt != configurations.end();) { for (auto confIt = pathIt->second.begin(); confIt != pathIt->second.end();) { auto profilesFind = confIt->second.find("Profiles"); if (profilesFind == confIt->second.end()) { confIt++; continue; // if no profiles selected, apply always } auto profiles = std::get>(profilesFind->second); if (profiles.empty()) { confIt++; continue; } bool found = false; for (const std::string& profile : profiles) { if (std::find(selectedProfiles.begin(), selectedProfiles.end(), profile) != selectedProfiles.end()) { found = true; break; } } if (found) { confIt++; } else { confIt = pathIt->second.erase(confIt); } } if (pathIt->second.empty()) { pathIt = configurations.erase(pathIt); } else { pathIt++; } } } // on dbus having an index field is a bit strange, so randomly // assign index based on name property std::vector foundZones; for (const auto& configuration : configurations) { auto findZone = configuration.second.find(pidZoneConfigurationInterface); if (findZone != configuration.second.end()) { const auto& zone = findZone->second; const std::string& name = std::get(zone.at("Name")); size_t index = getZoneIndex(name, foundZones); auto& details = zoneDetailsConfig[index]; details.minThermalOutput = std::visit(VariantToDoubleVisitor(), zone.at("MinThermalOutput")); details.failsafePercent = std::visit(VariantToDoubleVisitor(), zone.at("FailSafePercent")); } auto findBase = configuration.second.find(pidConfigurationInterface); // loop through all the PID configurations and fill out a sensor config if (findBase != configuration.second.end()) { const auto& base = configuration.second.at(pidConfigurationInterface); const std::string pidName = std::get(base.at("Name")); const std::string pidClass = std::get(base.at("Class")); const std::vector& zones = std::get>(base.at("Zones")); for (const std::string& zone : zones) { size_t index = getZoneIndex(zone, foundZones); conf::PIDConf& conf = zoneConfig[index]; std::vector inputSensorNames( std::get>(base.at("Inputs"))); std::vector outputSensorNames; // assumption: all fan pids must have at least one output if (pidClass == "fan") { outputSensorNames = std::get>( getPIDAttribute(base, "Outputs")); } std::vector inputSensorInterfaces; std::vector outputSensorInterfaces; /* populate an interface list for different sensor direction * types (input,output) */ /* take the Inputs from the configuration and generate * a list of dbus descriptors (path, interface). * Mapping can be many-to-one since an element of Inputs can be * a regex */ for (const std::string& sensorName : inputSensorNames) { findSensors(sensors, sensorNameToDbusName(sensorName), inputSensorInterfaces); } for (const std::string& sensorName : outputSensorNames) { findSensors(sensors, sensorNameToDbusName(sensorName), outputSensorInterfaces); } inputSensorNames.clear(); for (const SensorInterfaceType& inputSensorInterface : inputSensorInterfaces) { const std::string& dbusInterface = inputSensorInterface.second; const std::string& inputSensorPath = inputSensorInterface.first; std::string inputSensorName = getSensorNameFromPath(inputSensorPath); auto& config = sensorConfig[inputSensorName]; inputSensorNames.push_back(inputSensorName); config.type = pidClass; config.readPath = inputSensorInterface.first; // todo: maybe un-hardcode this if we run into slower // timeouts with sensors if (config.type == "temp") { config.timeout = 0; config.ignoreDbusMinMax = true; } if (dbusInterface != sensorInterface) { /* all expected inputs in the configuration are expected * to be sensor interfaces */ throw std::runtime_error( "sensor at dbus path [" + inputSensorPath + "] has an interface [" + dbusInterface + "] that does not match the expected interface of " + sensorInterface); } } /* fan pids need to pair up tach sensors with their pwm * counterparts */ if (pidClass == "fan") { /* If a PID is a fan there should be either * (1) one output(pwm) per input(tach) * OR * (2) one putput(pwm) for all inputs(tach) * everything else indicates a bad configuration. */ bool singlePwm = false; if (outputSensorInterfaces.size() == 1) { /* one pwm, set write paths for all fan sensors to it */ singlePwm = true; } else if (inputSensorInterfaces.size() == outputSensorInterfaces.size()) { /* one to one mapping, each fan sensor gets its own pwm * control */ singlePwm = false; } else { throw std::runtime_error( "fan PID has invalid number of Outputs"); } std::string fanSensorName; std::string pwmPath; std::string pwmInterface; if (singlePwm) { /* if just a single output(pwm) is provided then use * that pwm control path for all the fan sensor write * path configs */ pwmPath = outputSensorInterfaces.at(0).first; pwmInterface = outputSensorInterfaces.at(0).second; } for (uint32_t idx = 0; idx < inputSensorInterfaces.size(); idx++) { if (!singlePwm) { pwmPath = outputSensorInterfaces.at(idx).first; pwmInterface = outputSensorInterfaces.at(idx).second; } if (defaultPwmInterface != pwmInterface) { throw std::runtime_error( "fan pwm control at dbus path [" + pwmPath + "] has an interface [" + pwmInterface + "] that does not match the expected interface " "of " + defaultPwmInterface); } const std::string& fanPath = inputSensorInterfaces.at(idx).first; fanSensorName = getSensorNameFromPath(fanPath); auto& fanConfig = sensorConfig[fanSensorName]; fanConfig.writePath = pwmPath; // todo: un-hardcode this if there are fans with // different ranges fanConfig.max = 255; fanConfig.min = 0; } } // if the sensors aren't available in the current state, don't // add them to the configuration. if (inputSensorNames.empty()) { continue; } std::string offsetType; // SetPointOffset is a threshold value to pull from the sensor // to apply an offset. For upper thresholds this means the // setpoint is usually negative. auto findSetpointOffset = base.find("SetPointOffset"); if (findSetpointOffset != base.end()) { offsetType = std::get(findSetpointOffset->second); if (std::find(thresholds::types.begin(), thresholds::types.end(), offsetType) == thresholds::types.end()) { throw std::runtime_error("Unsupported type: " + offsetType); } } if (offsetType.empty()) { struct conf::ControllerInfo& info = conf[std::get(base.at("Name"))]; info.inputs = std::move(inputSensorNames); populatePidInfo(bus, base, info, nullptr); } else { // we have to split up the inputs, as in practice t-control // values will differ, making setpoints differ for (const std::string& input : inputSensorNames) { struct conf::ControllerInfo& info = conf[input]; info.inputs.emplace_back(input); populatePidInfo(bus, base, info, &offsetType); } } } } auto findStepwise = configuration.second.find(stepwiseConfigurationInterface); if (findStepwise != configuration.second.end()) { const auto& base = findStepwise->second; const std::vector& zones = std::get>(base.at("Zones")); for (const std::string& zone : zones) { size_t index = getZoneIndex(zone, foundZones); conf::PIDConf& conf = zoneConfig[index]; std::vector inputs; std::vector sensorNames = std::get>(base.at("Inputs")); bool sensorFound = false; for (const std::string& sensorName : sensorNames) { std::vector> sensorPathIfacePairs; if (!findSensors(sensors, sensorNameToDbusName(sensorName), sensorPathIfacePairs)) { break; } for (const auto& sensorPathIfacePair : sensorPathIfacePairs) { size_t idx = sensorPathIfacePair.first.find_last_of("/") + 1; std::string shortName = sensorPathIfacePair.first.substr(idx); inputs.push_back(shortName); auto& config = sensorConfig[shortName]; config.readPath = sensorPathIfacePair.first; config.type = "temp"; config.ignoreDbusMinMax = true; // todo: maybe un-hardcode this if we run into slower // timeouts with sensors config.timeout = 0; sensorFound = true; } } if (!sensorFound) { continue; } struct conf::ControllerInfo& info = conf[std::get(base.at("Name"))]; info.inputs = std::move(inputs); info.type = "stepwise"; info.stepwiseInfo.ts = 1.0; // currently unused info.stepwiseInfo.positiveHysteresis = 0.0; info.stepwiseInfo.negativeHysteresis = 0.0; std::string subtype = std::get(base.at("Class")); info.stepwiseInfo.isCeiling = (subtype == "Ceiling"); auto findPosHyst = base.find("PositiveHysteresis"); auto findNegHyst = base.find("NegativeHysteresis"); if (findPosHyst != base.end()) { info.stepwiseInfo.positiveHysteresis = std::visit( VariantToDoubleVisitor(), findPosHyst->second); } if (findNegHyst != base.end()) { info.stepwiseInfo.negativeHysteresis = std::visit( VariantToDoubleVisitor(), findNegHyst->second); } std::vector readings = std::get>(base.at("Reading")); if (readings.size() > ec::maxStepwisePoints) { throw std::invalid_argument("Too many stepwise points."); } if (readings.empty()) { throw std::invalid_argument( "Must have one stepwise point."); } std::copy(readings.begin(), readings.end(), info.stepwiseInfo.reading); if (readings.size() < ec::maxStepwisePoints) { info.stepwiseInfo.reading[readings.size()] = std::numeric_limits::quiet_NaN(); } std::vector outputs = std::get>(base.at("Output")); if (readings.size() != outputs.size()) { throw std::invalid_argument( "Outputs size must match readings"); } std::copy(outputs.begin(), outputs.end(), info.stepwiseInfo.output); if (outputs.size() < ec::maxStepwisePoints) { info.stepwiseInfo.output[outputs.size()] = std::numeric_limits::quiet_NaN(); } } } } if constexpr (DEBUG) { debugPrint(); } if (zoneConfig.empty() || zoneDetailsConfig.empty()) { std::cerr << "No fan zones, application pausing until new configuration\n"; return false; } return true; } } // namespace dbus_configuration } // namespace pid_control