#include "sd_event_loop.hpp" #include "main.hpp" #include "message_handler.hpp" #include #include #include #include #include #include #include namespace eventloop { using namespace phosphor::logging; static int udp623Handler(sd_event_source* es, int fd, uint32_t revents, void* userdata) { std::shared_ptr channelPtr; struct timeval timeout; timeout.tv_sec = SELECT_CALL_TIMEOUT; timeout.tv_usec = 0; try { channelPtr.reset(new udpsocket::Channel(fd, timeout)); // Initialize the Message Handler with the socket channel message::Handler msgHandler(channelPtr); // Read the incoming IPMI packet std::shared_ptr inMessage(msgHandler.receive()); if (inMessage == nullptr) { return 0; } // Execute the Command auto outMessage = msgHandler.executeCommand(inMessage); if (outMessage == nullptr) { return 0; } // Send the response IPMI Message msgHandler.send(outMessage); } catch (std::exception& e) { log("Executing the IPMI message failed"); log(e.what()); } return 0; } static int consoleInputHandler(sd_event_source* es, int fd, uint32_t revents, void* userdata) { try { int readSize = 0; if (ioctl(fd, FIONREAD, &readSize) < 0) { log("ioctl failed for FIONREAD:", entry("ERRNO=%d", errno)); return 0; } std::vector buffer(readSize); auto bufferSize = buffer.size(); ssize_t readDataLen = 0; readDataLen = read(fd, buffer.data(), bufferSize); // Update the Console buffer with data read from the socket if (readDataLen > 0) { buffer.resize(readDataLen); std::get(singletonPool).dataBuffer.write(buffer); } else if (readDataLen == 0) { log("Connection Closed for host console socket"); } else if (readDataLen < 0) // Error { log("Reading from host console socket failed:", entry("ERRNO=%d", errno)); } } catch (std::exception& e) { log(e.what()); } return 0; } static int charAccTimerHandler(sd_event_source* s, uint64_t usec, void* userdata) { auto bufferSize = std::get(singletonPool).dataBuffer.size(); try { // The instance is hardcoded to 1, in the case of supporting multiple // payload instances we would need to populate it from userdata uint8_t instance = 1; if (bufferSize > 0) { auto& context = std::get(singletonPool).getContext(instance); int rc = context.sendOutboundPayload(); if (rc == 0) { return 0; } } std::get(singletonPool) .switchTimer(instance, Timers::ACCUMULATE, true); } catch (std::exception& e) { log(e.what()); } return 0; } static int retryTimerHandler(sd_event_source* s, uint64_t usec, void* userdata) { try { // The instance is hardcoded to 1, in the case of supporting multiple // payload instances we would need to populate it from userdata uint8_t instance = 1; auto& context = std::get(singletonPool).getContext(instance); if (context.retryCounter) { --context.retryCounter; std::get(singletonPool) .switchTimer(instance, Timers::RETRY, true); context.resendPayload(sol::Context::noClear); } else { context.retryCounter = context.maxRetryCount; context.resendPayload(sol::Context::clear); std::get(singletonPool) .switchTimer(instance, Timers::RETRY, false); std::get(singletonPool) .switchTimer(instance, Timers::ACCUMULATE, true); } } catch (std::exception& e) { log(e.what()); } return 0; } int EventLoop::startEventLoop() { int fd = -1; int r = 0; int listen_fd; sigset_t ss; sd_event_source* source = nullptr; sdbusplus::asio::sd_event_wrapper sdEvents(*io); event = sdEvents.get(); if (sigemptyset(&ss) < 0 || sigaddset(&ss, SIGTERM) < 0 || sigaddset(&ss, SIGINT) < 0) { r = -errno; return EXIT_FAILURE; } /* Block SIGTERM first, so that the event loop can handle it */ if (sigprocmask(SIG_BLOCK, &ss, nullptr) < 0) { r = -errno; return EXIT_FAILURE; } /* Let's make use of the default handler and "floating" reference features * of sd_event_add_signal() */ r = sd_event_add_signal(event, nullptr, SIGTERM, nullptr, nullptr); if (r < 0) { return EXIT_FAILURE; } r = sd_event_add_signal(event, nullptr, SIGINT, nullptr, nullptr); if (r < 0) { return EXIT_FAILURE; } // Create our own socket if SysD did not supply one. listen_fd = sd_listen_fds(0); if (listen_fd == 1) { fd = SD_LISTEN_FDS_START; } else if (listen_fd > 1) { log("Too many file descriptors received"); return 1; } else { struct sockaddr_in address; if ((fd = socket(AF_INET, SOCK_DGRAM, 0)) == 0) { r = -errno; log("Unable to manually open socket"); return EXIT_FAILURE; } address.sin_family = AF_INET; address.sin_addr.s_addr = INADDR_ANY; address.sin_port = htons(IPMI_STD_PORT); if (bind(fd, (struct sockaddr*)&address, sizeof(address)) < 0) { r = -errno; log("Unable to bind socket"); close(fd); return EXIT_FAILURE; } } r = sd_event_add_io(event, &source, fd, EPOLLIN, udp623Handler, nullptr); if (r < 0) { close(fd); return EXIT_FAILURE; } udpIPMI.reset(source); source = nullptr; io->run(); return EXIT_SUCCESS; } void EventLoop::startHostConsole(const sol::CustomFD& fd) { int rc = 0; if ((fd() == -1) || hostConsole.get()) { throw std::runtime_error("Console descriptor already added"); } sd_event_source* source = nullptr; // Add the fd to the event loop for EPOLLIN rc = sd_event_add_io(event, &source, fd(), EPOLLIN, consoleInputHandler, nullptr); if (rc < 0) { throw std::runtime_error("Failed to add socket descriptor"); } hostConsole.reset(source); source = nullptr; } void EventLoop::stopHostConsole() { if (hostConsole.get()) { // Disable the host console payload int rc = sd_event_source_set_enabled(hostConsole.get(), SD_EVENT_OFF); if (rc < 0) { log("Failed to disable the host console socket", entry("RC=%d", rc)); } hostConsole.reset(); } } void EventLoop::startSOLPayloadInstance(uint8_t payloadInst, IntervalType accumulateInterval, IntervalType retryInterval) { auto instance = payloadInst; sd_event_source* accTimerSource = nullptr; sd_event_source* retryTimerSource = nullptr; int rc = 0; uint64_t currentTime = 0; rc = sd_event_now(event, CLOCK_MONOTONIC, ¤tTime); if (rc < 0) { log("Failed to get the current timestamp", entry("RC=%d", rc)); throw std::runtime_error("Failed to get current timestamp"); } // Create character accumulate timer rc = sd_event_add_time(event, &accTimerSource, CLOCK_MONOTONIC, currentTime + accumulateInterval.count(), 0, charAccTimerHandler, static_cast(&instance)); if (rc < 0) { log("Failed to setup the accumulate timer", entry("RC=%d", rc)); throw std::runtime_error("Failed to setup accumulate timer"); } // Create retry interval timer and add to the event loop rc = sd_event_add_time(event, &retryTimerSource, CLOCK_MONOTONIC, currentTime + retryInterval.count(), 0, retryTimerHandler, static_cast(&instance)); if (rc < 0) { log("Failed to setup the retry timer", entry("RC=%d", rc)); throw std::runtime_error("Failed to setup retry timer"); } // Enable the Character Accumulate Timer rc = sd_event_source_set_enabled(accTimerSource, SD_EVENT_ONESHOT); if (rc < 0) { log("Failed to enable the accumulate timer", entry("RC=%d", rc)); throw std::runtime_error("Failed to enable accumulate timer"); } // Disable the Retry Interval Timer rc = sd_event_source_set_enabled(retryTimerSource, SD_EVENT_OFF); if (rc < 0) { log("Failed to disable the retry timer", entry("RC=%d", rc)); throw std::runtime_error("Failed to disable retry timer"); } EventSource accEventSource(accTimerSource); EventSource retryEventSource(retryTimerSource); accTimerSource = nullptr; retryTimerSource = nullptr; TimerMap timer; timer.emplace(Timers::ACCUMULATE, std::make_tuple(std::move(accEventSource), accumulateInterval)); timer.emplace(Timers::RETRY, std::make_tuple(std::move(retryEventSource), retryInterval)); payloadInfo.emplace(instance, std::move(timer)); } void EventLoop::stopSOLPayloadInstance(uint8_t payloadInst) { auto iter = payloadInfo.find(payloadInst); if (iter == payloadInfo.end()) { log("SOL Payload instance not found", entry("PAYLOADINST=%d", payloadInst)); throw std::runtime_error("SOL payload instance not found"); } int rc = 0; /* Destroy the character accumulate timer event source */ rc = sd_event_source_set_enabled( (std::get<0>(iter->second.at(Timers::ACCUMULATE))).get(), SD_EVENT_OFF); if (rc < 0) { log("Failed to disable the character accumulate timer", entry("RC=%d", rc)); payloadInfo.erase(payloadInst); throw std::runtime_error("Failed to disable accumulate timer"); } /* Destroy the retry interval timer event source */ rc = sd_event_source_set_enabled( (std::get<0>(iter->second.at(Timers::RETRY))).get(), SD_EVENT_OFF); if (rc < 0) { log("Failed to disable the retry timer", entry("RC=%d", rc)); payloadInfo.erase(payloadInst); throw std::runtime_error("Failed to disable retry timer"); } payloadInfo.erase(payloadInst); } void EventLoop::switchTimer(uint8_t payloadInst, Timers type, bool status) { auto iter = payloadInfo.find(payloadInst); if (iter == payloadInfo.end()) { log("SOL Payload instance not found", entry("PAYLOADINST=%d", payloadInst)); throw std::runtime_error("SOL Payload instance not found"); } int rc = 0; auto source = (std::get<0>(iter->second.at(type))).get(); auto interval = std::get<1>(iter->second.at(type)); // Turn OFF the timer if (!status) { rc = sd_event_source_set_enabled(source, SD_EVENT_OFF); if (rc < 0) { log("Failed to disable the timer", entry("RC=%d", rc)); throw std::runtime_error("Failed to disable timer"); } return; } // Turn ON the timer uint64_t currentTime = 0; rc = sd_event_now(event, CLOCK_MONOTONIC, ¤tTime); if (rc < 0) { log("Failed to get the current timestamp", entry("RC=%d", rc)); throw std::runtime_error("Failed to get current timestamp"); } rc = sd_event_source_set_time(source, currentTime + interval.count()); if (rc < 0) { log("sd_event_source_set_time function failed", entry("RC=%d", rc)); throw std::runtime_error("sd_event_source_set_time function failed"); } rc = sd_event_source_set_enabled(source, SD_EVENT_ONESHOT); if (rc < 0) { log("Failed to enable the timer", entry("RC=%d", rc)); throw std::runtime_error("Failed to enable timer"); } } } // namespace eventloop