/** * Copyright © 2019 IBM Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "src.hpp" #include "device_callouts.hpp" #include "json_utils.hpp" #include "paths.hpp" #include "pel_values.hpp" #ifdef PELTOOL #include #include #include #endif #include #include namespace openpower { namespace pels { namespace pv = openpower::pels::pel_values; namespace rg = openpower::pels::message; using namespace std::string_literals; constexpr size_t ccinSize = 4; #ifdef PELTOOL using orderedJSON = nlohmann::ordered_json; void pyDecRef(PyObject* pyObj) { Py_XDECREF(pyObj); } /** * @brief Returns a JSON string to append to SRC section. * * The returning string will contain a JSON object, but without * the outer {}. If the input JSON isn't a JSON object (dict), then * one will be created with the input added to a 'SRC Details' key. * * @param[in] json - The JSON to convert to a string * * @return std::string - The JSON string */ std::string prettyJSON(const orderedJSON& json) { orderedJSON output; if (!json.is_object()) { output["SRC Details"] = json; } else { for (const auto& [key, value] : json.items()) { output["SRC Details"][key] = value; } } // Let nlohmann do the pretty printing. std::stringstream stream; stream << std::setw(4) << output; auto jsonString = stream.str(); // Now it looks like: // { // "Key": "Value", // ... // } // Replace the { and the following newline, and the } and its // preceeding newline. jsonString.erase(0, 2); auto pos = jsonString.find_last_of('}'); jsonString.erase(pos - 1); return jsonString; } /** * @brief Call Python modules to parse the data into a JSON string * * The module to call is based on the Creator Subsystem ID under the namespace * "srcparsers". For example: "srcparsers.xsrc.xsrc" where "x" is the Creator * Subsystem ID in ASCII lowercase. * * All modules must provide the following: * Function: parseSRCToJson * Argument list: * 1. (str) ASCII string (Hex Word 1) * 2. (str) Hex Word 2 * 3. (str) Hex Word 3 * 4. (str) Hex Word 4 * 5. (str) Hex Word 5 * 6. (str) Hex Word 6 * 7. (str) Hex Word 7 * 8. (str) Hex Word 8 * 9. (str) Hex Word 9 *-Return data: * 1. (str) JSON string * * @param[in] hexwords - Vector of strings of Hexwords 1-9 * @param[in] creatorID - The creatorID from the Private Header section * @return std::optional - The JSON string if it could be created, * else std::nullopt */ std::optional getPythonJSON(std::vector& hexwords, uint8_t creatorID) { PyObject *pName, *pModule, *eType, *eValue, *eTraceback; std::string pErrStr; std::string module = getNumberString("%c", tolower(creatorID)) + "src"; pName = PyUnicode_FromString( std::string("srcparsers." + module + "." + module).c_str()); std::unique_ptr modNamePtr(pName, &pyDecRef); pModule = PyImport_Import(pName); if (pModule == NULL) { pErrStr = "No error string found"; PyErr_Fetch(&eType, &eValue, &eTraceback); if (eType) { Py_XDECREF(eType); } if (eTraceback) { Py_XDECREF(eTraceback); } if (eValue) { PyObject* pStr = PyObject_Str(eValue); Py_XDECREF(eValue); if (pStr) { pErrStr = PyUnicode_AsUTF8(pStr); Py_XDECREF(pStr); } } } else { std::unique_ptr modPtr( pModule, &pyDecRef); std::string funcToCall = "parseSRCToJson"; PyObject* pKey = PyUnicode_FromString(funcToCall.c_str()); std::unique_ptr keyPtr(pKey, &pyDecRef); PyObject* pDict = PyModule_GetDict(pModule); Py_INCREF(pDict); if (!PyDict_Contains(pDict, pKey)) { Py_DECREF(pDict); lg2::error( "Python module error. Function missing: {FUNC}, SRC = {SRC}, module = {MODULE}", "FUNC", funcToCall, "SRC", hexwords.front(), "MODULE", module); return std::nullopt; } PyObject* pFunc = PyDict_GetItemString(pDict, funcToCall.c_str()); Py_DECREF(pDict); Py_INCREF(pFunc); if (PyCallable_Check(pFunc)) { PyObject* pArgs = PyTuple_New(9); std::unique_ptr argPtr( pArgs, &pyDecRef); for (size_t i = 0; i < 9; i++) { std::string arg{"00000000"}; if (i < hexwords.size()) { arg = hexwords[i]; } PyTuple_SetItem(pArgs, i, Py_BuildValue("s", arg.c_str())); } PyObject* pResult = PyObject_CallObject(pFunc, pArgs); Py_DECREF(pFunc); if (pResult) { std::unique_ptr resPtr( pResult, &pyDecRef); PyObject* pBytes = PyUnicode_AsEncodedString(pResult, "utf-8", "~E~"); std::unique_ptr pyBytePtr( pBytes, &pyDecRef); const char* output = PyBytes_AS_STRING(pBytes); try { orderedJSON json = orderedJSON::parse(output); if ((json.is_object() && !json.empty()) || (json.is_array() && json.size() > 0) || (json.is_string() && json != "")) { return prettyJSON(json); } } catch (const std::exception& e) { lg2::error( "Bad JSON from parser. Error = {ERROR}, SRC = {SRC}, module = {MODULE}", "ERROR", e, "SRC", hexwords.front(), "MODULE", module); return std::nullopt; } } else { pErrStr = "No error string found"; PyErr_Fetch(&eType, &eValue, &eTraceback); if (eType) { Py_XDECREF(eType); } if (eTraceback) { Py_XDECREF(eTraceback); } if (eValue) { PyObject* pStr = PyObject_Str(eValue); Py_XDECREF(eValue); if (pStr) { pErrStr = PyUnicode_AsUTF8(pStr); Py_XDECREF(pStr); } } } } } if (!pErrStr.empty()) { lg2::debug("Python exception thrown by parser. Error = {ERROR}, " "SRC = {SRC}, module = {MODULE}", "ERROR", pErrStr, "SRC", hexwords.front(), "MODULE", module); } return std::nullopt; } #endif void SRC::unflatten(Stream& stream) { stream >> _header >> _version >> _flags >> _reserved1B >> _wordCount >> _reserved2B >> _size; for (auto& word : _hexData) { stream >> word; } _asciiString = std::make_unique(stream); if (hasAdditionalSections()) { // The callouts section is currently the only extra subsection type _callouts = std::make_unique(stream); } } void SRC::flatten(Stream& stream) const { stream << _header << _version << _flags << _reserved1B << _wordCount << _reserved2B << _size; for (auto& word : _hexData) { stream << word; } _asciiString->flatten(stream); if (_callouts) { _callouts->flatten(stream); } } SRC::SRC(Stream& pel) { try { unflatten(pel); validate(); } catch (const std::exception& e) { lg2::error("Cannot unflatten SRC, error = {ERROR}", "ERROR", e); _valid = false; } } SRC::SRC(const message::Entry& regEntry, const AdditionalData& additionalData, const nlohmann::json& jsonCallouts, const DataInterfaceBase& dataIface) { _header.id = static_cast(SectionID::primarySRC); _header.version = srcSectionVersion; _header.subType = srcSectionSubtype; _header.componentID = regEntry.componentID; _version = srcVersion; _flags = 0; _reserved1B = 0; _wordCount = numSRCHexDataWords + 1; _reserved2B = 0; // There are multiple fields encoded in the hex data words. std::for_each(_hexData.begin(), _hexData.end(), [](auto& word) { word = 0; }); // Hex Word 2 Nibbles: // MIGVEPFF // M: Partition dump status = 0 // I: System boot state = TODO // G: Partition Boot type = 0 // V: BMC dump status // E: Platform boot mode = 0 (side = temporary, speed = fast) // P: Platform dump status // FF: SRC format, set below setProgressCode(dataIface); setBMCFormat(); setBMCPosition(); setMotherboardCCIN(dataIface); if (regEntry.src.checkstopFlag) { setErrorStatusFlag(ErrorStatusFlags::hwCheckstop); } if (regEntry.src.deconfigFlag) { setErrorStatusFlag(ErrorStatusFlags::deconfigured); } // Fill in the last 4 words from the AdditionalData property contents. setUserDefinedHexWords(regEntry, additionalData); _asciiString = std::make_unique(regEntry); // Check for additional data - PEL_SUBSYSTEM auto ss = additionalData.getValue("PEL_SUBSYSTEM"); if (ss) { auto eventSubsystem = std::stoul(*ss, NULL, 16); std::string subsystem = pv::getValue(eventSubsystem, pel_values::subsystemValues); if (subsystem == "invalid") { lg2::warning("SRC: Invalid SubSystem value: {VAL}", "VAL", lg2::hex, eventSubsystem); } else { _asciiString->setByte(2, eventSubsystem); } } addCallouts(regEntry, additionalData, jsonCallouts, dataIface); _size = baseSRCSize; _size += _callouts ? _callouts->flattenedSize() : 0; _header.size = Section::flattenedSize() + _size; _valid = true; } void SRC::setUserDefinedHexWords(const message::Entry& regEntry, const AdditionalData& ad) { if (!regEntry.src.hexwordADFields) { return; } // Save the AdditionalData value corresponding to the first element of // adName tuple into _hexData[wordNum]. for (const auto& [wordNum, adName] : *regEntry.src.hexwordADFields) { // Can only set words 6 - 9 if (!isUserDefinedWord(wordNum)) { std::string msg = "SRC user data word out of range: " + std::to_string(wordNum); addDebugData(msg); continue; } auto value = ad.getValue(std::get<0>(adName)); if (value) { _hexData[getWordIndexFromWordNum(wordNum)] = std::strtoul(value.value().c_str(), nullptr, 0); } else { std::string msg = "Source for user data SRC word not found: " + std::get<0>(adName); addDebugData(msg); } } } void SRC::setMotherboardCCIN(const DataInterfaceBase& dataIface) { uint32_t ccin = 0; auto ccinString = dataIface.getMotherboardCCIN(); try { if (ccinString.size() == ccinSize) { ccin = std::stoi(ccinString, 0, 16); } } catch (const std::exception& e) { lg2::warning("Could not convert motherboard CCIN {CCIN} to a number", "CCIN", ccinString); return; } // Set the first 2 bytes _hexData[1] |= ccin << 16; } void SRC::validate() { bool failed = false; if ((header().id != static_cast(SectionID::primarySRC)) && (header().id != static_cast(SectionID::secondarySRC))) { lg2::error("Invalid SRC section ID: {ID}", "ID", lg2::hex, header().id); failed = true; } // Check the version in the SRC, not in the header if (_version != srcVersion) { lg2::error("Invalid SRC version: {VERSION}", "VERSION", lg2::hex, header().version); failed = true; } _valid = failed ? false : true; } bool SRC::isBMCSRC() const { auto as = asciiString(); if (as.length() >= 2) { uint8_t errorType = strtoul(as.substr(0, 2).c_str(), nullptr, 16); return (errorType == static_cast(SRCType::bmcError) || errorType == static_cast(SRCType::powerError)); } return false; } bool SRC::isHostbootSRC() const { auto as = asciiString(); if (as.length() >= 2) { uint8_t errorType = strtoul(as.substr(0, 2).c_str(), nullptr, 16); return errorType == static_cast(SRCType::hostbootError); } return false; } std::optional SRC::getErrorDetails( message::Registry& registry, DetailLevel type, bool toCache) const { const std::string jsonIndent(indentLevel, 0x20); std::string errorOut; if (isBMCSRC()) { auto entry = registry.lookup("0x" + asciiString().substr(4, 4), rg::LookupType::reasonCode, toCache); if (entry) { errorOut.append(jsonIndent + "\"Error Details\": {\n"); auto errorMsg = getErrorMessage(*entry); if (errorMsg) { if (type == DetailLevel::message) { return errorMsg.value(); } else { jsonInsert(errorOut, "Message", errorMsg.value(), 2); } } if (entry->src.hexwordADFields) { std::map> adFields = entry->src.hexwordADFields.value(); for (const auto& hexwordMap : adFields) { auto srcValue = getNumberString( "0x%X", _hexData[getWordIndexFromWordNum(hexwordMap.first)]); auto srcKey = std::get<0>(hexwordMap.second); auto srcDesc = std::get<1>(hexwordMap.second); // Only include this hex word in the error details if the // description exists. if (!srcDesc.empty()) { std::vector valueDescr; valueDescr.push_back(srcValue); valueDescr.push_back(srcDesc); jsonInsertArray(errorOut, srcKey, valueDescr, 2); } } } errorOut.erase(errorOut.size() - 2); errorOut.append("\n"); errorOut.append(jsonIndent + "},\n"); return errorOut; } } return std::nullopt; } std::optional SRC::getErrorMessage(const message::Entry& regEntry) const { try { if (regEntry.doc.messageArgSources) { std::vector argSourceVals; std::string message; const auto& argValues = regEntry.doc.messageArgSources.value(); for (size_t i = 0; i < argValues.size(); ++i) { argSourceVals.push_back(_hexData[getWordIndexFromWordNum( argValues[i].back() - '0')]); } auto it = std::begin(regEntry.doc.message); auto it_end = std::end(regEntry.doc.message); while (it != it_end) { if (*it == '%') { ++it; size_t wordIndex = *it - '0'; if (isdigit(*it) && wordIndex >= 1 && static_cast(wordIndex) <= argSourceVals.size()) { message.append(getNumberString( "0x%08X", argSourceVals[wordIndex - 1])); } else { message.append("%" + std::string(1, *it)); } } else { message.push_back(*it); } ++it; } return message; } else { return regEntry.doc.message; } } catch (const std::exception& e) { lg2::error( "Cannot get error message from registry entry, error = {ERROR}", "ERROR", e); } return std::nullopt; } std::optional SRC::getCallouts() const { if (!_callouts) { return std::nullopt; } std::string printOut; const std::string jsonIndent(indentLevel, 0x20); const auto& callout = _callouts->callouts(); const auto& compDescrp = pv::failingComponentType; printOut.append(jsonIndent + "\"Callout Section\": {\n"); jsonInsert(printOut, "Callout Count", std::to_string(callout.size()), 2); printOut.append(jsonIndent + jsonIndent + "\"Callouts\": ["); for (auto& entry : callout) { printOut.append("{\n"); if (entry->fruIdentity()) { jsonInsert( printOut, "FRU Type", compDescrp.at(entry->fruIdentity()->failingComponentType()), 3); jsonInsert(printOut, "Priority", pv::getValue(entry->priority(), pel_values::calloutPriorityValues), 3); if (!entry->locationCode().empty()) { jsonInsert(printOut, "Location Code", entry->locationCode(), 3); } if (entry->fruIdentity()->getPN().has_value()) { jsonInsert(printOut, "Part Number", entry->fruIdentity()->getPN().value(), 3); } if (entry->fruIdentity()->getMaintProc().has_value()) { jsonInsert(printOut, "Procedure", entry->fruIdentity()->getMaintProc().value(), 3); if (pv::procedureDesc.find( entry->fruIdentity()->getMaintProc().value()) != pv::procedureDesc.end()) { jsonInsert( printOut, "Description", pv::procedureDesc.at( entry->fruIdentity()->getMaintProc().value()), 3); } } if (entry->fruIdentity()->getCCIN().has_value()) { jsonInsert(printOut, "CCIN", entry->fruIdentity()->getCCIN().value(), 3); } if (entry->fruIdentity()->getSN().has_value()) { jsonInsert(printOut, "Serial Number", entry->fruIdentity()->getSN().value(), 3); } } if (entry->pceIdentity()) { const auto& pceIdentMtms = entry->pceIdentity()->mtms(); if (!pceIdentMtms.machineTypeAndModel().empty()) { jsonInsert(printOut, "PCE MTMS", pceIdentMtms.machineTypeAndModel() + "_" + pceIdentMtms.machineSerialNumber(), 3); } if (!entry->pceIdentity()->enclosureName().empty()) { jsonInsert(printOut, "PCE Name", entry->pceIdentity()->enclosureName(), 3); } } if (entry->mru()) { const auto& mruCallouts = entry->mru()->mrus(); std::string mruId; for (auto& element : mruCallouts) { if (!mruId.empty()) { mruId.append(", " + getNumberString("%08X", element.id)); } else { mruId.append(getNumberString("%08X", element.id)); } } jsonInsert(printOut, "MRU Id", mruId, 3); } printOut.erase(printOut.size() - 2); printOut.append("\n" + jsonIndent + jsonIndent + "}, "); }; printOut.erase(printOut.size() - 2); printOut.append("]\n" + jsonIndent + "}"); return printOut; } std::optional SRC::getJSON(message::Registry& registry, const std::vector& plugins [[maybe_unused]], uint8_t creatorID) const { std::string ps; std::vector hexwords; jsonInsert(ps, pv::sectionVer, getNumberString("%d", _header.version), 1); jsonInsert(ps, pv::subSection, getNumberString("%d", _header.subType), 1); jsonInsert(ps, pv::createdBy, getComponentName(_header.componentID, creatorID), 1); jsonInsert(ps, "SRC Version", getNumberString("0x%02X", _version), 1); jsonInsert(ps, "SRC Format", getNumberString("0x%02X", _hexData[0] & 0xFF), 1); jsonInsert(ps, "Virtual Progress SRC", pv::boolString.at(_flags & virtualProgressSRC), 1); jsonInsert(ps, "I5/OS Service Event Bit", pv::boolString.at(_flags & i5OSServiceEventBit), 1); jsonInsert(ps, "Hypervisor Dump Initiated", pv::boolString.at(_flags & hypDumpInit), 1); if (isBMCSRC()) { std::string ccinString; uint32_t ccin = _hexData[1] >> 16; if (ccin) { ccinString = getNumberString("%04X", ccin); } // The PEL spec calls it a backplane, so call it that here. jsonInsert(ps, "Backplane CCIN", ccinString, 1); jsonInsert(ps, "Terminate FW Error", pv::boolString.at( _hexData[3] & static_cast(ErrorStatusFlags::terminateFwErr)), 1); } if (isBMCSRC() || isHostbootSRC()) { jsonInsert(ps, "Deconfigured", pv::boolString.at( _hexData[3] & static_cast(ErrorStatusFlags::deconfigured)), 1); jsonInsert( ps, "Guarded", pv::boolString.at( _hexData[3] & static_cast(ErrorStatusFlags::guarded)), 1); } auto errorDetails = getErrorDetails(registry, DetailLevel::json, true); if (errorDetails) { ps.append(errorDetails.value()); } jsonInsert(ps, "Valid Word Count", getNumberString("0x%02X", _wordCount), 1); std::string refcode = asciiString(); hexwords.push_back(refcode); std::string extRefcode; size_t pos = refcode.find(0x20); if (pos != std::string::npos) { size_t nextPos = refcode.find_first_not_of(0x20, pos); if (nextPos != std::string::npos) { extRefcode = trimEnd(refcode.substr(nextPos)); } refcode.erase(pos); } jsonInsert(ps, "Reference Code", refcode, 1); if (!extRefcode.empty()) { jsonInsert(ps, "Extended Reference Code", extRefcode, 1); } for (size_t i = 2; i <= _wordCount; i++) { std::string tmpWord = getNumberString("%08X", _hexData[getWordIndexFromWordNum(i)]); jsonInsert(ps, "Hex Word " + std::to_string(i), tmpWord, 1); hexwords.push_back(tmpWord); } auto calloutJson = getCallouts(); if (calloutJson) { ps.append(calloutJson.value()); ps.append(",\n"); } std::string subsystem = getNumberString("%c", tolower(creatorID)); bool srcDetailExists = false; #ifdef PELTOOL if (std::find(plugins.begin(), plugins.end(), subsystem + "src") != plugins.end()) { auto pyJson = getPythonJSON(hexwords, creatorID); if (pyJson) { ps.append(pyJson.value()); srcDetailExists = true; } } #endif if (!srcDetailExists) { ps.erase(ps.size() - 2); } return ps; } void SRC::addCallouts(const message::Entry& regEntry, const AdditionalData& additionalData, const nlohmann::json& jsonCallouts, const DataInterfaceBase& dataIface) { auto registryCallouts = getRegistryCallouts(regEntry, additionalData, dataIface); auto item = additionalData.getValue("CALLOUT_INVENTORY_PATH"); auto priority = additionalData.getValue("CALLOUT_PRIORITY"); std::optional calloutPriority; // Only H, M or L priority values. if (priority && !(*priority).empty()) { uint8_t p = (*priority)[0]; if (p == 'H' || p == 'M' || p == 'L') { calloutPriority = static_cast(p); } } // If the first registry callout says to use the passed in inventory // path to get the location code for a symbolic FRU callout with a // trusted location code, then do not add the inventory path as a // normal FRU callout. bool useInvForSymbolicFRULocCode = !registryCallouts.empty() && registryCallouts[0].useInventoryLocCode && !registryCallouts[0].symbolicFRUTrusted.empty(); if (item && !useInvForSymbolicFRULocCode) { addInventoryCallout(*item, calloutPriority, std::nullopt, dataIface); } addDevicePathCallouts(additionalData, dataIface); addRegistryCallouts(registryCallouts, dataIface, (useInvForSymbolicFRULocCode) ? item : std::nullopt); if (!jsonCallouts.empty()) { addJSONCallouts(jsonCallouts, dataIface); } } void SRC::addInventoryCallout(const std::string& inventoryPath, const std::optional& priority, const std::optional& locationCode, const DataInterfaceBase& dataIface, const std::vector& mrus) { std::string locCode; std::string fn; std::string ccin; std::string sn; std::unique_ptr callout; try { // Use the passed in location code if there otherwise look it up if (locationCode) { locCode = *locationCode; } else { locCode = dataIface.getLocationCode(inventoryPath); } try { dataIface.getHWCalloutFields(inventoryPath, fn, ccin, sn); CalloutPriority p = priority ? priority.value() : CalloutPriority::high; callout = std::make_unique(p, locCode, fn, ccin, sn, mrus); } catch (const sdbusplus::exception_t& e) { std::string msg = "No VPD found for " + inventoryPath + ": " + e.what(); addDebugData(msg); // Just create the callout with empty FRU fields callout = std::make_unique( CalloutPriority::high, locCode, fn, ccin, sn, mrus); } } catch (const sdbusplus::exception_t& e) { std::string msg = "Could not get location code for " + inventoryPath + ": " + e.what(); addDebugData(msg); // Don't add a callout in this case, because: // 1) With how the inventory is primed, there is no case where // a location code is expected to be missing. This implies // the caller is passing in something invalid. // 2) The addDebugData call above will put the passed in path into // a user data section that can be seen by development for debug. // 3) Even if we wanted to do a 'no_vpd_for_fru' sort of maint. // procedure, we don't have a good way to indicate to the user // anything about the intended callout (they won't see user data). // 4) Creating a new standalone event log for this problem isn't // possible from inside a PEL section. } if (callout) { createCalloutsObject(); _callouts->addCallout(std::move(callout)); } } std::vector SRC::getRegistryCallouts( const message::Entry& regEntry, const AdditionalData& additionalData, const DataInterfaceBase& dataIface) { std::vector registryCallouts; if (regEntry.callouts) { std::vector systemNames; try { systemNames = dataIface.getSystemNames(); } catch (const std::exception& e) { // Compatible interface not available yet } try { registryCallouts = message::Registry::getCallouts( regEntry.callouts.value(), systemNames, additionalData); } catch (const std::exception& e) { addDebugData(std::format( "Error parsing PEL message registry callout JSON: {}", e.what())); } } return registryCallouts; } void SRC::addRegistryCallouts( const std::vector& callouts, const DataInterfaceBase& dataIface, std::optional trustedSymbolicFRUInvPath) { try { for (const auto& callout : callouts) { addRegistryCallout(callout, dataIface, trustedSymbolicFRUInvPath); // Only the first callout gets the inventory path if (trustedSymbolicFRUInvPath) { trustedSymbolicFRUInvPath = std::nullopt; } } } catch (const std::exception& e) { std::string msg = "Error parsing PEL message registry callout JSON: "s + e.what(); addDebugData(msg); } } void SRC::addRegistryCallout( const message::RegistryCallout& regCallout, const DataInterfaceBase& dataIface, const std::optional& trustedSymbolicFRUInvPath) { std::unique_ptr callout; auto locCode = regCallout.locCode; if (!locCode.empty()) { try { locCode = dataIface.expandLocationCode(locCode, 0); } catch (const std::exception& e) { auto msg = "Unable to expand location code " + locCode + ": " + e.what(); addDebugData(msg); return; } } // Via the PEL values table, get the priority enum. // The schema will have validated the priority was a valid value. auto priorityIt = pv::findByName(regCallout.priority, pv::calloutPriorityValues); assert(priorityIt != pv::calloutPriorityValues.end()); auto priority = static_cast(std::get(*priorityIt)); if (!regCallout.procedure.empty()) { // Procedure callout callout = std::make_unique(priority, regCallout.procedure, src::CalloutValueType::raw); } else if (!regCallout.symbolicFRU.empty()) { // Symbolic FRU callout callout = std::make_unique( priority, regCallout.symbolicFRU, locCode, false); } else if (!regCallout.symbolicFRUTrusted.empty()) { // Symbolic FRU with trusted location code callout // Use the location code from the inventory path if there is one. if (trustedSymbolicFRUInvPath) { try { locCode = dataIface.getLocationCode(*trustedSymbolicFRUInvPath); } catch (const std::exception& e) { addDebugData( std::format("Could not get location code for {}: {}", *trustedSymbolicFRUInvPath, e.what())); locCode.clear(); } } // The registry wants it to be trusted, but that requires a valid // location code for it to actually be. callout = std::make_unique( priority, regCallout.symbolicFRUTrusted, locCode, !locCode.empty()); } else { // A hardware callout std::vector inventoryPaths; try { // Get the inventory item from the unexpanded location code inventoryPaths = dataIface.getInventoryFromLocCode(regCallout.locCode, 0, false); } catch (const std::exception& e) { std::string msg = "Unable to get inventory path from location code: " + locCode + ": " + e.what(); addDebugData(msg); return; } // Just use first path returned since they all point to the same FRU. addInventoryCallout(inventoryPaths[0], priority, locCode, dataIface); } if (callout) { createCalloutsObject(); _callouts->addCallout(std::move(callout)); } } void SRC::addDevicePathCallouts(const AdditionalData& additionalData, const DataInterfaceBase& dataIface) { std::vector callouts; auto i2cBus = additionalData.getValue("CALLOUT_IIC_BUS"); auto i2cAddr = additionalData.getValue("CALLOUT_IIC_ADDR"); auto devPath = additionalData.getValue("CALLOUT_DEVICE_PATH"); // A device callout contains either: // * CALLOUT_ERRNO, CALLOUT_DEVICE_PATH // * CALLOUT_ERRNO, CALLOUT_IIC_BUS, CALLOUT_IIC_ADDR // We don't care about the errno. if (devPath) { try { callouts = device_callouts::getCallouts(*devPath, dataIface.getSystemNames()); } catch (const std::exception& e) { addDebugData(e.what()); callouts.clear(); } } else if (i2cBus && i2cAddr) { size_t bus; uint8_t address; try { // If /dev/i2c- is prepended, remove it if (i2cBus->find("/dev/i2c-") != std::string::npos) { *i2cBus = i2cBus->substr(9); } bus = stoul(*i2cBus, nullptr, 0); address = stoul(*i2cAddr, nullptr, 0); } catch (const std::exception& e) { std::string msg = "Invalid CALLOUT_IIC_BUS " + *i2cBus + " or CALLOUT_IIC_ADDR " + *i2cAddr + " in AdditionalData property"; addDebugData(msg); return; } try { callouts = device_callouts::getI2CCallouts( bus, address, dataIface.getSystemNames()); } catch (const std::exception& e) { addDebugData(e.what()); callouts.clear(); } } for (const auto& callout : callouts) { // The priority shouldn't be invalid, but check just in case. CalloutPriority priority = CalloutPriority::high; if (!callout.priority.empty()) { auto p = pel_values::findByValue( static_cast(callout.priority[0]), pel_values::calloutPriorityValues); if (p != pel_values::calloutPriorityValues.end()) { priority = static_cast(callout.priority[0]); } else { std::string msg = "Invalid priority found in dev callout JSON: " + callout.priority[0]; addDebugData(msg); } } std::optional locCode; try { locCode = dataIface.expandLocationCode(callout.locationCode, 0); } catch (const std::exception& e) { auto msg = std::format("Unable to expand location code {}: {}", callout.locationCode, e.what()); addDebugData(msg); } try { auto inventoryPaths = dataIface.getInventoryFromLocCode( callout.locationCode, 0, false); // Just use first path returned since they all // point to the same FRU. addInventoryCallout(inventoryPaths[0], priority, locCode, dataIface); } catch (const std::exception& e) { std::string msg = "Unable to get inventory path from location code: " + callout.locationCode + ": " + e.what(); addDebugData(msg); } // Until the code is there to convert these MRU value strings to // the official MRU values in the callout objects, just store // the MRU name in the debug UserData section. if (!callout.mru.empty()) { std::string msg = "MRU: " + callout.mru; addDebugData(msg); } // getCallouts() may have generated some debug data it stored // in a callout object. Save it as well. if (!callout.debug.empty()) { addDebugData(callout.debug); } } } void SRC::addJSONCallouts(const nlohmann::json& jsonCallouts, const DataInterfaceBase& dataIface) { if (jsonCallouts.empty()) { return; } if (!jsonCallouts.is_array()) { addDebugData("Callout JSON isn't an array"); return; } for (const auto& callout : jsonCallouts) { try { addJSONCallout(callout, dataIface); } catch (const std::exception& e) { addDebugData(std::format( "Failed extracting callout data from JSON: {}", e.what())); } } } void SRC::addJSONCallout(const nlohmann::json& jsonCallout, const DataInterfaceBase& dataIface) { auto priority = getPriorityFromJSON(jsonCallout); std::string locCode; std::string unexpandedLocCode; std::unique_ptr callout; // Expand the location code if it's there if (jsonCallout.contains("LocationCode")) { unexpandedLocCode = jsonCallout.at("LocationCode").get(); try { locCode = dataIface.expandLocationCode(unexpandedLocCode, 0); } catch (const std::exception& e) { addDebugData(std::format("Unable to expand location code {}: {}", unexpandedLocCode, e.what())); // Use the value from the JSON so at least there's something locCode = unexpandedLocCode; } } // Create either a procedure, symbolic FRU, or normal FRU callout. if (jsonCallout.contains("Procedure")) { auto procedure = jsonCallout.at("Procedure").get(); // If it's the registry name instead of the raw name, convert. if (pv::maintenanceProcedures.find(procedure) != pv::maintenanceProcedures.end()) { procedure = pv::maintenanceProcedures.at(procedure); } callout = std::make_unique( static_cast(priority), procedure, src::CalloutValueType::raw); } else if (jsonCallout.contains("SymbolicFRU")) { auto fru = jsonCallout.at("SymbolicFRU").get(); // If it's the registry name instead of the raw name, convert. if (pv::symbolicFRUs.find(fru) != pv::symbolicFRUs.end()) { fru = pv::symbolicFRUs.at(fru); } bool trusted = false; if (jsonCallout.contains("TrustedLocationCode") && !locCode.empty()) { trusted = jsonCallout.at("TrustedLocationCode").get(); } callout = std::make_unique( static_cast(priority), fru, src::CalloutValueType::raw, locCode, trusted); } else { // A hardware FRU std::string inventoryPath; std::vector mrus; if (jsonCallout.contains("InventoryPath")) { inventoryPath = jsonCallout.at("InventoryPath").get(); } else { if (unexpandedLocCode.empty()) { throw std::runtime_error{"JSON callout needs either an " "inventory path or location code"}; } try { auto inventoryPaths = dataIface.getInventoryFromLocCode( unexpandedLocCode, 0, false); // Just use first path returned since they all // point to the same FRU. inventoryPath = inventoryPaths[0]; } catch (const std::exception& e) { throw std::runtime_error{ std::format("Unable to get inventory path from " "location code: {}: {}", unexpandedLocCode, e.what())}; } } if (jsonCallout.contains("MRUs")) { mrus = getMRUsFromJSON(jsonCallout.at("MRUs")); } // If the location code was also passed in, use that here too // so addInventoryCallout doesn't have to look it up. std::optional lc; if (!locCode.empty()) { lc = locCode; } addInventoryCallout(inventoryPath, priority, lc, dataIface, mrus); if (jsonCallout.contains("Deconfigured")) { if (jsonCallout.at("Deconfigured").get()) { setErrorStatusFlag(ErrorStatusFlags::deconfigured); } } if (jsonCallout.contains("Guarded")) { if (jsonCallout.at("Guarded").get()) { setErrorStatusFlag(ErrorStatusFlags::guarded); } } } if (callout) { createCalloutsObject(); _callouts->addCallout(std::move(callout)); } } CalloutPriority SRC::getPriorityFromJSON(const nlohmann::json& json) { // Looks like: // { // "Priority": "H" // } auto p = json.at("Priority").get(); if (p.empty()) { throw std::runtime_error{"Priority field in callout is empty"}; } auto priority = static_cast(p.front()); // Validate it auto priorityIt = pv::findByValue(static_cast(priority), pv::calloutPriorityValues); if (priorityIt == pv::calloutPriorityValues.end()) { throw std::runtime_error{ std::format("Invalid priority '{}' found in JSON callout", p)}; } return priority; } std::vector SRC::getMRUsFromJSON(const nlohmann::json& mruJSON) { std::vector mrus; // Looks like: // [ // { // "ID": 100, // "Priority": "H" // } // ] if (!mruJSON.is_array()) { addDebugData("MRU callout JSON is not an array"); return mrus; } for (const auto& mruCallout : mruJSON) { try { auto priority = getPriorityFromJSON(mruCallout); auto id = mruCallout.at("ID").get(); src::MRU::MRUCallout mru{static_cast(priority), id}; mrus.push_back(std::move(mru)); } catch (const std::exception& e) { addDebugData(std::format("Invalid MRU entry in JSON: {}: {}", mruCallout.dump(), e.what())); } } return mrus; } std::vector SRC::getSrcStruct() { std::vector data; Stream stream{data}; //------ Ref section 4.3 in PEL doc--- //------ SRC Structure 40 bytes------- // Byte-0 | Byte-1 | Byte-2 | Byte-3 | // ----------------------------------- // 02 | 08 | 00 | 09 | ==> Header // 00 | 00 | 00 | 48 | ==> Header // 00 | 00 | 00 | 00 | ==> Hex data word-2 // 00 | 00 | 00 | 00 | ==> Hex data word-3 // 00 | 00 | 00 | 00 | ==> Hex data word-4 // 20 | 00 | 00 | 00 | ==> Hex data word-5 // 00 | 00 | 00 | 00 | ==> Hex data word-6 // 00 | 00 | 00 | 00 | ==> Hex data word-7 // 00 | 00 | 00 | 00 | ==> Hex data word-8 // 00 | 00 | 00 | 00 | ==> Hex data word-9 // ----------------------------------- // ASCII string - 8 bytes | // ----------------------------------- // ASCII space NULL - 24 bytes | // ----------------------------------- //_size = Base SRC struct: 8 byte header + hex data section + ASCII string uint8_t flags = (_flags | postOPPanel); stream << _version << flags << _reserved1B << _wordCount << _reserved2B << _size; for (auto& word : _hexData) { stream << word; } _asciiString->flatten(stream); return data; } void SRC::setProgressCode(const DataInterfaceBase& dataIface) { std::vector progressSRC; try { progressSRC = dataIface.getRawProgressSRC(); } catch (const std::exception& e) { lg2::error("Error getting progress code: {ERROR}", "ERROR", e); return; } _hexData[2] = getProgressCode(progressSRC); } uint32_t SRC::getProgressCode(std::vector& rawProgressSRC) { uint32_t progressCode = 0; // A valid progress SRC is at least 72 bytes if (rawProgressSRC.size() < 72) { return progressCode; } try { // The ASCII string field in progress SRCs starts at offset 40. // Take the first 8 characters to put in the uint32: // "CC009189" -> 0xCC009189 Stream stream{rawProgressSRC, 40}; src::AsciiString aString{stream}; auto progressCodeString = aString.get().substr(0, 8); if (std::all_of(progressCodeString.begin(), progressCodeString.end(), [](char c) { return std::isxdigit(static_cast(c)); })) { progressCode = std::stoul(progressCodeString, nullptr, 16); } } catch (const std::exception& e) {} return progressCode; } } // namespace pels } // namespace openpower