#include "config.h" #include "sensorhandler.hpp" #include "fruread.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include static constexpr uint8_t fruInventoryDevice = 0x10; static constexpr uint8_t IPMIFruInventory = 0x02; static constexpr uint8_t BMCSlaveAddress = 0x20; extern int updateSensorRecordFromSSRAESC(const void*); extern sd_bus* bus; extern const ipmi::sensor::IdInfoMap sensors; extern const FruMap frus; extern const ipmi::sensor::EntityInfoMap entities; using namespace phosphor::logging; using InternalFailure = sdbusplus::xyz::openbmc_project::Common::Error::InternalFailure; void register_netfn_sen_functions() __attribute__((constructor)); struct sensorTypemap_t { uint8_t number; uint8_t typecode; char dbusname[32]; }; sensorTypemap_t g_SensorTypeMap[] = { {0x01, 0x6F, "Temp"}, {0x0C, 0x6F, "DIMM"}, {0x0C, 0x6F, "MEMORY_BUFFER"}, {0x07, 0x6F, "PROC"}, {0x07, 0x6F, "CORE"}, {0x07, 0x6F, "CPU"}, {0x0F, 0x6F, "BootProgress"}, {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor // type code os 0x09 {0xC3, 0x6F, "BootCount"}, {0x1F, 0x6F, "OperatingSystemStatus"}, {0x12, 0x6F, "SYSTEM_EVENT"}, {0xC7, 0x03, "SYSTEM"}, {0xC7, 0x03, "MAIN_PLANAR"}, {0xC2, 0x6F, "PowerCap"}, {0x0b, 0xCA, "PowerSupplyRedundancy"}, {0xDA, 0x03, "TurboAllowed"}, {0xD8, 0xC8, "PowerSupplyDerating"}, {0xFF, 0x00, ""}, }; struct sensor_data_t { uint8_t sennum; } __attribute__((packed)); struct sensorreadingresp_t { uint8_t value; uint8_t operation; uint8_t indication[2]; } __attribute__((packed)); const ipmi::sensor::EntityInfoMap& getIpmiEntityRecords() { return entities; } int get_bus_for_path(const char* path, char** busname) { return mapper_get_service(bus, path, busname); } // Use a lookup table to find the interface name of a specific sensor // This will be used until an alternative is found. this is the first // step for mapping IPMI int find_openbmc_path(uint8_t num, dbus_interface_t* interface) { int rc; const auto& sensor_it = sensors.find(num); if (sensor_it == sensors.end()) { // The sensor map does not contain the sensor requested return -EINVAL; } const auto& info = sensor_it->second; char* busname = nullptr; rc = get_bus_for_path(info.sensorPath.c_str(), &busname); if (rc < 0) { std::fprintf(stderr, "Failed to get %s busname: %s\n", info.sensorPath.c_str(), busname); goto final; } interface->sensortype = info.sensorType; strcpy(interface->bus, busname); strcpy(interface->path, info.sensorPath.c_str()); // Take the interface name from the beginning of the DbusInterfaceMap. This // works for the Value interface but may not suffice for more complex // sensors. // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103 strcpy(interface->interface, info.propertyInterfaces.begin()->first.c_str()); interface->sensornumber = num; final: free(busname); return rc; } ///////////////////////////////////////////////////////////////////// // // Routines used by ipmi commands wanting to interact on the dbus // ///////////////////////////////////////////////////////////////////// int set_sensor_dbus_state_s(uint8_t number, const char* method, const char* value) { dbus_interface_t a; int r; sd_bus_error error = SD_BUS_ERROR_NULL; sd_bus_message* m = NULL; r = find_openbmc_path(number, &a); if (r < 0) { std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); return 0; } r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, method); if (r < 0) { std::fprintf(stderr, "Failed to create a method call: %s", strerror(-r)); goto final; } r = sd_bus_message_append(m, "v", "s", value); if (r < 0) { std::fprintf(stderr, "Failed to create a input parameter: %s", strerror(-r)); goto final; } r = sd_bus_call(bus, m, 0, &error, NULL); if (r < 0) { std::fprintf(stderr, "Failed to call the method: %s", strerror(-r)); } final: sd_bus_error_free(&error); m = sd_bus_message_unref(m); return 0; } int set_sensor_dbus_state_y(uint8_t number, const char* method, const uint8_t value) { dbus_interface_t a; int r; sd_bus_error error = SD_BUS_ERROR_NULL; sd_bus_message* m = NULL; r = find_openbmc_path(number, &a); if (r < 0) { std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); return 0; } r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, method); if (r < 0) { std::fprintf(stderr, "Failed to create a method call: %s", strerror(-r)); goto final; } r = sd_bus_message_append(m, "v", "i", value); if (r < 0) { std::fprintf(stderr, "Failed to create a input parameter: %s", strerror(-r)); goto final; } r = sd_bus_call(bus, m, 0, &error, NULL); if (r < 0) { std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r)); } final: sd_bus_error_free(&error); m = sd_bus_message_unref(m); return 0; } uint8_t dbus_to_sensor_type(char* p) { sensorTypemap_t* s = g_SensorTypeMap; char r = 0; while (s->number != 0xFF) { if (!strcmp(s->dbusname, p)) { r = s->typecode; break; } s++; } if (s->number == 0xFF) printf("Failed to find Sensor Type %s\n", p); return r; } uint8_t get_type_from_interface(dbus_interface_t dbus_if) { uint8_t type; // This is where sensors that do not exist in dbus but do // exist in the host code stop. This should indicate it // is not a supported sensor if (dbus_if.interface[0] == 0) { return 0; } // Fetch type from interface itself. if (dbus_if.sensortype != 0) { type = dbus_if.sensortype; } else { // Non InventoryItems char* p = strrchr(dbus_if.path, '/'); type = dbus_to_sensor_type(p + 1); } return type; } // Replaces find_sensor uint8_t find_type_for_sensor_number(uint8_t num) { int r; dbus_interface_t dbus_if; r = find_openbmc_path(num, &dbus_if); if (r < 0) { std::fprintf(stderr, "Could not find sensor %d\n", num); return 0; } return get_type_from_interface(dbus_if); } ipmi_ret_t ipmi_sen_get_sensor_type(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { auto reqptr = static_cast(request); ipmi_ret_t rc = IPMI_CC_OK; printf("IPMI GET_SENSOR_TYPE [0x%02X]\n", reqptr->sennum); // TODO Not sure what the System-event-sensor is suppose to return // need to ask Hostboot team unsigned char buf[] = {0x00, 0x6F}; buf[0] = find_type_for_sensor_number(reqptr->sennum); // HACK UNTIL Dbus gets updated or we find a better way if (buf[0] == 0) { rc = IPMI_CC_SENSOR_INVALID; } *data_len = sizeof(buf); std::memcpy(response, &buf, *data_len); return rc; } const std::set analogSensorInterfaces = { "xyz.openbmc_project.Sensor.Value", "xyz.openbmc_project.Control.FanPwm", }; bool isAnalogSensor(const std::string& interface) { return (analogSensorInterfaces.count(interface)); } /** @brief This command is used to set sensorReading. @param - sensorNumber - operation - reading - assertOffset0_7 - assertOffset8_14 - deassertOffset0_7 - deassertOffset8_14 - eventData1 - eventData2 - eventData3 @return completion code on success. **/ ipmi::RspType<> ipmiSetSensorReading(uint8_t sensorNumber, uint8_t operation, uint8_t reading, uint8_t assertOffset0_7, uint8_t assertOffset8_14, uint8_t deassertOffset0_7, uint8_t deassertOffset8_14, uint8_t eventData1, uint8_t eventData2, uint8_t eventData3) { log("IPMI SET_SENSOR", entry("SENSOR_NUM=0x%02x", sensorNumber)); ipmi::sensor::SetSensorReadingReq cmdData; cmdData.number = sensorNumber; cmdData.operation = operation; cmdData.reading = reading; cmdData.assertOffset0_7 = assertOffset0_7; cmdData.assertOffset8_14 = assertOffset8_14; cmdData.deassertOffset0_7 = deassertOffset0_7; cmdData.deassertOffset8_14 = deassertOffset8_14; cmdData.eventData1 = eventData1; cmdData.eventData2 = eventData2; cmdData.eventData3 = eventData3; // Check if the Sensor Number is present const auto iter = sensors.find(sensorNumber); if (iter == sensors.end()) { updateSensorRecordFromSSRAESC(&sensorNumber); return ipmi::responseSuccess(); } try { if (ipmi::sensor::Mutability::Write != (iter->second.mutability & ipmi::sensor::Mutability::Write)) { log("Sensor Set operation is not allowed", entry("SENSOR_NUM=%d", sensorNumber)); return ipmi::responseIllegalCommand(); } auto ipmiRC = iter->second.updateFunc(cmdData, iter->second); return ipmi::response(ipmiRC); } catch (InternalFailure& e) { log("Set sensor failed", entry("SENSOR_NUM=%d", sensorNumber)); commit(); return ipmi::responseUnspecifiedError(); } catch (const std::runtime_error& e) { log(e.what()); return ipmi::responseUnspecifiedError(); } } ipmi_ret_t ipmi_sen_get_sensor_reading(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { auto reqptr = static_cast(request); auto resp = static_cast(response); ipmi::sensor::GetSensorResponse getResponse{}; static constexpr auto scanningEnabledBit = 6; const auto iter = sensors.find(reqptr->sennum); if (iter == sensors.end()) { return IPMI_CC_SENSOR_INVALID; } if (ipmi::sensor::Mutability::Read != (iter->second.mutability & ipmi::sensor::Mutability::Read)) { return IPMI_CC_ILLEGAL_COMMAND; } try { getResponse = iter->second.getFunc(iter->second); *data_len = getResponse.size(); std::memcpy(resp, getResponse.data(), *data_len); resp->operation = 1 << scanningEnabledBit; return IPMI_CC_OK; } #ifdef UPDATE_FUNCTIONAL_ON_FAIL catch (const SensorFunctionalError& e) { return IPMI_CC_RESPONSE_ERROR; } #endif catch (const std::exception& e) { *data_len = getResponse.size(); std::memcpy(resp, getResponse.data(), *data_len); return IPMI_CC_OK; } } void getSensorThresholds(uint8_t sensorNum, get_sdr::GetSensorThresholdsResponse* response) { constexpr auto warningThreshIntf = "xyz.openbmc_project.Sensor.Threshold.Warning"; constexpr auto criticalThreshIntf = "xyz.openbmc_project.Sensor.Threshold.Critical"; sdbusplus::bus::bus bus{ipmid_get_sd_bus_connection()}; const auto iter = sensors.find(sensorNum); const auto info = iter->second; auto service = ipmi::getService(bus, info.sensorInterface, info.sensorPath); auto warnThresholds = ipmi::getAllDbusProperties( bus, service, info.sensorPath, warningThreshIntf); double warnLow = std::visit(ipmi::VariantToDoubleVisitor(), warnThresholds["WarningLow"]); double warnHigh = std::visit(ipmi::VariantToDoubleVisitor(), warnThresholds["WarningHigh"]); if (warnLow != 0) { warnLow *= std::pow(10, info.scale - info.exponentR); response->lowerNonCritical = static_cast( (warnLow - info.scaledOffset) / info.coefficientM); response->validMask |= static_cast( ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK); } if (warnHigh != 0) { warnHigh *= std::pow(10, info.scale - info.exponentR); response->upperNonCritical = static_cast( (warnHigh - info.scaledOffset) / info.coefficientM); response->validMask |= static_cast( ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK); } auto critThresholds = ipmi::getAllDbusProperties( bus, service, info.sensorPath, criticalThreshIntf); double critLow = std::visit(ipmi::VariantToDoubleVisitor(), critThresholds["CriticalLow"]); double critHigh = std::visit(ipmi::VariantToDoubleVisitor(), critThresholds["CriticalHigh"]); if (critLow != 0) { critLow *= std::pow(10, info.scale - info.exponentR); response->lowerCritical = static_cast( (critLow - info.scaledOffset) / info.coefficientM); response->validMask |= static_cast( ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK); } if (critHigh != 0) { critHigh *= std::pow(10, info.scale - info.exponentR); response->upperCritical = static_cast( (critHigh - info.scaledOffset) / info.coefficientM); response->validMask |= static_cast( ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK); } } ipmi_ret_t ipmi_sen_get_sensor_thresholds(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; if (*data_len != sizeof(uint8_t)) { *data_len = 0; return IPMI_CC_REQ_DATA_LEN_INVALID; } auto sensorNum = *(reinterpret_cast(request)); *data_len = 0; const auto iter = sensors.find(sensorNum); if (iter == sensors.end()) { return IPMI_CC_SENSOR_INVALID; } const auto info = iter->second; // Proceed only if the sensor value interface is implemented. if (info.propertyInterfaces.find(valueInterface) == info.propertyInterfaces.end()) { // return with valid mask as 0 return IPMI_CC_OK; } auto responseData = reinterpret_cast(response); try { getSensorThresholds(sensorNum, responseData); } catch (std::exception& e) { // Mask if the property is not present responseData->validMask = 0; } *data_len = sizeof(get_sdr::GetSensorThresholdsResponse); return IPMI_CC_OK; } ipmi_ret_t ipmi_sen_wildcard(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { ipmi_ret_t rc = IPMI_CC_INVALID; printf("IPMI S/E Wildcard Netfn:[0x%X], Cmd:[0x%X]\n", netfn, cmd); *data_len = 0; return rc; } /** @brief implements the get SDR Info command * @param count - Operation * * @returns IPMI completion code plus response data * - sdrCount - sensor/SDR count * - lunsAndDynamicPopulation - static/Dynamic sensor population flag */ ipmi::RspType ipmiSensorGetDeviceSdrInfo(std::optional count) { uint8_t sdrCount; // multiple LUNs not supported. constexpr uint8_t lunsAndDynamicPopulation = 1; constexpr uint8_t getSdrCount = 0x01; constexpr uint8_t getSensorCount = 0x00; if (count.value_or(0) == getSdrCount) { // Get SDR count. This returns the total number of SDRs in the device. const auto& entityRecords = getIpmiEntityRecords(); sdrCount = sensors.size() + frus.size() + entityRecords.size(); } else if (count.value_or(0) == getSensorCount) { // Get Sensor count. This returns the number of sensors sdrCount = sensors.size(); } else { return ipmi::responseInvalidCommandOnLun(); } return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation); } /** @brief implements the reserve SDR command * @returns IPMI completion code plus response data * - reservationID - reservation ID */ ipmi::RspType ipmiSensorReserveSdr() { // A constant reservation ID is okay until we implement add/remove SDR. constexpr uint16_t reservationID = 1; return ipmi::responseSuccess(reservationID); } void setUnitFieldsForObject(const ipmi::sensor::Info* info, get_sdr::SensorDataFullRecordBody* body) { namespace server = sdbusplus::xyz::openbmc_project::Sensor::server; try { auto unit = server::Value::convertUnitFromString(info->unit); // Unit strings defined in // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml switch (unit) { case server::Value::Unit::DegreesC: body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C; break; case server::Value::Unit::RPMS: body->sensor_units_2_base = get_sdr::SENSOR_UNIT_RPM; break; case server::Value::Unit::Volts: body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS; break; case server::Value::Unit::Meters: body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS; break; case server::Value::Unit::Amperes: body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES; break; case server::Value::Unit::Joules: body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES; break; case server::Value::Unit::Watts: body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS; break; default: // Cannot be hit. std::fprintf(stderr, "Unknown value unit type: = %s\n", info->unit.c_str()); } } catch (const sdbusplus::exception::InvalidEnumString& e) { log("Warning: no unit provided for sensor!"); } } ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body, const ipmi::sensor::Info* info, ipmi_data_len_t data_len) { /* Functional sensor case */ if (isAnalogSensor(info->propertyInterfaces.begin()->first)) { body->sensor_units_1 = 0; // unsigned, no rate, no modifier, not a % /* Unit info */ setUnitFieldsForObject(info, body); get_sdr::body::set_b(info->coefficientB, body); get_sdr::body::set_m(info->coefficientM, body); get_sdr::body::set_b_exp(info->exponentB, body); get_sdr::body::set_r_exp(info->exponentR, body); get_sdr::body::set_id_type(0b00, body); // 00 = unicode } /* ID string */ auto id_string = info->sensorNameFunc(*info); if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH) { get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body); } else { get_sdr::body::set_id_strlen(id_string.length(), body); } strncpy(body->id_string, id_string.c_str(), get_sdr::body::get_id_strlen(body)); return IPMI_CC_OK; }; ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len) { auto req = reinterpret_cast(request); auto resp = reinterpret_cast(response); get_sdr::SensorDataFruRecord record{}; auto dataLength = 0; auto fru = frus.begin(); uint8_t fruID{}; auto recordID = get_sdr::request::get_record_id(req); fruID = recordID - FRU_RECORD_ID_START; fru = frus.find(fruID); if (fru == frus.end()) { return IPMI_CC_SENSOR_INVALID; } /* Header */ get_sdr::header::set_record_id(recordID, &(record.header)); record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD; record.header.record_length = sizeof(record.key) + sizeof(record.body); /* Key */ record.key.fruID = fruID; record.key.accessLun |= IPMI_LOGICAL_FRU; record.key.deviceAddress = BMCSlaveAddress; /* Body */ record.body.entityID = fru->second[0].entityID; record.body.entityInstance = fru->second[0].entityInstance; record.body.deviceType = fruInventoryDevice; record.body.deviceTypeModifier = IPMIFruInventory; /* Device ID string */ auto deviceID = fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1, fru->second[0].path.length()); if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH) { get_sdr::body::set_device_id_strlen( get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body)); } else { get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body)); } strncpy(record.body.deviceID, deviceID.c_str(), get_sdr::body::get_device_id_strlen(&(record.body))); if (++fru == frus.end()) { // we have reached till end of fru, so assign the next record id to // 512(Max fru ID = 511) + Entity Record ID(may start with 0). const auto& entityRecords = getIpmiEntityRecords(); auto next_record_id = (entityRecords.size()) ? entityRecords.begin()->first + ENTITY_RECORD_ID_START : END_OF_RECORD; get_sdr::response::set_next_record_id(next_record_id, resp); } else { get_sdr::response::set_next_record_id( (FRU_RECORD_ID_START + fru->first), resp); } // Check for invalid offset size if (req->offset > sizeof(record)) { return IPMI_CC_PARM_OUT_OF_RANGE; } dataLength = std::min(static_cast(req->bytes_to_read), sizeof(record) - req->offset); std::memcpy(resp->record_data, reinterpret_cast(&record) + req->offset, dataLength); *data_len = dataLength; *data_len += 2; // additional 2 bytes for next record ID return IPMI_CC_OK; } ipmi_ret_t ipmi_entity_get_sdr(ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len) { auto req = reinterpret_cast(request); auto resp = reinterpret_cast(response); get_sdr::SensorDataEntityRecord record{}; auto dataLength = 0; const auto& entityRecords = getIpmiEntityRecords(); auto entity = entityRecords.begin(); uint8_t entityRecordID; auto recordID = get_sdr::request::get_record_id(req); entityRecordID = recordID - ENTITY_RECORD_ID_START; entity = entityRecords.find(entityRecordID); if (entity == entityRecords.end()) { return IPMI_CC_SENSOR_INVALID; } /* Header */ get_sdr::header::set_record_id(recordID, &(record.header)); record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 record.header.record_type = get_sdr::SENSOR_DATA_ENTITY_RECORD; record.header.record_length = sizeof(record.key) + sizeof(record.body); /* Key */ record.key.containerEntityId = entity->second.containerEntityId; record.key.containerEntityInstance = entity->second.containerEntityInstance; get_sdr::key::set_flags(entity->second.isList, entity->second.isLinked, &(record.key)); record.key.entityId1 = entity->second.containedEntities[0].first; record.key.entityInstance1 = entity->second.containedEntities[0].second; /* Body */ record.body.entityId2 = entity->second.containedEntities[1].first; record.body.entityInstance2 = entity->second.containedEntities[1].second; record.body.entityId3 = entity->second.containedEntities[2].first; record.body.entityInstance3 = entity->second.containedEntities[2].second; record.body.entityId4 = entity->second.containedEntities[3].first; record.body.entityInstance4 = entity->second.containedEntities[3].second; if (++entity == entityRecords.end()) { get_sdr::response::set_next_record_id(END_OF_RECORD, resp); // last record } else { get_sdr::response::set_next_record_id( (ENTITY_RECORD_ID_START + entity->first), resp); } // Check for invalid offset size if (req->offset > sizeof(record)) { return IPMI_CC_PARM_OUT_OF_RANGE; } dataLength = std::min(static_cast(req->bytes_to_read), sizeof(record) - req->offset); std::memcpy(resp->record_data, reinterpret_cast(&record) + req->offset, dataLength); *data_len = dataLength; *data_len += 2; // additional 2 bytes for next record ID return IPMI_CC_OK; } ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { ipmi_ret_t ret = IPMI_CC_OK; get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request; get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response; get_sdr::SensorDataFullRecord record = {0}; // Note: we use an iterator so we can provide the next ID at the end of // the call. auto sensor = sensors.begin(); auto recordID = get_sdr::request::get_record_id(req); // At the beginning of a scan, the host side will send us id=0. if (recordID != 0) { // recordID 0 to 255 means it is a FULL record. // recordID 256 to 511 means it is a FRU record. // recordID greater then 511 means it is a Entity Association // record. Currently we are supporting three record types: FULL // record, FRU record and Enttiy Association record. if (recordID >= ENTITY_RECORD_ID_START) { return ipmi_entity_get_sdr(request, response, data_len); } else if (recordID >= FRU_RECORD_ID_START && recordID < ENTITY_RECORD_ID_START) { return ipmi_fru_get_sdr(request, response, data_len); } else { sensor = sensors.find(recordID); if (sensor == sensors.end()) { return IPMI_CC_SENSOR_INVALID; } } } uint8_t sensor_id = sensor->first; /* Header */ get_sdr::header::set_record_id(sensor_id, &(record.header)); record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1 record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD; record.header.record_length = sizeof(get_sdr::SensorDataFullRecord); /* Key */ get_sdr::key::set_owner_id_bmc(&(record.key)); record.key.sensor_number = sensor_id; /* Body */ record.body.entity_id = sensor->second.entityType; record.body.sensor_type = sensor->second.sensorType; record.body.event_reading_type = sensor->second.sensorReadingType; record.body.entity_instance = sensor->second.instance; if (ipmi::sensor::Mutability::Write == (sensor->second.mutability & ipmi::sensor::Mutability::Write)) { get_sdr::body::init_settable_state(true, &(record.body)); } // Set the type-specific details given the DBus interface ret = populate_record_from_dbus(&(record.body), &(sensor->second), data_len); if (++sensor == sensors.end()) { // we have reached till end of sensor, so assign the next record id // to 256(Max Sensor ID = 255) + FRU ID(may start with 0). auto next_record_id = (frus.size()) ? frus.begin()->first + FRU_RECORD_ID_START : END_OF_RECORD; get_sdr::response::set_next_record_id(next_record_id, resp); } else { get_sdr::response::set_next_record_id(sensor->first, resp); } if (req->offset > sizeof(record)) { return IPMI_CC_PARM_OUT_OF_RANGE; } // data_len will ultimately be the size of the record, plus // the size of the next record ID: *data_len = std::min(static_cast(req->bytes_to_read), sizeof(record) - req->offset); std::memcpy(resp->record_data, reinterpret_cast(&record) + req->offset, *data_len); // data_len should include the LSB and MSB: *data_len += sizeof(resp->next_record_id_lsb) + sizeof(resp->next_record_id_msb); return ret; } static bool isFromSystemChannel() { // TODO we could not figure out where the request is from based on IPMI // command handler parameters. because of it, we can not differentiate // request from SMS/SMM or IPMB channel return true; } ipmi_ret_t ipmicmdPlatformEvent(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t dataLen, ipmi_context_t context) { uint16_t generatorID; size_t count; bool assert = true; std::string sensorPath; size_t paraLen = *dataLen; PlatformEventRequest* req; *dataLen = 0; if ((paraLen < selSystemEventSizeWith1Bytes) || (paraLen > selSystemEventSizeWith3Bytes)) { return IPMI_CC_REQ_DATA_LEN_INVALID; } if (isFromSystemChannel()) { // first byte for SYSTEM Interface is Generator ID // +1 to get common struct req = reinterpret_cast((uint8_t*)request + 1); // Capture the generator ID generatorID = *reinterpret_cast(request); // Platform Event usually comes from other firmware, like BIOS. // Unlike BMC sensor, it does not have BMC DBUS sensor path. sensorPath = "System"; } else { req = reinterpret_cast(request); // TODO GenratorID for IPMB is combination of RqSA and RqLUN generatorID = 0xff; sensorPath = "IPMB"; } // Content of event data field depends on sensor class. // When data0 bit[5:4] is non-zero, valid data counts is 3. // When data0 bit[7:6] is non-zero, valid data counts is 2. if (((req->data[0] & byte3EnableMask) != 0 && paraLen < selSystemEventSizeWith3Bytes) || ((req->data[0] & byte2EnableMask) != 0 && paraLen < selSystemEventSizeWith2Bytes)) { return IPMI_CC_REQ_DATA_LEN_INVALID; } // Count bytes of Event Data if ((req->data[0] & byte3EnableMask) != 0) { count = 3; } else if ((req->data[0] & byte2EnableMask) != 0) { count = 2; } else { count = 1; } assert = req->eventDirectionType & directionMask ? false : true; std::vector eventData(req->data, req->data + count); sdbusplus::bus::bus dbus(bus); std::string service = ipmi::getService(dbus, ipmiSELAddInterface, ipmiSELPath); sdbusplus::message::message writeSEL = dbus.new_method_call( service.c_str(), ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd"); writeSEL.append(ipmiSELAddMessage, sensorPath, eventData, assert, generatorID); try { dbus.call(writeSEL); } catch (sdbusplus::exception_t& e) { phosphor::logging::log(e.what()); return IPMI_CC_UNSPECIFIED_ERROR; } return IPMI_CC_OK; } void register_netfn_sen_functions() { // ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_WILDCARD, nullptr, ipmi_sen_wildcard, PRIVILEGE_USER); // ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_PLATFORM_EVENT, nullptr, ipmicmdPlatformEvent, PRIVILEGE_OPERATOR); // ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_SENSOR_TYPE, nullptr, ipmi_sen_get_sensor_type, PRIVILEGE_USER); // ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, ipmi::sensor_event::cmdSetSensorReadingAndEvtSts, ipmi::Privilege::Operator, ipmiSetSensorReading); // ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_SENSOR_READING, nullptr, ipmi_sen_get_sensor_reading, PRIVILEGE_USER); // ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, ipmi::sensor_event::cmdReserveDeviceSdrRepository, ipmi::Privilege::User, ipmiSensorReserveSdr); // ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor, ipmi::sensor_event::cmdGetDeviceSdrInfo, ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo); // ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr, ipmi_sen_get_sdr, PRIVILEGE_USER); // ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_SENSOR_THRESHOLDS, nullptr, ipmi_sen_get_sensor_thresholds, PRIVILEGE_USER); return; }