#include "config.h" #include "selutility.hpp" #include #include #include #include #include #include #include #include #include extern const ipmi::sensor::InvObjectIDMap invSensors; using namespace phosphor::logging; using InternalFailure = sdbusplus::error::xyz::openbmc_project::common::InternalFailure; namespace { constexpr auto systemEventRecord = 0x02; constexpr auto generatorID = 0x2000; constexpr auto eventMsgRevision = 0x04; constexpr auto assertEvent = 0x00; constexpr auto deassertEvent = 0x80; constexpr auto selDataSize = 3; constexpr auto oemCDDataSize = 9; constexpr auto oemEFDataSize = 13; constexpr auto propAdditionalData = "AdditionalData"; constexpr auto propResolved = "Resolved"; constexpr auto strEventDir = "EVENT_DIR"; constexpr auto strGenerateId = "GENERATOR_ID"; constexpr auto strRecordType = "RECORD_TYPE"; constexpr auto strSensorData = "SENSOR_DATA"; constexpr auto strSensorPath = "SENSOR_PATH"; } // namespace namespace ipmi { namespace sel { namespace internal { inline bool isRecordOEM(uint8_t recordType) { return recordType != systemEventRecord; } using additionalDataMap = std::map; using entryDataMap = std::map; /** Parse the entry with format like key=val */ std::pair parseEntry(const std::string& entry) { constexpr auto equalSign = "="; auto pos = entry.find(equalSign); assert(pos != std::string::npos); auto key = entry.substr(0, pos); auto val = entry.substr(pos + 1); return {key, val}; } additionalDataMap parseAdditionalData(const AdditionalData& data) { std::map ret; for (const auto& d : data) { ret.insert(parseEntry(d)); } return ret; } int convert(const std::string_view& str, int base = 10) { int ret = 0; std::from_chars(str.data(), str.data() + str.size(), ret, base); return ret; } // Convert the string to a vector of uint8_t, where the str is formatted as hex std::vector convertVec(const std::string_view& str) { std::vector ret; auto len = str.size() / 2; ret.reserve(len); for (size_t i = 0; i < len; ++i) { ret.emplace_back( static_cast(convert(str.substr(i * 2, 2), 16))); } return ret; } /** Construct OEM SEL record according to IPMI spec 32.2, 32.3. */ void constructOEMSEL(uint8_t recordType, std::chrono::milliseconds timestamp, const additionalDataMap& m, GetSELEntryResponse& record) { auto dataIter = m.find(strSensorData); assert(dataIter != m.end()); auto sensorData = convertVec(dataIter->second); if (recordType >= 0xC0 && recordType < 0xE0) { record.event.oemCD.timeStamp = static_cast( std::chrono::duration_cast(timestamp) .count()); record.event.oemCD.recordType = recordType; // The ManufactureID and OEM Defined are packed in the sensor data // Fill the 9 bytes of Manufacture ID and oemDefined memcpy(&record.event.oemCD.manufacturerID, sensorData.data(), std::min(sensorData.size(), static_cast(oemCDDataSize))); } else if (recordType >= 0xE0) { record.event.oemEF.recordType = recordType; // The remaining 13 bytes are the OEM Defined data memcpy(&record.event.oemEF.oemDefined, sensorData.data(), std::min(sensorData.size(), static_cast(oemEFDataSize))); } } void constructSEL(uint8_t recordType, std::chrono::milliseconds timestamp, const additionalDataMap& m, const entryDataMap&, GetSELEntryResponse& record) { if (recordType != systemEventRecord) { log("Invalid recordType"); elog(); } // Default values when there is no matched sensor record.event.eventRecord.sensorType = 0; record.event.eventRecord.sensorNum = 0xFF; record.event.eventRecord.eventType = 0; auto iter = m.find(strSensorPath); assert(iter != m.end()); const auto& sensorPath = iter->second; auto sensorIter = invSensors.find(sensorPath); if (sensorIter != invSensors.end()) { // There is a matched sensor record.event.eventRecord.sensorType = sensorIter->second.sensorType; record.event.eventRecord.sensorNum = sensorIter->second.sensorID; iter = m.find(strEventDir); assert(iter != m.end()); auto eventDir = static_cast(convert(iter->second)); uint8_t assert = eventDir ? assertEvent : deassertEvent; record.event.eventRecord.eventType = assert | sensorIter->second.eventReadingType; } record.event.eventRecord.recordType = recordType; record.event.eventRecord.timeStamp = static_cast( std::chrono::duration_cast(timestamp).count()); iter = m.find(strGenerateId); assert(iter != m.end()); record.event.eventRecord.generatorID = static_cast(convert(iter->second)); record.event.eventRecord.eventMsgRevision = eventMsgRevision; iter = m.find(strSensorData); assert(iter != m.end()); auto sensorData = convertVec(iter->second); // The remaining 3 bytes are the sensor data memcpy(&record.event.eventRecord.eventData1, sensorData.data(), std::min(sensorData.size(), static_cast(selDataSize))); } GetSELEntryResponse prepareSELEntry(const std::string& objPath, ipmi::sensor::InvObjectIDMap::const_iterator iter) { GetSELEntryResponse record{}; sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; auto service = ipmi::getService(bus, logEntryIntf, objPath); // Read all the log entry properties. auto methodCall = bus.new_method_call(service.c_str(), objPath.c_str(), propIntf, "GetAll"); methodCall.append(logEntryIntf); entryDataMap entryData; try { auto reply = bus.call(methodCall); reply.read(entryData); } catch (const std::exception& e) { log("Error in reading logging property entries", entry("ERROR=%s", e.what())); elog(); } // Read Id from the log entry. static constexpr auto propId = "Id"; auto iterId = entryData.find(propId); if (iterId == entryData.end()) { log("Error in reading Id of logging entry"); elog(); } // Read Timestamp from the log entry. static constexpr auto propTimeStamp = "Timestamp"; auto iterTimeStamp = entryData.find(propTimeStamp); if (iterTimeStamp == entryData.end()) { log("Error in reading Timestamp of logging entry"); elog(); } std::chrono::milliseconds chronoTimeStamp( std::get(iterTimeStamp->second)); bool isFromSELLogger = false; additionalDataMap m; // The recordID are with the same offset between different types, // so we are safe to set the recordID here record.event.eventRecord.recordID = static_cast(std::get(iterId->second)); iterId = entryData.find(propAdditionalData); if (iterId != entryData.end()) { // Check if it's a SEL from phosphor-sel-logger which shall contain // the record ID, etc const auto& addData = std::get(iterId->second); m = parseAdditionalData(addData); auto recordTypeIter = m.find(strRecordType); if (recordTypeIter != m.end()) { // It is a SEL from phosphor-sel-logger isFromSELLogger = true; } else { // Not a SEL from phosphor-sel-logger, it shall have a valid // invSensor if (iter == invSensors.end()) { log("System event sensor not found"); elog(); } } } if (isFromSELLogger) { // It is expected to be a custom SEL entry auto recordType = static_cast(convert(m[strRecordType])); auto isOEM = isRecordOEM(recordType); if (isOEM) { constructOEMSEL(recordType, chronoTimeStamp, m, record); } else { constructSEL(recordType, chronoTimeStamp, m, entryData, record); } } else { record.event.eventRecord.timeStamp = static_cast( std::chrono::duration_cast(chronoTimeStamp) .count()); record.event.eventRecord.recordType = systemEventRecord; record.event.eventRecord.generatorID = generatorID; record.event.eventRecord.eventMsgRevision = eventMsgRevision; record.event.eventRecord.sensorType = iter->second.sensorType; record.event.eventRecord.sensorNum = iter->second.sensorID; record.event.eventRecord.eventData1 = iter->second.eventOffset; // Read Resolved from the log entry. auto iterResolved = entryData.find(propResolved); if (iterResolved == entryData.end()) { log("Error in reading Resolved field of logging entry"); elog(); } // Evaluate if the event is assertion or deassertion event if (std::get(iterResolved->second)) { record.event.eventRecord.eventType = deassertEvent | iter->second.eventReadingType; } else { record.event.eventRecord.eventType = iter->second.eventReadingType; } } return record; } } // namespace internal GetSELEntryResponse convertLogEntrytoSEL(const std::string& objPath) { sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; static constexpr auto assocIntf = "xyz.openbmc_project.Association.Definitions"; static constexpr auto assocProp = "Associations"; std::vector assocs; try { auto service = ipmi::getService(bus, assocIntf, objPath); auto propValue = ipmi::getDbusProperty(bus, service, objPath, assocIntf, assocProp); assocs = std::get>(propValue); } catch (const std::exception& e) { log("Error in reading Associations interface", entry("ERROR=%s", e.what())); elog(); } /* * Check if the log entry has any callout associations, if there is a * callout association try to match the inventory path to the corresponding * IPMI sensor. */ for (const auto& item : assocs) { if (std::get<0>(item).compare(CALLOUT_FWD_ASSOCIATION) == 0) { auto iter = invSensors.find(std::get<2>(item)); if (iter == invSensors.end()) { iter = invSensors.find(BOARD_SENSOR); if (iter == invSensors.end()) { log("Motherboard sensor not found"); elog(); } } return internal::prepareSELEntry(objPath, iter); } } // If there are no callout associations link the log entry to system event // sensor auto iter = invSensors.find(SYSTEM_SENSOR); return internal::prepareSELEntry(objPath, iter); } std::chrono::seconds getEntryTimeStamp(const std::string& objPath) { sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; static constexpr auto propTimeStamp = "Timestamp"; uint64_t timeStamp; try { auto service = ipmi::getService(bus, logEntryIntf, objPath); auto propValue = ipmi::getDbusProperty(bus, service, objPath, logEntryIntf, propTimeStamp); timeStamp = std::get(propValue); } catch (const std::exception& e) { log("Error in reading Timestamp from Entry interface", entry("ERROR=%s", e.what())); elog(); } std::chrono::milliseconds chronoTimeStamp(timeStamp); return std::chrono::duration_cast(chronoTimeStamp); } void readLoggingObjectPaths(ObjectPaths& paths) { sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()}; auto depth = 0; paths.clear(); auto mapperCall = bus.new_method_call(mapperBusName, mapperObjPath, mapperIntf, "GetSubTreePaths"); mapperCall.append(logBasePath); mapperCall.append(depth); mapperCall.append(ObjectPaths({logEntryIntf})); try { auto reply = bus.call(mapperCall); reply.read(paths); } catch (const sdbusplus::exception_t& e) { if (strcmp(e.name(), "xyz.openbmc_project.Common.Error.ResourceNotFound")) { throw; } } std::sort(paths.begin(), paths.end(), [](const std::string& a, const std::string& b) { namespace fs = std::filesystem; fs::path pathA(a); fs::path pathB(b); auto idA = std::stoul(pathA.filename().string()); auto idB = std::stoul(pathB.filename().string()); return idA < idB; }); } } // namespace sel } // namespace ipmi