/* // Copyright (c) 2018 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. */ #include "dbus-sdr/sdrutils.hpp" #include #include #ifdef FEATURE_HYBRID_SENSORS #include namespace ipmi { namespace sensor { extern const IdInfoMap sensors; } // namespace sensor } // namespace ipmi #endif namespace details { uint16_t getSensorSubtree(std::shared_ptr& subtree) { static std::shared_ptr sensorTreePtr; static uint16_t sensorUpdatedIndex = 0; std::shared_ptr dbus = getSdBus(); static sdbusplus::bus::match_t sensorAdded( *dbus, "type='signal',member='InterfacesAdded',arg0path='/xyz/openbmc_project/" "sensors/'", [](sdbusplus::message_t&) { sensorTreePtr.reset(); }); static sdbusplus::bus::match_t sensorRemoved( *dbus, "type='signal',member='InterfacesRemoved',arg0path='/xyz/" "openbmc_project/sensors/'", [](sdbusplus::message_t&) { sensorTreePtr.reset(); }); if (sensorTreePtr) { subtree = sensorTreePtr; return sensorUpdatedIndex; } sensorTreePtr = std::make_shared(); static constexpr const int32_t depth = 2; auto lbdUpdateSensorTree = [&dbus](const char* path, const auto& interfaces) { auto mapperCall = dbus->new_method_call( "xyz.openbmc_project.ObjectMapper", "/xyz/openbmc_project/object_mapper", "xyz.openbmc_project.ObjectMapper", "GetSubTree"); SensorSubTree sensorTreePartial; mapperCall.append(path, depth, interfaces); try { auto mapperReply = dbus->call(mapperCall); mapperReply.read(sensorTreePartial); } catch (const sdbusplus::exception_t& e) { phosphor::logging::log( "fail to update subtree", phosphor::logging::entry("PATH=%s", path), phosphor::logging::entry("WHAT=%s", e.what())); return false; } if constexpr (debug) { std::fprintf(stderr, "IPMI updated: %zu sensors under %s\n", sensorTreePartial.size(), path); } sensorTreePtr->merge(std::move(sensorTreePartial)); return true; }; // Add sensors to SensorTree static constexpr const std::array sensorInterfaces = { "xyz.openbmc_project.Sensor.Value", "xyz.openbmc_project.Sensor.ValueMutability", "xyz.openbmc_project.Sensor.Threshold.Warning", "xyz.openbmc_project.Sensor.Threshold.Critical"}; static constexpr const std::array vrInterfaces = { "xyz.openbmc_project.Control.VoltageRegulatorMode"}; bool sensorRez = lbdUpdateSensorTree("/xyz/openbmc_project/sensors", sensorInterfaces); #ifdef FEATURE_HYBRID_SENSORS if (!ipmi::sensor::sensors.empty()) { for (const auto& sensor : ipmi::sensor::sensors) { // Threshold sensors should not be emplaced in here. if (boost::starts_with(sensor.second.sensorPath, "/xyz/openbmc_project/sensors/")) { continue; } // The bus service name is not listed in ipmi::sensor::Info. Give it // an empty string. For those function using non-threshold sensors, // the bus service name will be retrieved in an alternative way. boost::container::flat_map> connectionMap{ {"", {sensor.second.propertyInterfaces.begin()->first}}}; sensorTreePtr->emplace(sensor.second.sensorPath, connectionMap); } } #endif // Error if searching for sensors failed. if (!sensorRez) { return sensorUpdatedIndex; } // Add VR control as optional search path. (void)lbdUpdateSensorTree("/xyz/openbmc_project/vr", vrInterfaces); subtree = sensorTreePtr; sensorUpdatedIndex++; // The SDR is being regenerated, wipe the old stats sdrStatsTable.wipeTable(); sdrWriteTable.wipeTable(); return sensorUpdatedIndex; } bool getSensorNumMap(std::shared_ptr& sensorNumMap) { static std::shared_ptr sensorNumMapPtr; bool sensorNumMapUpated = false; static uint16_t prevSensorUpdatedIndex = 0; std::shared_ptr sensorTree; uint16_t curSensorUpdatedIndex = details::getSensorSubtree(sensorTree); if (!sensorTree) { return sensorNumMapUpated; } if ((curSensorUpdatedIndex == prevSensorUpdatedIndex) && sensorNumMapPtr) { sensorNumMap = sensorNumMapPtr; return sensorNumMapUpated; } prevSensorUpdatedIndex = curSensorUpdatedIndex; sensorNumMapPtr = std::make_shared(); uint16_t sensorNum = 0; uint16_t sensorIndex = 0; for (const auto& sensor : *sensorTree) { sensorNumMapPtr->insert( SensorNumMap::value_type(sensorNum, sensor.first)); sensorIndex++; if (sensorIndex == maxSensorsPerLUN) { sensorIndex = lun1Sensor0; } else if (sensorIndex == (lun1Sensor0 | maxSensorsPerLUN)) { // Skip assigning LUN 0x2 any sensors sensorIndex = lun3Sensor0; } else if (sensorIndex == (lun3Sensor0 | maxSensorsPerLUN)) { // this is an error, too many IPMI sensors throw std::out_of_range("Maximum number of IPMI sensors exceeded."); } sensorNum = sensorIndex; } sensorNumMap = sensorNumMapPtr; sensorNumMapUpated = true; return sensorNumMapUpated; } } // namespace details bool getSensorSubtree(SensorSubTree& subtree) { std::shared_ptr sensorTree; details::getSensorSubtree(sensorTree); if (!sensorTree) { return false; } subtree = *sensorTree; return true; } #ifdef FEATURE_HYBRID_SENSORS // Static sensors are listed in sensor-gen.cpp. ipmi::sensor::IdInfoMap::const_iterator findStaticSensor(const std::string& path) { return std::find_if( ipmi::sensor::sensors.begin(), ipmi::sensor::sensors.end(), [&path](const ipmi::sensor::IdInfoMap::value_type& findSensor) { return findSensor.second.sensorPath == path; }); } #endif std::string getSensorTypeStringFromPath(const std::string& path) { // get sensor type string from path, path is defined as // /xyz/openbmc_project/sensors//label size_t typeEnd = path.rfind("/"); if (typeEnd == std::string::npos) { return path; } size_t typeStart = path.rfind("/", typeEnd - 1); if (typeStart == std::string::npos) { return path; } // Start at the character after the '/' typeStart++; return path.substr(typeStart, typeEnd - typeStart); } uint8_t getSensorTypeFromPath(const std::string& path) { uint8_t sensorType = 0; std::string type = getSensorTypeStringFromPath(path); auto findSensor = sensorTypes.find(type.c_str()); if (findSensor != sensorTypes.end()) { sensorType = static_cast(std::get(findSensor->second)); } // else default 0x0 RESERVED return sensorType; } uint16_t getSensorNumberFromPath(const std::string& path) { std::shared_ptr sensorNumMapPtr; details::getSensorNumMap(sensorNumMapPtr); if (!sensorNumMapPtr) { return invalidSensorNumber; } try { return sensorNumMapPtr->right.at(path); } catch (const std::out_of_range& e) { return invalidSensorNumber; } } uint8_t getSensorEventTypeFromPath(const std::string& path) { uint8_t sensorEventType = 0; std::string type = getSensorTypeStringFromPath(path); auto findSensor = sensorTypes.find(type.c_str()); if (findSensor != sensorTypes.end()) { sensorEventType = static_cast( std::get(findSensor->second)); } return sensorEventType; } std::string getPathFromSensorNumber(uint16_t sensorNum) { std::shared_ptr sensorNumMapPtr; details::getSensorNumMap(sensorNumMapPtr); if (!sensorNumMapPtr) { return std::string(); } try { return sensorNumMapPtr->left.at(sensorNum); } catch (const std::out_of_range& e) { return std::string(); } } namespace ipmi { std::map> getObjectInterfaces(const char* path) { std::map> interfacesResponse; std::vector interfaces; std::shared_ptr dbus = getSdBus(); sdbusplus::message_t getObjectMessage = dbus->new_method_call("xyz.openbmc_project.ObjectMapper", "/xyz/openbmc_project/object_mapper", "xyz.openbmc_project.ObjectMapper", "GetObject"); getObjectMessage.append(path, interfaces); try { sdbusplus::message_t response = dbus->call(getObjectMessage); response.read(interfacesResponse); } catch (const std::exception& e) { phosphor::logging::log( "Failed to GetObject", phosphor::logging::entry("PATH=%s", path), phosphor::logging::entry("WHAT=%s", e.what())); } return interfacesResponse; } std::map getEntityManagerProperties(const char* path, const char* interface) { std::map properties; std::shared_ptr dbus = getSdBus(); sdbusplus::message_t getProperties = dbus->new_method_call("xyz.openbmc_project.EntityManager", path, "org.freedesktop.DBus.Properties", "GetAll"); getProperties.append(interface); try { sdbusplus::message_t response = dbus->call(getProperties); response.read(properties); } catch (const std::exception& e) { phosphor::logging::log( "Failed to GetAll", phosphor::logging::entry("PATH=%s", path), phosphor::logging::entry("INTF=%s", interface), phosphor::logging::entry("WHAT=%s", e.what())); } return properties; } // Fetch the ipmiDecoratorPaths to get the list of dbus objects that // have ipmi decorator to prevent unnessary dbus call to fetch the info std::optional>& getIpmiDecoratorPaths(const std::optional& ctx) { static std::optional> ipmiDecoratorPaths; if (!ctx.has_value() || ipmiDecoratorPaths != std::nullopt) { return ipmiDecoratorPaths; } boost::system::error_code ec; std::vector paths = (*ctx)->bus->yield_method_call>( (*ctx)->yield, ec, "xyz.openbmc_project.ObjectMapper", "/xyz/openbmc_project/object_mapper", "xyz.openbmc_project.ObjectMapper", "GetSubTreePaths", "/", int32_t(0), std::array{ "xyz.openbmc_project.Inventory.Decorator.Ipmi"}); if (ec) { return ipmiDecoratorPaths; } ipmiDecoratorPaths = std::unordered_set(paths.begin(), paths.end()); return ipmiDecoratorPaths; } const std::string* getSensorConfigurationInterface( const std::map>& sensorInterfacesResponse) { auto entityManagerService = sensorInterfacesResponse.find("xyz.openbmc_project.EntityManager"); if (entityManagerService == sensorInterfacesResponse.end()) { return nullptr; } // Find the fan configuration first (fans can have multiple configuration // interfaces). for (const auto& entry : entityManagerService->second) { if (entry == "xyz.openbmc_project.Configuration.AspeedFan" || entry == "xyz.openbmc_project.Configuration.I2CFan" || entry == "xyz.openbmc_project.Configuration.NuvotonFan") { return &entry; } } for (const auto& entry : entityManagerService->second) { if (boost::algorithm::starts_with(entry, "xyz.openbmc_project.Configuration.")) { return &entry; } } return nullptr; } // Follow Association properties for Sensor back to the Board dbus object to // check for an EntityId and EntityInstance property. void updateIpmiFromAssociation( const std::string& path, const std::unordered_set& ipmiDecoratorPaths, const DbusInterfaceMap& sensorMap, uint8_t& entityId, uint8_t& entityInstance) { namespace fs = std::filesystem; auto sensorAssociationObject = sensorMap.find("xyz.openbmc_project.Association.Definitions"); if (sensorAssociationObject == sensorMap.end()) { if constexpr (debug) { std::fprintf(stderr, "path=%s, no association interface found\n", path.c_str()); } return; } auto associationObject = sensorAssociationObject->second.find("Associations"); if (associationObject == sensorAssociationObject->second.end()) { if constexpr (debug) { std::fprintf(stderr, "path=%s, no association records found\n", path.c_str()); } return; } std::vector associationValues = std::get>(associationObject->second); // loop through the Associations looking for the right one: for (const auto& entry : associationValues) { // forward, reverse, endpoint const std::string& forward = std::get<0>(entry); const std::string& reverse = std::get<1>(entry); const std::string& endpoint = std::get<2>(entry); // We only currently concern ourselves with chassis+all_sensors. if (!(forward == "chassis" && reverse == "all_sensors")) { continue; } // the endpoint is the board entry provided by // Entity-Manager. so let's grab its properties if it has // the right interface. // just try grabbing the properties first. ipmi::PropertyMap::iterator entityIdProp; ipmi::PropertyMap::iterator entityInstanceProp; if (ipmiDecoratorPaths.contains(endpoint)) { std::map ipmiProperties = getEntityManagerProperties( endpoint.c_str(), "xyz.openbmc_project.Inventory.Decorator.Ipmi"); entityIdProp = ipmiProperties.find("EntityId"); entityInstanceProp = ipmiProperties.find("EntityInstance"); if (entityIdProp != ipmiProperties.end()) { entityId = static_cast( std::get(entityIdProp->second)); } if (entityInstanceProp != ipmiProperties.end()) { entityInstance = static_cast( std::get(entityInstanceProp->second)); } } // Now check the entity-manager entry for this sensor to see // if it has its own value and use that instead. // // In theory, checking this first saves us from checking // both, except in most use-cases identified, there won't be // a per sensor override, so we need to always check both. std::string sensorNameFromPath = fs::path(path).filename(); std::string sensorConfigPath = endpoint + "/" + sensorNameFromPath; // Download the interfaces for the sensor from // Entity-Manager to find the name of the configuration // interface. std::map> sensorInterfacesResponse = getObjectInterfaces(sensorConfigPath.c_str()); const std::string* configurationInterface = getSensorConfigurationInterface(sensorInterfacesResponse); // If there are multi association path settings and only one path exist, // we need to continue if cannot find configuration interface for this // sensor. if (!configurationInterface) { continue; } // We found a configuration interface. std::map configurationProperties = getEntityManagerProperties(sensorConfigPath.c_str(), configurationInterface->c_str()); entityIdProp = configurationProperties.find("EntityId"); entityInstanceProp = configurationProperties.find("EntityInstance"); if (entityIdProp != configurationProperties.end()) { entityId = static_cast(std::get(entityIdProp->second)); } if (entityInstanceProp != configurationProperties.end()) { entityInstance = static_cast( std::get(entityInstanceProp->second)); } // stop searching Association records. break; } // end for Association vectors. if constexpr (debug) { std::fprintf(stderr, "path=%s, entityId=%d, entityInstance=%d\n", path.c_str(), entityId, entityInstance); } } } // namespace ipmi