/* * File: EINTR_wrappers.c * * This file implements the wrapper functions for some of the System APIs * * Copyright (C) <2019> * */ #include "EINTR_wrappers.h" #if defined(__linux__) #include #include #endif #include #include static const int OneSecondasNS = 1000000000; #ifndef bool typedef int bool; #endif #ifndef TRUE #define TRUE (1) #endif #ifndef FALSE #define FALSE (0) #endif typedef struct { bool OnePoll; struct timespec EndTime, Timeout; } SIGWRAP_TIMEOUT; static void sigwrap_InitTimeout(SIGWRAP_TIMEOUT *pDst, const struct timespec *timeout) { pDst->Timeout = *timeout; if ((timeout->tv_sec == 0) && (timeout->tv_nsec == 0)) // If both value are zero than only a single poll is requested! { pDst->OnePoll = 1; return; } pDst->OnePoll = 0; struct timespec Now; (void)clock_gettime(CLOCK_MONOTONIC_RAW, &Now); // CLOCK_MONOTONIC_RAW is not affected by NTP etc. pDst->EndTime.tv_sec = Now.tv_sec + pDst->Timeout.tv_sec; // Check necessary in 2038 due to signed integer variables pDst->EndTime.tv_nsec = Now.tv_nsec + pDst->Timeout.tv_nsec; if (pDst->EndTime.tv_nsec >= OneSecondasNS) { pDst->EndTime.tv_sec += (pDst->EndTime.tv_nsec / OneSecondasNS); pDst->EndTime.tv_nsec = (pDst->EndTime.tv_nsec % OneSecondasNS); } } static bool sigwrap_CheckTimeout(SIGWRAP_TIMEOUT *pTo) { if (pTo->OnePoll == TRUE) // Make sure, that in the case that a single poll is requested at least one call is not terminated with EINTR return FALSE; struct timespec Now; (void)clock_gettime(CLOCK_MONOTONIC_RAW, &Now); if (Now.tv_sec > pTo->EndTime.tv_sec) // Can become a problem already in 2038 due to signed integer variables return TRUE; pTo->Timeout.tv_nsec = pTo->EndTime.tv_nsec - Now.tv_nsec; pTo->Timeout.tv_sec = pTo->EndTime.tv_sec - Now.tv_sec; if (pTo->Timeout.tv_sec == 0) { if (pTo->Timeout.tv_nsec <= 0) return TRUE; } else if (pTo->Timeout.tv_nsec < 0) { pTo->Timeout.tv_nsec += OneSecondasNS; pTo->Timeout.tv_sec--; } return FALSE; } int sigwrap_semop(int semid, struct sembuf *sops, size_t nsops) { while (1) { if (semop(semid, sops, nsops) == 0) return 0; if (errno != EINTR) return -1; } } #if 0 int sigwrap_semtimedop(int semid, struct sembuf *sops, size_t nsops, const struct timespec *timeout) { SIGWRAP_TIMEOUT To; if (timeout == NULL) return (sigwrap_semop(semid, sops, nsops)); sigwrap_InitTimeout(&To, timeout); while (1) { if (semtimedop(semid, sops, nsops, &To.Timeout) == 0) return 0; if (errno != EINTR) return -1; if (sigwrap_CheckTimeout(&To)) { errno = EAGAIN; return -1; } } } #endif int sigwrap_epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout) { SIGWRAP_TIMEOUT To; if (timeout != -1) { struct timespec Timeout; Timeout.tv_sec = timeout / 1000; Timeout.tv_nsec = (timeout % 1000) * 1000000; // Convert msec to nsec sigwrap_InitTimeout(&To, &Timeout); } while (1) { int Result = epoll_wait(epfd, events, maxevents, timeout); if (Result != -1) return Result; if (errno != EINTR) return Result; if (timeout == -1) continue; if (sigwrap_CheckTimeout(&To)) return 0; timeout = To.Timeout.tv_sec * 1000 + To.Timeout.tv_nsec / 1000000; } } int sigwrap_epoll_pwait(int epfd, struct epoll_event *events, int maxevents, int timeout, const sigset_t *sigmask) { SIGWRAP_TIMEOUT To; if (timeout != -1) { struct timespec Timeout; Timeout.tv_sec = timeout / 1000; Timeout.tv_nsec = (timeout % 1000) * 1000000; // Convert msec to nsec sigwrap_InitTimeout(&To, &Timeout); } while (1) { int Result = epoll_pwait(epfd, events, maxevents, timeout, sigmask); if (Result != -1) return Result; if (errno != EINTR) return Result; if (timeout == -1) continue; if (sigwrap_CheckTimeout(&To)) return 0; timeout = To.Timeout.tv_sec * 1000 + To.Timeout.tv_nsec / 1000000; } } int sigwrap_sigwaitinfo(const sigset_t *set, siginfo_t *info) { while (1) { int Result = sigwaitinfo(set, info); if (Result != -1) return Result; if (errno != EINTR) return Result; } } int sigwrap_sigtimedwait(const sigset_t *set, siginfo_t *info, const struct timespec *timeout) { SIGWRAP_TIMEOUT To; sigwrap_InitTimeout(&To, timeout); while (1) { int Result = sigtimedwait(set, info, &To.Timeout); if (Result != -1) return Result; if (errno != EINTR) return Result; if (sigwrap_CheckTimeout(&To)) return 0; } } int sigwrap_nanosleep(const struct timespec *req, struct timespec *rem) { struct timespec Wait, Remain; if (!rem) rem = &Remain; Wait = *req; while (1) { if (nanosleep(&Wait, rem) == 0) return 0; if (errno != EINTR) return -1; Wait = *rem; } } int sigwrap_clock_nanosleep(clockid_t clock_id, int flags, const struct timespec *request, struct timespec *remain) { struct timespec Wait, Remain; if (!remain) remain = &Remain; Wait = *request; while (1) { int Result = clock_nanosleep(clock_id, flags, &Wait, remain); if (Result == 0) return Result; if (Result != EINTR) return Result; if (flags != TIMER_ABSTIME) Wait = *remain; } } int sigwrap_usleep(useconds_t usec) { SIGWRAP_TIMEOUT To; struct timespec Timeout; Timeout.tv_sec = usec / 1000000; Timeout.tv_nsec = (usec % 1000000) * 1000; sigwrap_InitTimeout(&To, &Timeout); while (1) { if (usleep(usec) == 0) return 0; if (errno != EINTR) return -1; if (sigwrap_CheckTimeout(&To)) return 0; usec = To.Timeout.tv_sec * 1000000 + To.Timeout.tv_nsec / 1000; } } int sigwrap_poll(struct pollfd *fds, nfds_t nfds, int timeout) { SIGWRAP_TIMEOUT To; if (timeout > 0) { struct timespec Timeout; Timeout.tv_sec = timeout / 1000; Timeout.tv_nsec = (timeout % 1000) * 1000000; sigwrap_InitTimeout(&To, &Timeout); } while (1) { int Result = poll(fds, nfds, timeout); if (Result != -1) return Result; if (errno != EINTR) return Result; if (timeout < 0) // Specifying a negative value in timeout means an infinite/no timeout. continue; else if (timeout == 0) continue; // We want to make sure that at least one check was not aborted with EINTR if (sigwrap_CheckTimeout(&To)) return 0; timeout = To.Timeout.tv_sec * 1000 + To.Timeout.tv_nsec / 1000000; } } #if 0 int sigwrap_ppoll(struct pollfd *fds, nfds_t nfds, const struct timespec *tmo_p, const sigset_t *sigmask) { SIGWRAP_TIMEOUT To; if (tmo_p != NULL) { sigwrap_InitTimeout(&To, tmo_p); tmo_p = &To.Timeout; } while (1) { int Result = ppoll(fds, nfds, tmo_p, sigmask); if (Result != -1) return Result; if (errno != EINTR) return Result; if (tmo_p == NULL) continue; if (sigwrap_CheckTimeout(&To)) return 0; } } #endif int sigwrap_select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout) { while (1) { int Result = select(nfds, readfds, writefds, exceptfds, timeout); if (Result != -1) return Result; if (errno != EINTR) return Result; } } int sigwrap_pselect(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, const struct timespec *timeout, const sigset_t *sigmask) { SIGWRAP_TIMEOUT To; if (timeout != NULL) { sigwrap_InitTimeout(&To, timeout); timeout = &To.Timeout; } while (1) { int Result = pselect(nfds, readfds, writefds, exceptfds, timeout, sigmask); if (Result != -1) return Result; if (errno != EINTR) return Result; if (timeout == NULL) continue; if (sigwrap_CheckTimeout(&To)) return 0; } } int sigwrap_msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg) { while (1) { int Result = msgsnd(msqid, msgp, msgsz, msgflg); if (Result != -1) return Result; if (errno != EINTR) return Result; } } ssize_t sigwrap_msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg) { while (1) { ssize_t Result = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg); if (Result != -1) return Result; if (errno != EINTR) return Result; } } int sigwrap_connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen) { while (1) { int Result = connect(sockfd, addr, addrlen); if (Result != -1) return Result; if (errno != EINTR) return Result; } } ssize_t sigwrap_send(int sockfd, const void *buf, size_t len, int flags) { while (1) { ssize_t Result = send(sockfd, buf, len, flags); if (Result != -1) return Result; if (errno != EINTR) return Result; } } ssize_t sigwrap_sendto(int sockfd, const void *buf, size_t len, int flags, const struct sockaddr *dest_addr, socklen_t addrlen) { while (1) { ssize_t Result = sendto(sockfd, buf, len, flags, dest_addr, addrlen); if (Result != -1) return Result; if (errno != EINTR) return Result; } } ssize_t sigwrap_sendsendmsg(int sockfd, const struct msghdr *msg, int flags) { while (1) { ssize_t Result = sendmsg(sockfd, msg, flags); if (Result != -1) return Result; if (errno != EINTR) return Result; } } int sigwrap_accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen) { while (1) { int Result = accept(sockfd, addr, addrlen); if (Result != -1) return Result; if (errno != EINTR) return Result; } } #if 0 int sigwrap_accept4(int sockfd, struct sockaddr *addr, socklen_t *addrlen, int flags) { while (1) { int Result = accept4(sockfd, addr, addrlen, flags); if (Result != -1) return Result; if (errno != EINTR) return Result; } } #endif // EINTR wrapper for the standard read() function. Can be used for sockets that are the to non-blocking mode. // The length of the returned data can be shorter than the requested one! ssize_t sigwrap_read(int fd, void *buf, size_t count) { while (1) { ssize_t Result = read(fd, buf, count); if (Result != -1) return (Result); if (errno != EINTR) return (Result); } } // EINTR wrapper for the standard read() function. Waits until ALL requested data is available. Use the non-blocking version (sigwrap_read) // for sockets that are set to non-blocking mode or when partial data is okay // Although the description for the read() function describes it differently, it seems possible that the original function may already return // even though partial data has already been read. This implementation makes sure that all requested data have been read. // See the comment in the signal description https://linux.die.net/man/7/signal //* read(2), readv(2), write(2), writev(2), and ioctl(2) calls on "slow" devices. //* A "slow" device is one where the I/O call may block for an indefinite time, for example, a terminal, pipe, or socket. //* (A disk is not a slow device according to this definition.) If an I/O call on a slow device has already transferred //* some data by the time it is interrupted by a signal handler, then the call will return a success status (normally, the number of bytes transferred). ssize_t sigwrap_blocking_read(int hFile, void *pData, size_t RdLen) { ssize_t Transfered; ssize_t Len = RdLen; while ((Transfered = read(hFile, pData, Len)) != Len) { if (Transfered == 0) // EOF reached? return 0; if (Transfered != -1) { pData += Transfered; Len -= Transfered; continue; } if (errno != EINTR) return -1; } return RdLen; } ssize_t sigwrap_readv(int fd, const struct iovec *iov, int iovcnt) { while (1) { ssize_t Result = readv(fd, iov, iovcnt); if (Result != -1) return (Result); if (errno != EINTR) return (Result); } } ssize_t sigwrap_recv(int sockfd, void *buf, size_t len, int flags) { while (1) { ssize_t Result = recv(sockfd, buf, len, flags); if (Result != -1) return (Result); if (errno != EINTR) return (Result); } } ssize_t sigwrap_recvfrom(int sockfd, void *buf, size_t len, int flags, struct sockaddr *src_addr, socklen_t *addrlen) { while (1) { ssize_t Result = recvfrom(sockfd, buf, len, flags, src_addr, addrlen); if (Result != -1) return (Result); if (errno != EINTR) return (Result); } } ssize_t sigwrap_recvmsg(int sockfd, struct msghdr *msg, int flags) { while (1) { ssize_t Result = recvmsg(sockfd, msg, flags); if (Result != -1) return (Result); if (errno != EINTR) return (Result); } } // EINTR wrapper for the standard write() function. Can be used for sockets that are the to non-blocking mode. // The length of the effectively written data can be shorter than the length specified at the function call! ssize_t sigwrap_write(int fd, const void *buf, size_t count) { while (1) { ssize_t Result = write(fd, buf, count); if (Result != -1) return (Result); if (errno != EINTR) return (Result); } } // EINTR wrapper for the standard write() function. Waits until ALL data is written! Use the non-blocking version (sigwrap_write) // for sockets that are set to non-blocking mode, or when it is OK to write only partial data. // Although the description for the write() function describes it differently, it seems possible that the original function may already return // even though partial data has already been written. This implementation makes sure that all requested data have been written. // See the comment in the signal description https://linux.die.net/man/7/signal //* read(2), readv(2), write(2), writev(2), and ioctl(2) calls on "slow" devices. //* A "slow" device is one where the I/O call may block for an indefinite time, for example, a terminal, pipe, or socket. //* (A disk is not a slow device according to this definition.) If an I/O call on a slow device has already transferred //* some data by the time it is interrupted by a signal handler, then the call will return a success status (normally, the number of bytes transferred). ssize_t sigwrap_blocking_write(int hFile, const void *pData, ssize_t WrtLen) { ssize_t Written; ssize_t Len = WrtLen; while ((Written = write(hFile, pData, Len)) != Len) { if (Written != -1) { pData += Written; Len -= Written; continue; } if (errno != EINTR) return -1; } return WrtLen; } ssize_t sigwrap_writev(int fd, const struct iovec *iov, int iovcnt) { while (1) { ssize_t Result = writev(fd, iov, iovcnt); if (Result != -1) return (Result); if (errno != EINTR) return (Result); } } int sigwrap_close(int hFile) { while (close(hFile) == -1) { if (errno != EINTR) return -1; } return 0; } int sigwrap_open_mode(const char *pathname, int flags, mode_t mode) { while (1) { int hFile = open(pathname, flags, mode); if(hFile != -1) return hFile; if (errno != EINTR) return hFile; } } int sigwrap_open(const char *pathname, int flags) { while (1) { int hFile = open(pathname, flags); if(hFile != -1) return hFile; if (errno != EINTR) return hFile; } } pid_t sigwrap_wait(int *status) { while(1) { pid_t Result = wait(status); if(Result != -1) return Result; if(errno != EINTR) return Result; } } pid_t sigwrap_waitpid(pid_t pid, int *status, int options) { while(1) { pid_t Result = waitpid(pid, status, options); if(Result != -1) return Result; if(errno != EINTR) return Result; } } int sigwrap_waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options) { while(1) { int Result = waitid(idtype, id, infop, options); if(Result != -1) return Result; if(errno != EINTR) return Result; } } int sigwrap_flock(int fd, int operation) { while(1) { int Result = flock(fd, operation); if(Result != -1) return Result; if(errno != EINTR) return Result; } }