#!/bin/bash # SPDX-License-Identifier: GPL-2.0 # # author: Andrea Mayer # # This script is designed for testing the SRv6 H.Encaps.Red behavior. # # Below is depicted the IPv6 network of an operator which offers advanced # IPv4/IPv6 VPN services to hosts, enabling them to communicate with each # other. # In this example, hosts hs-1 and hs-2 are connected through an IPv4/IPv6 VPN # service, while hs-3 and hs-4 are connected using an IPv6 only VPN. # # Routers rt-1,rt-2,rt-3 and rt-4 implement IPv4/IPv6 L3 VPN services # leveraging the SRv6 architecture. The key components for such VPNs are: # # i) The SRv6 H.Encaps.Red behavior applies SRv6 Policies on traffic received # by connected hosts, initiating the VPN tunnel. Such a behavior is an # optimization of the SRv6 H.Encap aiming to reduce the length of the SID # List carried in the pushed SRH. Specifically, the H.Encaps.Red removes # the first SID contained in the SID List (i.e. SRv6 Policy) by storing it # into the IPv6 Destination Address. When a SRv6 Policy is made of only one # SID, the SRv6 H.Encaps.Red behavior omits the SRH at all and pushes that # SID directly into the IPv6 DA; # # ii) The SRv6 End behavior advances the active SID in the SID List carried by # the SRH; # # iii) The SRv6 End.DT46 behavior is used for removing the SRv6 Policy and, # thus, it terminates the VPN tunnel. Such a behavior is capable of # handling, at the same time, both tunneled IPv4 and IPv6 traffic. # # # cafe::1 cafe::2 # 10.0.0.1 10.0.0.2 # +--------+ +--------+ # | | | | # | hs-1 | | hs-2 | # | | | | # +---+----+ +--- +---+ # cafe::/64 | | cafe::/64 # 10.0.0.0/24 | | 10.0.0.0/24 # +---+----+ +----+---+ # | | fcf0:0:1:2::/64 | | # | rt-1 +-------------------+ rt-2 | # | | | | # +---+----+ +----+---+ # | . . | # | fcf0:0:1:3::/64 . | # | . . | # | . . | # fcf0:0:1:4::/64 | . | fcf0:0:2:3::/64 # | . . | # | . . | # | fcf0:0:2:4::/64 . | # | . . | # +---+----+ +----+---+ # | | | | # | rt-4 +-------------------+ rt-3 | # | | fcf0:0:3:4::/64 | | # +---+----+ +----+---+ # cafe::/64 | | cafe::/64 # 10.0.0.0/24 | | 10.0.0.0/24 # +---+----+ +--- +---+ # | | | | # | hs-4 | | hs-3 | # | | | | # +--------+ +--------+ # cafe::4 cafe::3 # 10.0.0.4 10.0.0.3 # # # Every fcf0:0:x:y::/64 network interconnects the SRv6 routers rt-x with rt-y # in the IPv6 operator network. # # Local SID table # =============== # # Each SRv6 router is configured with a Local SID table in which SIDs are # stored. Considering the given SRv6 router rt-x, at least two SIDs are # configured in the Local SID table: # # Local SID table for SRv6 router rt-x # +----------------------------------------------------------+ # |fcff:x::e is associated with the SRv6 End behavior | # |fcff:x::d46 is associated with the SRv6 End.DT46 behavior | # +----------------------------------------------------------+ # # The fcff::/16 prefix is reserved by the operator for implementing SRv6 VPN # services. Reachability of SIDs is ensured by proper configuration of the IPv6 # operator's network and SRv6 routers. # # # SRv6 Policies # =============== # # An SRv6 ingress router applies SRv6 policies to the traffic received from a # connected host. SRv6 policy enforcement consists of encapsulating the # received traffic into a new IPv6 packet with a given SID List contained in # the SRH. # # IPv4/IPv6 VPN between hs-1 and hs-2 # ----------------------------------- # # Hosts hs-1 and hs-2 are connected using dedicated IPv4/IPv6 VPNs. # Specifically, packets generated from hs-1 and directed towards hs-2 are # handled by rt-1 which applies the following SRv6 Policies: # # i.a) IPv6 traffic, SID List=fcff:3::e,fcff:4::e,fcff:2::d46 # ii.a) IPv4 traffic, SID List=fcff:2::d46 # # Policy (i.a) steers tunneled IPv6 traffic through SRv6 routers # rt-3,rt-4,rt-2. Instead, Policy (ii.a) steers tunneled IPv4 traffic through # rt-2. # The H.Encaps.Red reduces the SID List (i.a) carried in SRH by removing the # first SID (fcff:3::e) and pushing it into the IPv6 DA. In case of IPv4 # traffic, the H.Encaps.Red omits the presence of SRH at all, since the SID # List (ii.a) consists of only one SID that can be stored directly in the IPv6 # DA. # # On the reverse path (i.e. from hs-2 to hs-1), rt-2 applies the following # policies: # # i.b) IPv6 traffic, SID List=fcff:1::d46 # ii.b) IPv4 traffic, SID List=fcff:4::e,fcff:3::e,fcff:1::d46 # # Policy (i.b) steers tunneled IPv6 traffic through the SRv6 router rt-1. # Conversely, Policy (ii.b) steers tunneled IPv4 traffic through SRv6 routers # rt-4,rt-3,rt-1. # The H.Encaps.Red omits the SRH at all in case of (i.b) by pushing the single # SID (fcff::1::d46) inside the IPv6 DA. # The H.Encaps.Red reduces the SID List (ii.b) in the SRH by removing the first # SID (fcff:4::e) and pushing it into the IPv6 DA. # # In summary: # hs-1->hs-2 |IPv6 DA=fcff:3::e|SRH SIDs=fcff:4::e,fcff:2::d46|IPv6|...| (i.a) # hs-1->hs-2 |IPv6 DA=fcff:2::d46|IPv4|...| (ii.a) # # hs-2->hs-1 |IPv6 DA=fcff:1::d46|IPv6|...| (i.b) # hs-2->hs-1 |IPv6 DA=fcff:4::e|SRH SIDs=fcff:3::e,fcff:1::d46|IPv4|...| (ii.b) # # # IPv6 VPN between hs-3 and hs-4 # ------------------------------ # # Hosts hs-3 and hs-4 are connected using a dedicated IPv6 only VPN. # Specifically, packets generated from hs-3 and directed towards hs-4 are # handled by rt-3 which applies the following SRv6 Policy: # # i.c) IPv6 traffic, SID List=fcff:2::e,fcff:4::d46 # # Policy (i.c) steers tunneled IPv6 traffic through SRv6 routers rt-2,rt-4. # The H.Encaps.Red reduces the SID List (i.c) carried in SRH by pushing the # first SID (fcff:2::e) in the IPv6 DA. # # On the reverse path (i.e. from hs-4 to hs-3) the router rt-4 applies the # following SRv6 Policy: # # i.d) IPv6 traffic, SID List=fcff:1::e,fcff:3::d46. # # Policy (i.d) steers tunneled IPv6 traffic through SRv6 routers rt-1,rt-3. # The H.Encaps.Red reduces the SID List (i.d) carried in SRH by pushing the # first SID (fcff:1::e) in the IPv6 DA. # # In summary: # hs-3->hs-4 |IPv6 DA=fcff:2::e|SRH SIDs=fcff:4::d46|IPv6|...| (i.c) # hs-4->hs-3 |IPv6 DA=fcff:1::e|SRH SIDs=fcff:3::d46|IPv6|...| (i.d) # # Kselftest framework requirement - SKIP code is 4. readonly ksft_skip=4 readonly RDMSUFF="$(mktemp -u XXXXXXXX)" readonly VRF_TID=100 readonly VRF_DEVNAME="vrf-${VRF_TID}" readonly RT2HS_DEVNAME="veth-t${VRF_TID}" readonly LOCALSID_TABLE_ID=90 readonly IPv6_RT_NETWORK=fcf0:0 readonly IPv6_HS_NETWORK=cafe readonly IPv4_HS_NETWORK=10.0.0 readonly VPN_LOCATOR_SERVICE=fcff readonly END_FUNC=000e readonly DT46_FUNC=0d46 PING_TIMEOUT_SEC=4 PAUSE_ON_FAIL=${PAUSE_ON_FAIL:=no} # IDs of routers and hosts are initialized during the setup of the testing # network ROUTERS='' HOSTS='' SETUP_ERR=1 ret=${ksft_skip} nsuccess=0 nfail=0 log_test() { local rc="$1" local expected="$2" local msg="$3" if [ "${rc}" -eq "${expected}" ]; then nsuccess=$((nsuccess+1)) printf "\n TEST: %-60s [ OK ]\n" "${msg}" else ret=1 nfail=$((nfail+1)) printf "\n TEST: %-60s [FAIL]\n" "${msg}" if [ "${PAUSE_ON_FAIL}" = "yes" ]; then echo echo "hit enter to continue, 'q' to quit" read a [ "$a" = "q" ] && exit 1 fi fi } print_log_test_results() { printf "\nTests passed: %3d\n" "${nsuccess}" printf "Tests failed: %3d\n" "${nfail}" # when a test fails, the value of 'ret' is set to 1 (error code). # Conversely, when all tests are passed successfully, the 'ret' value # is set to 0 (success code). if [ "${ret}" -ne 1 ]; then ret=0 fi } log_section() { echo echo "################################################################################" echo "TEST SECTION: $*" echo "################################################################################" } test_command_or_ksft_skip() { local cmd="$1" if [ ! -x "$(command -v "${cmd}")" ]; then echo "SKIP: Could not run test without \"${cmd}\" tool"; exit "${ksft_skip}" fi } get_nodename() { local name="$1" echo "${name}-${RDMSUFF}" } get_rtname() { local rtid="$1" get_nodename "rt-${rtid}" } get_hsname() { local hsid="$1" get_nodename "hs-${hsid}" } __create_namespace() { local name="$1" ip netns add "${name}" } create_router() { local rtid="$1" local nsname nsname="$(get_rtname "${rtid}")" __create_namespace "${nsname}" } create_host() { local hsid="$1" local nsname nsname="$(get_hsname "${hsid}")" __create_namespace "${nsname}" } cleanup() { local nsname local i # destroy routers for i in ${ROUTERS}; do nsname="$(get_rtname "${i}")" ip netns del "${nsname}" &>/dev/null || true done # destroy hosts for i in ${HOSTS}; do nsname="$(get_hsname "${i}")" ip netns del "${nsname}" &>/dev/null || true done # check whether the setup phase was completed successfully or not. In # case of an error during the setup phase of the testing environment, # the selftest is considered as "skipped". if [ "${SETUP_ERR}" -ne 0 ]; then echo "SKIP: Setting up the testing environment failed" exit "${ksft_skip}" fi exit "${ret}" } add_link_rt_pairs() { local rt="$1" local rt_neighs="$2" local neigh local nsname local neigh_nsname nsname="$(get_rtname "${rt}")" for neigh in ${rt_neighs}; do neigh_nsname="$(get_rtname "${neigh}")" ip link add "veth-rt-${rt}-${neigh}" netns "${nsname}" \ type veth peer name "veth-rt-${neigh}-${rt}" \ netns "${neigh_nsname}" done } get_network_prefix() { local rt="$1" local neigh="$2" local p="${rt}" local q="${neigh}" if [ "${p}" -gt "${q}" ]; then p="${q}"; q="${rt}" fi echo "${IPv6_RT_NETWORK}:${p}:${q}" } # Setup the basic networking for the routers setup_rt_networking() { local rt="$1" local rt_neighs="$2" local nsname local net_prefix local devname local neigh nsname="$(get_rtname "${rt}")" for neigh in ${rt_neighs}; do devname="veth-rt-${rt}-${neigh}" net_prefix="$(get_network_prefix "${rt}" "${neigh}")" ip -netns "${nsname}" addr \ add "${net_prefix}::${rt}/64" dev "${devname}" nodad ip -netns "${nsname}" link set "${devname}" up done ip -netns "${nsname}" link set lo up ip netns exec "${nsname}" sysctl -wq net.ipv6.conf.all.accept_dad=0 ip netns exec "${nsname}" sysctl -wq net.ipv6.conf.default.accept_dad=0 ip netns exec "${nsname}" sysctl -wq net.ipv6.conf.all.forwarding=1 ip netns exec "${nsname}" sysctl -wq net.ipv4.conf.all.rp_filter=0 ip netns exec "${nsname}" sysctl -wq net.ipv4.conf.default.rp_filter=0 ip netns exec "${nsname}" sysctl -wq net.ipv4.ip_forward=1 } # Setup local SIDs for an SRv6 router setup_rt_local_sids() { local rt="$1" local rt_neighs="$2" local net_prefix local devname local nsname local neigh nsname="$(get_rtname "${rt}")" for neigh in ${rt_neighs}; do devname="veth-rt-${rt}-${neigh}" net_prefix="$(get_network_prefix "${rt}" "${neigh}")" # set underlay network routes for SIDs reachability ip -netns "${nsname}" -6 route \ add "${VPN_LOCATOR_SERVICE}:${neigh}::/32" \ table "${LOCALSID_TABLE_ID}" \ via "${net_prefix}::${neigh}" dev "${devname}" done # Local End behavior (note that "dev" is dummy and the VRF is chosen # for the sake of simplicity). ip -netns "${nsname}" -6 route \ add "${VPN_LOCATOR_SERVICE}:${rt}::${END_FUNC}" \ table "${LOCALSID_TABLE_ID}" \ encap seg6local action End dev "${VRF_DEVNAME}" # Local End.DT46 behavior ip -netns "${nsname}" -6 route \ add "${VPN_LOCATOR_SERVICE}:${rt}::${DT46_FUNC}" \ table "${LOCALSID_TABLE_ID}" \ encap seg6local action End.DT46 vrftable "${VRF_TID}" \ dev "${VRF_DEVNAME}" # all SIDs for VPNs start with a common locator. Routes and SRv6 # Endpoint behavior instaces are grouped together in the 'localsid' # table. ip -netns "${nsname}" -6 rule \ add to "${VPN_LOCATOR_SERVICE}::/16" \ lookup "${LOCALSID_TABLE_ID}" prio 999 # set default routes to unreachable for both ipv4 and ipv6 ip -netns "${nsname}" -6 route \ add unreachable default metric 4278198272 \ vrf "${VRF_DEVNAME}" ip -netns "${nsname}" -4 route \ add unreachable default metric 4278198272 \ vrf "${VRF_DEVNAME}" } # build and install the SRv6 policy into the ingress SRv6 router. # args: # $1 - destination host (i.e. cafe::x host) # $2 - SRv6 router configured for enforcing the SRv6 Policy # $3 - SRv6 routers configured for steering traffic (End behaviors) # $4 - SRv6 router configured for removing the SRv6 Policy (router connected # to the destination host) # $5 - encap mode (full or red) # $6 - traffic type (IPv6 or IPv4) __setup_rt_policy() { local dst="$1" local encap_rt="$2" local end_rts="$3" local dec_rt="$4" local mode="$5" local traffic="$6" local nsname local policy='' local n nsname="$(get_rtname "${encap_rt}")" for n in ${end_rts}; do policy="${policy}${VPN_LOCATOR_SERVICE}:${n}::${END_FUNC}," done policy="${policy}${VPN_LOCATOR_SERVICE}:${dec_rt}::${DT46_FUNC}" # add SRv6 policy to incoming traffic sent by connected hosts if [ "${traffic}" -eq 6 ]; then ip -netns "${nsname}" -6 route \ add "${IPv6_HS_NETWORK}::${dst}" vrf "${VRF_DEVNAME}" \ encap seg6 mode "${mode}" segs "${policy}" \ dev "${VRF_DEVNAME}" ip -netns "${nsname}" -6 neigh \ add proxy "${IPv6_HS_NETWORK}::${dst}" \ dev "${RT2HS_DEVNAME}" else # "dev" must be different from the one where the packet is # received, otherwise the proxy arp does not work. ip -netns "${nsname}" -4 route \ add "${IPv4_HS_NETWORK}.${dst}" vrf "${VRF_DEVNAME}" \ encap seg6 mode "${mode}" segs "${policy}" \ dev "${VRF_DEVNAME}" fi } # see __setup_rt_policy setup_rt_policy_ipv6() { __setup_rt_policy "$1" "$2" "$3" "$4" "$5" 6 } #see __setup_rt_policy setup_rt_policy_ipv4() { __setup_rt_policy "$1" "$2" "$3" "$4" "$5" 4 } setup_hs() { local hs="$1" local rt="$2" local hsname local rtname hsname="$(get_hsname "${hs}")" rtname="$(get_rtname "${rt}")" ip netns exec "${hsname}" sysctl -wq net.ipv6.conf.all.accept_dad=0 ip netns exec "${hsname}" sysctl -wq net.ipv6.conf.default.accept_dad=0 ip -netns "${hsname}" link add veth0 type veth \ peer name "${RT2HS_DEVNAME}" netns "${rtname}" ip -netns "${hsname}" addr \ add "${IPv6_HS_NETWORK}::${hs}/64" dev veth0 nodad ip -netns "${hsname}" addr add "${IPv4_HS_NETWORK}.${hs}/24" dev veth0 ip -netns "${hsname}" link set veth0 up ip -netns "${hsname}" link set lo up # configure the VRF on the router which is directly connected to the # source host. ip -netns "${rtname}" link \ add "${VRF_DEVNAME}" type vrf table "${VRF_TID}" ip -netns "${rtname}" link set "${VRF_DEVNAME}" up # enslave the veth interface connecting the router with the host to the # VRF in the access router ip -netns "${rtname}" link \ set "${RT2HS_DEVNAME}" master "${VRF_DEVNAME}" ip -netns "${rtname}" addr \ add "${IPv6_HS_NETWORK}::254/64" dev "${RT2HS_DEVNAME}" nodad ip -netns "${rtname}" addr \ add "${IPv4_HS_NETWORK}.254/24" dev "${RT2HS_DEVNAME}" ip -netns "${rtname}" link set "${RT2HS_DEVNAME}" up ip netns exec "${rtname}" \ sysctl -wq net.ipv6.conf."${RT2HS_DEVNAME}".proxy_ndp=1 ip netns exec "${rtname}" \ sysctl -wq net.ipv4.conf."${RT2HS_DEVNAME}".proxy_arp=1 # disable the rp_filter otherwise the kernel gets confused about how # to route decap ipv4 packets. ip netns exec "${rtname}" \ sysctl -wq net.ipv4.conf."${RT2HS_DEVNAME}".rp_filter=0 ip netns exec "${rtname}" sh -c "echo 1 > /proc/sys/net/vrf/strict_mode" } setup() { local i # create routers ROUTERS="1 2 3 4"; readonly ROUTERS for i in ${ROUTERS}; do create_router "${i}" done # create hosts HOSTS="1 2 3 4"; readonly HOSTS for i in ${HOSTS}; do create_host "${i}" done # set up the links for connecting routers add_link_rt_pairs 1 "2 3 4" add_link_rt_pairs 2 "3 4" add_link_rt_pairs 3 "4" # set up the basic connectivity of routers and routes required for # reachability of SIDs. setup_rt_networking 1 "2 3 4" setup_rt_networking 2 "1 3 4" setup_rt_networking 3 "1 2 4" setup_rt_networking 4 "1 2 3" # set up the hosts connected to routers setup_hs 1 1 setup_hs 2 2 setup_hs 3 3 setup_hs 4 4 # set up default SRv6 Endpoints (i.e. SRv6 End and SRv6 End.DT46) setup_rt_local_sids 1 "2 3 4" setup_rt_local_sids 2 "1 3 4" setup_rt_local_sids 3 "1 2 4" setup_rt_local_sids 4 "1 2 3" # set up SRv6 policies # create an IPv6 VPN between hosts hs-1 and hs-2. # the network path between hs-1 and hs-2 traverses several routers # depending on the direction of traffic. # # Direction hs-1 -> hs-2 (H.Encaps.Red) # - rt-3,rt-4 (SRv6 End behaviors) # - rt-2 (SRv6 End.DT46 behavior) # # Direction hs-2 -> hs-1 (H.Encaps.Red) # - rt-1 (SRv6 End.DT46 behavior) setup_rt_policy_ipv6 2 1 "3 4" 2 encap.red setup_rt_policy_ipv6 1 2 "" 1 encap.red # create an IPv4 VPN between hosts hs-1 and hs-2 # the network path between hs-1 and hs-2 traverses several routers # depending on the direction of traffic. # # Direction hs-1 -> hs-2 (H.Encaps.Red) # - rt-2 (SRv6 End.DT46 behavior) # # Direction hs-2 -> hs-1 (H.Encaps.Red) # - rt-4,rt-3 (SRv6 End behaviors) # - rt-1 (SRv6 End.DT46 behavior) setup_rt_policy_ipv4 2 1 "" 2 encap.red setup_rt_policy_ipv4 1 2 "4 3" 1 encap.red # create an IPv6 VPN between hosts hs-3 and hs-4 # the network path between hs-3 and hs-4 traverses several routers # depending on the direction of traffic. # # Direction hs-3 -> hs-4 (H.Encaps.Red) # - rt-2 (SRv6 End Behavior) # - rt-4 (SRv6 End.DT46 behavior) # # Direction hs-4 -> hs-3 (H.Encaps.Red) # - rt-1 (SRv6 End behavior) # - rt-3 (SRv6 End.DT46 behavior) setup_rt_policy_ipv6 4 3 "2" 4 encap.red setup_rt_policy_ipv6 3 4 "1" 3 encap.red # testing environment was set up successfully SETUP_ERR=0 } check_rt_connectivity() { local rtsrc="$1" local rtdst="$2" local prefix local rtsrc_nsname rtsrc_nsname="$(get_rtname "${rtsrc}")" prefix="$(get_network_prefix "${rtsrc}" "${rtdst}")" ip netns exec "${rtsrc_nsname}" ping -c 1 -W "${PING_TIMEOUT_SEC}" \ "${prefix}::${rtdst}" >/dev/null 2>&1 } check_and_log_rt_connectivity() { local rtsrc="$1" local rtdst="$2" check_rt_connectivity "${rtsrc}" "${rtdst}" log_test $? 0 "Routers connectivity: rt-${rtsrc} -> rt-${rtdst}" } check_hs_ipv6_connectivity() { local hssrc="$1" local hsdst="$2" local hssrc_nsname hssrc_nsname="$(get_hsname "${hssrc}")" ip netns exec "${hssrc_nsname}" ping -c 1 -W "${PING_TIMEOUT_SEC}" \ "${IPv6_HS_NETWORK}::${hsdst}" >/dev/null 2>&1 } check_hs_ipv4_connectivity() { local hssrc="$1" local hsdst="$2" local hssrc_nsname hssrc_nsname="$(get_hsname "${hssrc}")" ip netns exec "${hssrc_nsname}" ping -c 1 -W "${PING_TIMEOUT_SEC}" \ "${IPv4_HS_NETWORK}.${hsdst}" >/dev/null 2>&1 } check_and_log_hs2gw_connectivity() { local hssrc="$1" check_hs_ipv6_connectivity "${hssrc}" 254 log_test $? 0 "IPv6 Hosts connectivity: hs-${hssrc} -> gw" check_hs_ipv4_connectivity "${hssrc}" 254 log_test $? 0 "IPv4 Hosts connectivity: hs-${hssrc} -> gw" } check_and_log_hs_ipv6_connectivity() { local hssrc="$1" local hsdst="$2" check_hs_ipv6_connectivity "${hssrc}" "${hsdst}" log_test $? 0 "IPv6 Hosts connectivity: hs-${hssrc} -> hs-${hsdst}" } check_and_log_hs_ipv4_connectivity() { local hssrc="$1" local hsdst="$2" check_hs_ipv4_connectivity "${hssrc}" "${hsdst}" log_test $? 0 "IPv4 Hosts connectivity: hs-${hssrc} -> hs-${hsdst}" } check_and_log_hs_connectivity() { local hssrc="$1" local hsdst="$2" check_and_log_hs_ipv4_connectivity "${hssrc}" "${hsdst}" check_and_log_hs_ipv6_connectivity "${hssrc}" "${hsdst}" } check_and_log_hs_ipv6_isolation() { local hssrc="$1" local hsdst="$2" # in this case, the connectivity test must fail check_hs_ipv6_connectivity "${hssrc}" "${hsdst}" log_test $? 1 "IPv6 Hosts isolation: hs-${hssrc} -X-> hs-${hsdst}" } check_and_log_hs_ipv4_isolation() { local hssrc="$1" local hsdst="$2" # in this case, the connectivity test must fail check_hs_ipv4_connectivity "${hssrc}" "${hsdst}" log_test $? 1 "IPv4 Hosts isolation: hs-${hssrc} -X-> hs-${hsdst}" } check_and_log_hs_isolation() { local hssrc="$1" local hsdst="$2" check_and_log_hs_ipv6_isolation "${hssrc}" "${hsdst}" check_and_log_hs_ipv4_isolation "${hssrc}" "${hsdst}" } router_tests() { local i local j log_section "IPv6 routers connectivity test" for i in ${ROUTERS}; do for j in ${ROUTERS}; do if [ "${i}" -eq "${j}" ]; then continue fi check_and_log_rt_connectivity "${i}" "${j}" done done } host2gateway_tests() { local hs log_section "IPv4/IPv6 connectivity test among hosts and gateways" for hs in ${HOSTS}; do check_and_log_hs2gw_connectivity "${hs}" done } host_vpn_tests() { log_section "SRv6 VPN connectivity test hosts (h1 <-> h2, IPv4/IPv6)" check_and_log_hs_connectivity 1 2 check_and_log_hs_connectivity 2 1 log_section "SRv6 VPN connectivity test hosts (h3 <-> h4, IPv6 only)" check_and_log_hs_ipv6_connectivity 3 4 check_and_log_hs_ipv6_connectivity 4 3 } host_vpn_isolation_tests() { local l1="1 2" local l2="3 4" local tmp local i local j local k log_section "SRv6 VPN isolation test among hosts" for k in 0 1; do for i in ${l1}; do for j in ${l2}; do check_and_log_hs_isolation "${i}" "${j}" done done # let us test the reverse path tmp="${l1}"; l1="${l2}"; l2="${tmp}" done log_section "SRv6 VPN isolation test among hosts (h2 <-> h4, IPv4 only)" check_and_log_hs_ipv4_isolation 2 4 check_and_log_hs_ipv4_isolation 4 2 } test_iproute2_supp_or_ksft_skip() { if ! ip route help 2>&1 | grep -qo "encap.red"; then echo "SKIP: Missing SRv6 encap.red support in iproute2" exit "${ksft_skip}" fi } test_vrf_or_ksft_skip() { modprobe vrf &>/dev/null || true if [ ! -e /proc/sys/net/vrf/strict_mode ]; then echo "SKIP: vrf sysctl does not exist" exit "${ksft_skip}" fi } if [ "$(id -u)" -ne 0 ]; then echo "SKIP: Need root privileges" exit "${ksft_skip}" fi # required programs to carry out this selftest test_command_or_ksft_skip ip test_command_or_ksft_skip ping test_command_or_ksft_skip sysctl test_command_or_ksft_skip grep test_iproute2_supp_or_ksft_skip test_vrf_or_ksft_skip set -e trap cleanup EXIT setup set +e router_tests host2gateway_tests host_vpn_tests host_vpn_isolation_tests print_log_test_results