// SPDX-License-Identifier: GPL-2.0-only /* * tools/testing/selftests/kvm/lib/x86_64/processor.c * * Copyright (C) 2018, Google LLC. */ #include "test_util.h" #include "kvm_util.h" #include "../kvm_util_internal.h" #include "processor.h" #ifndef NUM_INTERRUPTS #define NUM_INTERRUPTS 256 #endif #define DEFAULT_CODE_SELECTOR 0x8 #define DEFAULT_DATA_SELECTOR 0x10 vm_vaddr_t exception_handlers; /* Virtual translation table structure declarations */ struct pageUpperEntry { uint64_t present:1; uint64_t writable:1; uint64_t user:1; uint64_t write_through:1; uint64_t cache_disable:1; uint64_t accessed:1; uint64_t ignored_06:1; uint64_t page_size:1; uint64_t ignored_11_08:4; uint64_t pfn:40; uint64_t ignored_62_52:11; uint64_t execute_disable:1; }; struct pageTableEntry { uint64_t present:1; uint64_t writable:1; uint64_t user:1; uint64_t write_through:1; uint64_t cache_disable:1; uint64_t accessed:1; uint64_t dirty:1; uint64_t reserved_07:1; uint64_t global:1; uint64_t ignored_11_09:3; uint64_t pfn:40; uint64_t ignored_62_52:11; uint64_t execute_disable:1; }; void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent) { fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx " "rcx: 0x%.16llx rdx: 0x%.16llx\n", indent, "", regs->rax, regs->rbx, regs->rcx, regs->rdx); fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx " "rsp: 0x%.16llx rbp: 0x%.16llx\n", indent, "", regs->rsi, regs->rdi, regs->rsp, regs->rbp); fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx " "r10: 0x%.16llx r11: 0x%.16llx\n", indent, "", regs->r8, regs->r9, regs->r10, regs->r11); fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx " "r14: 0x%.16llx r15: 0x%.16llx\n", indent, "", regs->r12, regs->r13, regs->r14, regs->r15); fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n", indent, "", regs->rip, regs->rflags); } /* * Segment Dump * * Input Args: * stream - Output FILE stream * segment - KVM segment * indent - Left margin indent amount * * Output Args: None * * Return: None * * Dumps the state of the KVM segment given by @segment, to the FILE stream * given by @stream. */ static void segment_dump(FILE *stream, struct kvm_segment *segment, uint8_t indent) { fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x " "selector: 0x%.4x type: 0x%.2x\n", indent, "", segment->base, segment->limit, segment->selector, segment->type); fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x " "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n", indent, "", segment->present, segment->dpl, segment->db, segment->s, segment->l); fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x " "unusable: 0x%.2x padding: 0x%.2x\n", indent, "", segment->g, segment->avl, segment->unusable, segment->padding); } /* * dtable Dump * * Input Args: * stream - Output FILE stream * dtable - KVM dtable * indent - Left margin indent amount * * Output Args: None * * Return: None * * Dumps the state of the KVM dtable given by @dtable, to the FILE stream * given by @stream. */ static void dtable_dump(FILE *stream, struct kvm_dtable *dtable, uint8_t indent) { fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x " "padding: 0x%.4x 0x%.4x 0x%.4x\n", indent, "", dtable->base, dtable->limit, dtable->padding[0], dtable->padding[1], dtable->padding[2]); } void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent) { unsigned int i; fprintf(stream, "%*scs:\n", indent, ""); segment_dump(stream, &sregs->cs, indent + 2); fprintf(stream, "%*sds:\n", indent, ""); segment_dump(stream, &sregs->ds, indent + 2); fprintf(stream, "%*ses:\n", indent, ""); segment_dump(stream, &sregs->es, indent + 2); fprintf(stream, "%*sfs:\n", indent, ""); segment_dump(stream, &sregs->fs, indent + 2); fprintf(stream, "%*sgs:\n", indent, ""); segment_dump(stream, &sregs->gs, indent + 2); fprintf(stream, "%*sss:\n", indent, ""); segment_dump(stream, &sregs->ss, indent + 2); fprintf(stream, "%*str:\n", indent, ""); segment_dump(stream, &sregs->tr, indent + 2); fprintf(stream, "%*sldt:\n", indent, ""); segment_dump(stream, &sregs->ldt, indent + 2); fprintf(stream, "%*sgdt:\n", indent, ""); dtable_dump(stream, &sregs->gdt, indent + 2); fprintf(stream, "%*sidt:\n", indent, ""); dtable_dump(stream, &sregs->idt, indent + 2); fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx " "cr3: 0x%.16llx cr4: 0x%.16llx\n", indent, "", sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4); fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx " "apic_base: 0x%.16llx\n", indent, "", sregs->cr8, sregs->efer, sregs->apic_base); fprintf(stream, "%*sinterrupt_bitmap:\n", indent, ""); for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) { fprintf(stream, "%*s%.16llx\n", indent + 2, "", sregs->interrupt_bitmap[i]); } } void virt_pgd_alloc(struct kvm_vm *vm) { TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " "unknown or unsupported guest mode, mode: 0x%x", vm->mode); /* If needed, create page map l4 table. */ if (!vm->pgd_created) { vm->pgd = vm_alloc_page_table(vm); vm->pgd_created = true; } } static void *virt_get_pte(struct kvm_vm *vm, uint64_t pt_pfn, uint64_t vaddr, int level) { uint64_t *page_table = addr_gpa2hva(vm, pt_pfn << vm->page_shift); int index = vaddr >> (vm->page_shift + level * 9) & 0x1ffu; return &page_table[index]; } static struct pageUpperEntry *virt_create_upper_pte(struct kvm_vm *vm, uint64_t pt_pfn, uint64_t vaddr, uint64_t paddr, int level, enum x86_page_size page_size) { struct pageUpperEntry *pte = virt_get_pte(vm, pt_pfn, vaddr, level); if (!pte->present) { pte->writable = true; pte->present = true; pte->page_size = (level == page_size); if (pte->page_size) pte->pfn = paddr >> vm->page_shift; else pte->pfn = vm_alloc_page_table(vm) >> vm->page_shift; } else { /* * Entry already present. Assert that the caller doesn't want * a hugepage at this level, and that there isn't a hugepage at * this level. */ TEST_ASSERT(level != page_size, "Cannot create hugepage at level: %u, vaddr: 0x%lx\n", page_size, vaddr); TEST_ASSERT(!pte->page_size, "Cannot create page table at level: %u, vaddr: 0x%lx\n", level, vaddr); } return pte; } void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, enum x86_page_size page_size) { const uint64_t pg_size = 1ull << ((page_size * 9) + 12); struct pageUpperEntry *pml4e, *pdpe, *pde; struct pageTableEntry *pte; TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Unknown or unsupported guest mode, mode: 0x%x", vm->mode); TEST_ASSERT((vaddr % pg_size) == 0, "Virtual address not aligned,\n" "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size); TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)), "Invalid virtual address, vaddr: 0x%lx", vaddr); TEST_ASSERT((paddr % pg_size) == 0, "Physical address not aligned,\n" " paddr: 0x%lx page size: 0x%lx", paddr, pg_size); TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, "Physical address beyond maximum supported,\n" " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", paddr, vm->max_gfn, vm->page_size); /* * Allocate upper level page tables, if not already present. Return * early if a hugepage was created. */ pml4e = virt_create_upper_pte(vm, vm->pgd >> vm->page_shift, vaddr, paddr, 3, page_size); if (pml4e->page_size) return; pdpe = virt_create_upper_pte(vm, pml4e->pfn, vaddr, paddr, 2, page_size); if (pdpe->page_size) return; pde = virt_create_upper_pte(vm, pdpe->pfn, vaddr, paddr, 1, page_size); if (pde->page_size) return; /* Fill in page table entry. */ pte = virt_get_pte(vm, pde->pfn, vaddr, 0); TEST_ASSERT(!pte->present, "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr); pte->pfn = paddr >> vm->page_shift; pte->writable = true; pte->present = 1; } void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) { __virt_pg_map(vm, vaddr, paddr, X86_PAGE_SIZE_4K); } static struct pageTableEntry *_vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr) { uint16_t index[4]; struct pageUpperEntry *pml4e, *pdpe, *pde; struct pageTableEntry *pte; struct kvm_cpuid_entry2 *entry; struct kvm_sregs sregs; int max_phy_addr; /* Set the bottom 52 bits. */ uint64_t rsvd_mask = 0x000fffffffffffff; entry = kvm_get_supported_cpuid_index(0x80000008, 0); max_phy_addr = entry->eax & 0x000000ff; /* Clear the bottom bits of the reserved mask. */ rsvd_mask = (rsvd_mask >> max_phy_addr) << max_phy_addr; /* * SDM vol 3, fig 4-11 "Formats of CR3 and Paging-Structure Entries * with 4-Level Paging and 5-Level Paging". * If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, * the XD flag (bit 63) is reserved. */ vcpu_sregs_get(vm, vcpuid, &sregs); if ((sregs.efer & EFER_NX) == 0) { rsvd_mask |= (1ull << 63); } TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " "unknown or unsupported guest mode, mode: 0x%x", vm->mode); TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)), "Invalid virtual address, vaddr: 0x%lx", vaddr); /* * Based on the mode check above there are 48 bits in the vaddr, so * shift 16 to sign extend the last bit (bit-47), */ TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16), "Canonical check failed. The virtual address is invalid."); index[0] = (vaddr >> 12) & 0x1ffu; index[1] = (vaddr >> 21) & 0x1ffu; index[2] = (vaddr >> 30) & 0x1ffu; index[3] = (vaddr >> 39) & 0x1ffu; pml4e = addr_gpa2hva(vm, vm->pgd); TEST_ASSERT(pml4e[index[3]].present, "Expected pml4e to be present for gva: 0x%08lx", vaddr); TEST_ASSERT((*(uint64_t*)(&pml4e[index[3]]) & (rsvd_mask | (1ull << 7))) == 0, "Unexpected reserved bits set."); pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size); TEST_ASSERT(pdpe[index[2]].present, "Expected pdpe to be present for gva: 0x%08lx", vaddr); TEST_ASSERT(pdpe[index[2]].page_size == 0, "Expected pdpe to map a pde not a 1-GByte page."); TEST_ASSERT((*(uint64_t*)(&pdpe[index[2]]) & rsvd_mask) == 0, "Unexpected reserved bits set."); pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size); TEST_ASSERT(pde[index[1]].present, "Expected pde to be present for gva: 0x%08lx", vaddr); TEST_ASSERT(pde[index[1]].page_size == 0, "Expected pde to map a pte not a 2-MByte page."); TEST_ASSERT((*(uint64_t*)(&pde[index[1]]) & rsvd_mask) == 0, "Unexpected reserved bits set."); pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size); TEST_ASSERT(pte[index[0]].present, "Expected pte to be present for gva: 0x%08lx", vaddr); return &pte[index[0]]; } uint64_t vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr) { struct pageTableEntry *pte = _vm_get_page_table_entry(vm, vcpuid, vaddr); return *(uint64_t *)pte; } void vm_set_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr, uint64_t pte) { struct pageTableEntry *new_pte = _vm_get_page_table_entry(vm, vcpuid, vaddr); *(uint64_t *)new_pte = pte; } void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) { struct pageUpperEntry *pml4e, *pml4e_start; struct pageUpperEntry *pdpe, *pdpe_start; struct pageUpperEntry *pde, *pde_start; struct pageTableEntry *pte, *pte_start; if (!vm->pgd_created) return; fprintf(stream, "%*s " " no\n", indent, ""); fprintf(stream, "%*s index hvaddr gpaddr " "addr w exec dirty\n", indent, ""); pml4e_start = (struct pageUpperEntry *) addr_gpa2hva(vm, vm->pgd); for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) { pml4e = &pml4e_start[n1]; if (!pml4e->present) continue; fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u " " %u\n", indent, "", pml4e - pml4e_start, pml4e, addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->pfn, pml4e->writable, pml4e->execute_disable); pdpe_start = addr_gpa2hva(vm, pml4e->pfn * vm->page_size); for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) { pdpe = &pdpe_start[n2]; if (!pdpe->present) continue; fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10lx " "%u %u\n", indent, "", pdpe - pdpe_start, pdpe, addr_hva2gpa(vm, pdpe), (uint64_t) pdpe->pfn, pdpe->writable, pdpe->execute_disable); pde_start = addr_gpa2hva(vm, pdpe->pfn * vm->page_size); for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) { pde = &pde_start[n3]; if (!pde->present) continue; fprintf(stream, "%*spde 0x%-3zx %p " "0x%-12lx 0x%-10lx %u %u\n", indent, "", pde - pde_start, pde, addr_hva2gpa(vm, pde), (uint64_t) pde->pfn, pde->writable, pde->execute_disable); pte_start = addr_gpa2hva(vm, pde->pfn * vm->page_size); for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) { pte = &pte_start[n4]; if (!pte->present) continue; fprintf(stream, "%*spte 0x%-3zx %p " "0x%-12lx 0x%-10lx %u %u " " %u 0x%-10lx\n", indent, "", pte - pte_start, pte, addr_hva2gpa(vm, pte), (uint64_t) pte->pfn, pte->writable, pte->execute_disable, pte->dirty, ((uint64_t) n1 << 27) | ((uint64_t) n2 << 18) | ((uint64_t) n3 << 9) | ((uint64_t) n4)); } } } } } /* * Set Unusable Segment * * Input Args: None * * Output Args: * segp - Pointer to segment register * * Return: None * * Sets the segment register pointed to by @segp to an unusable state. */ static void kvm_seg_set_unusable(struct kvm_segment *segp) { memset(segp, 0, sizeof(*segp)); segp->unusable = true; } static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp) { void *gdt = addr_gva2hva(vm, vm->gdt); struct desc64 *desc = gdt + (segp->selector >> 3) * 8; desc->limit0 = segp->limit & 0xFFFF; desc->base0 = segp->base & 0xFFFF; desc->base1 = segp->base >> 16; desc->type = segp->type; desc->s = segp->s; desc->dpl = segp->dpl; desc->p = segp->present; desc->limit1 = segp->limit >> 16; desc->avl = segp->avl; desc->l = segp->l; desc->db = segp->db; desc->g = segp->g; desc->base2 = segp->base >> 24; if (!segp->s) desc->base3 = segp->base >> 32; } /* * Set Long Mode Flat Kernel Code Segment * * Input Args: * vm - VM whose GDT is being filled, or NULL to only write segp * selector - selector value * * Output Args: * segp - Pointer to KVM segment * * Return: None * * Sets up the KVM segment pointed to by @segp, to be a code segment * with the selector value given by @selector. */ static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector, struct kvm_segment *segp) { memset(segp, 0, sizeof(*segp)); segp->selector = selector; segp->limit = 0xFFFFFFFFu; segp->s = 0x1; /* kTypeCodeData */ segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed * | kFlagCodeReadable */ segp->g = true; segp->l = true; segp->present = 1; if (vm) kvm_seg_fill_gdt_64bit(vm, segp); } /* * Set Long Mode Flat Kernel Data Segment * * Input Args: * vm - VM whose GDT is being filled, or NULL to only write segp * selector - selector value * * Output Args: * segp - Pointer to KVM segment * * Return: None * * Sets up the KVM segment pointed to by @segp, to be a data segment * with the selector value given by @selector. */ static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector, struct kvm_segment *segp) { memset(segp, 0, sizeof(*segp)); segp->selector = selector; segp->limit = 0xFFFFFFFFu; segp->s = 0x1; /* kTypeCodeData */ segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed * | kFlagDataWritable */ segp->g = true; segp->present = true; if (vm) kvm_seg_fill_gdt_64bit(vm, segp); } vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) { uint16_t index[4]; struct pageUpperEntry *pml4e, *pdpe, *pde; struct pageTableEntry *pte; TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " "unknown or unsupported guest mode, mode: 0x%x", vm->mode); index[0] = (gva >> 12) & 0x1ffu; index[1] = (gva >> 21) & 0x1ffu; index[2] = (gva >> 30) & 0x1ffu; index[3] = (gva >> 39) & 0x1ffu; if (!vm->pgd_created) goto unmapped_gva; pml4e = addr_gpa2hva(vm, vm->pgd); if (!pml4e[index[3]].present) goto unmapped_gva; pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size); if (!pdpe[index[2]].present) goto unmapped_gva; pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size); if (!pde[index[1]].present) goto unmapped_gva; pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size); if (!pte[index[0]].present) goto unmapped_gva; return (pte[index[0]].pfn * vm->page_size) + (gva & 0xfffu); unmapped_gva: TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva); exit(EXIT_FAILURE); } static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt) { if (!vm->gdt) vm->gdt = vm_vaddr_alloc_page(vm); dt->base = vm->gdt; dt->limit = getpagesize(); } static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp, int selector) { if (!vm->tss) vm->tss = vm_vaddr_alloc_page(vm); memset(segp, 0, sizeof(*segp)); segp->base = vm->tss; segp->limit = 0x67; segp->selector = selector; segp->type = 0xb; segp->present = 1; kvm_seg_fill_gdt_64bit(vm, segp); } static void vcpu_setup(struct kvm_vm *vm, int vcpuid) { struct kvm_sregs sregs; /* Set mode specific system register values. */ vcpu_sregs_get(vm, vcpuid, &sregs); sregs.idt.limit = 0; kvm_setup_gdt(vm, &sregs.gdt); switch (vm->mode) { case VM_MODE_PXXV48_4K: sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG; sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR; sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX); kvm_seg_set_unusable(&sregs.ldt); kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs); kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds); kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es); kvm_setup_tss_64bit(vm, &sregs.tr, 0x18); break; default: TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode); } sregs.cr3 = vm->pgd; vcpu_sregs_set(vm, vcpuid, &sregs); } #define CPUID_XFD_BIT (1 << 4) static bool is_xfd_supported(void) { int eax, ebx, ecx, edx; const int leaf = 0xd, subleaf = 0x1; __asm__ __volatile__( "cpuid" : /* output */ "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx) : /* input */ "0"(leaf), "2"(subleaf)); return !!(eax & CPUID_XFD_BIT); } void vm_xsave_req_perm(void) { unsigned long bitmask; long rc; if (!is_xfd_supported()) return; rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, XSTATE_XTILE_DATA_BIT); /* * The older kernel version(<5.15) can't support * ARCH_REQ_XCOMP_GUEST_PERM and directly return. */ if (rc) return; rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask); TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc); TEST_ASSERT(bitmask & XFEATURE_XTILE_MASK, "prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure bitmask=0x%lx", bitmask); } void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code) { struct kvm_mp_state mp_state; struct kvm_regs regs; vm_vaddr_t stack_vaddr; stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(), DEFAULT_GUEST_STACK_VADDR_MIN); /* Create VCPU */ vm_vcpu_add(vm, vcpuid); vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid()); vcpu_setup(vm, vcpuid); /* Setup guest general purpose registers */ vcpu_regs_get(vm, vcpuid, ®s); regs.rflags = regs.rflags | 0x2; regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize()); regs.rip = (unsigned long) guest_code; vcpu_regs_set(vm, vcpuid, ®s); /* Setup the MP state */ mp_state.mp_state = 0; vcpu_set_mp_state(vm, vcpuid, &mp_state); } /* * Allocate an instance of struct kvm_cpuid2 * * Input Args: None * * Output Args: None * * Return: A pointer to the allocated struct. The caller is responsible * for freeing this struct. * * Since kvm_cpuid2 uses a 0-length array to allow a the size of the * array to be decided at allocation time, allocation is slightly * complicated. This function uses a reasonable default length for * the array and performs the appropriate allocation. */ static struct kvm_cpuid2 *allocate_kvm_cpuid2(void) { struct kvm_cpuid2 *cpuid; int nent = 100; size_t size; size = sizeof(*cpuid); size += nent * sizeof(struct kvm_cpuid_entry2); cpuid = malloc(size); if (!cpuid) { perror("malloc"); abort(); } cpuid->nent = nent; return cpuid; } /* * KVM Supported CPUID Get * * Input Args: None * * Output Args: * * Return: The supported KVM CPUID * * Get the guest CPUID supported by KVM. */ struct kvm_cpuid2 *kvm_get_supported_cpuid(void) { static struct kvm_cpuid2 *cpuid; int ret; int kvm_fd; if (cpuid) return cpuid; cpuid = allocate_kvm_cpuid2(); kvm_fd = open_kvm_dev_path_or_exit(); ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid); TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n", ret, errno); close(kvm_fd); return cpuid; } /* * KVM Get MSR * * Input Args: * msr_index - Index of MSR * * Output Args: None * * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced. * * Get value of MSR for VCPU. */ uint64_t kvm_get_feature_msr(uint64_t msr_index) { struct { struct kvm_msrs header; struct kvm_msr_entry entry; } buffer = {}; int r, kvm_fd; buffer.header.nmsrs = 1; buffer.entry.index = msr_index; kvm_fd = open_kvm_dev_path_or_exit(); r = ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header); TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n" " rc: %i errno: %i", r, errno); close(kvm_fd); return buffer.entry.data; } /* * VM VCPU CPUID Set * * Input Args: * vm - Virtual Machine * vcpuid - VCPU id * * Output Args: None * * Return: KVM CPUID (KVM_GET_CPUID2) * * Set the VCPU's CPUID. */ struct kvm_cpuid2 *vcpu_get_cpuid(struct kvm_vm *vm, uint32_t vcpuid) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); struct kvm_cpuid2 *cpuid; int max_ent; int rc = -1; TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); cpuid = allocate_kvm_cpuid2(); max_ent = cpuid->nent; for (cpuid->nent = 1; cpuid->nent <= max_ent; cpuid->nent++) { rc = ioctl(vcpu->fd, KVM_GET_CPUID2, cpuid); if (!rc) break; TEST_ASSERT(rc == -1 && errno == E2BIG, "KVM_GET_CPUID2 should either succeed or give E2BIG: %d %d", rc, errno); } TEST_ASSERT(rc == 0, "KVM_GET_CPUID2 failed, rc: %i errno: %i", rc, errno); return cpuid; } /* * Locate a cpuid entry. * * Input Args: * function: The function of the cpuid entry to find. * index: The index of the cpuid entry. * * Output Args: None * * Return: A pointer to the cpuid entry. Never returns NULL. */ struct kvm_cpuid_entry2 * kvm_get_supported_cpuid_index(uint32_t function, uint32_t index) { struct kvm_cpuid2 *cpuid; struct kvm_cpuid_entry2 *entry = NULL; int i; cpuid = kvm_get_supported_cpuid(); for (i = 0; i < cpuid->nent; i++) { if (cpuid->entries[i].function == function && cpuid->entries[i].index == index) { entry = &cpuid->entries[i]; break; } } TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).", function, index); return entry; } int __vcpu_set_cpuid(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_cpuid2 *cpuid) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); return ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid); } /* * VM VCPU CPUID Set * * Input Args: * vm - Virtual Machine * vcpuid - VCPU id * cpuid - The CPUID values to set. * * Output Args: None * * Return: void * * Set the VCPU's CPUID. */ void vcpu_set_cpuid(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_cpuid2 *cpuid) { int rc; rc = __vcpu_set_cpuid(vm, vcpuid, cpuid); TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i", rc, errno); } /* * VCPU Get MSR * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * msr_index - Index of MSR * * Output Args: None * * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced. * * Get value of MSR for VCPU. */ uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); struct { struct kvm_msrs header; struct kvm_msr_entry entry; } buffer = {}; int r; TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); buffer.header.nmsrs = 1; buffer.entry.index = msr_index; r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header); TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n" " rc: %i errno: %i", r, errno); return buffer.entry.data; } /* * _VCPU Set MSR * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * msr_index - Index of MSR * msr_value - New value of MSR * * Output Args: None * * Return: The result of KVM_SET_MSRS. * * Sets the value of an MSR for the given VCPU. */ int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index, uint64_t msr_value) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); struct { struct kvm_msrs header; struct kvm_msr_entry entry; } buffer = {}; int r; TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); memset(&buffer, 0, sizeof(buffer)); buffer.header.nmsrs = 1; buffer.entry.index = msr_index; buffer.entry.data = msr_value; r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header); return r; } /* * VCPU Set MSR * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * msr_index - Index of MSR * msr_value - New value of MSR * * Output Args: None * * Return: On success, nothing. On failure a TEST_ASSERT is produced. * * Set value of MSR for VCPU. */ void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index, uint64_t msr_value) { int r; r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value); TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n" " rc: %i errno: %i", r, errno); } void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...) { va_list ap; struct kvm_regs regs; TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n" " num: %u\n", num); va_start(ap, num); vcpu_regs_get(vm, vcpuid, ®s); if (num >= 1) regs.rdi = va_arg(ap, uint64_t); if (num >= 2) regs.rsi = va_arg(ap, uint64_t); if (num >= 3) regs.rdx = va_arg(ap, uint64_t); if (num >= 4) regs.rcx = va_arg(ap, uint64_t); if (num >= 5) regs.r8 = va_arg(ap, uint64_t); if (num >= 6) regs.r9 = va_arg(ap, uint64_t); vcpu_regs_set(vm, vcpuid, ®s); va_end(ap); } void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent) { struct kvm_regs regs; struct kvm_sregs sregs; fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid); fprintf(stream, "%*sregs:\n", indent + 2, ""); vcpu_regs_get(vm, vcpuid, ®s); regs_dump(stream, ®s, indent + 4); fprintf(stream, "%*ssregs:\n", indent + 2, ""); vcpu_sregs_get(vm, vcpuid, &sregs); sregs_dump(stream, &sregs, indent + 4); } static int kvm_get_num_msrs_fd(int kvm_fd) { struct kvm_msr_list nmsrs; int r; nmsrs.nmsrs = 0; r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs); TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i", r); return nmsrs.nmsrs; } static int kvm_get_num_msrs(struct kvm_vm *vm) { return kvm_get_num_msrs_fd(vm->kvm_fd); } struct kvm_msr_list *kvm_get_msr_index_list(void) { struct kvm_msr_list *list; int nmsrs, r, kvm_fd; kvm_fd = open_kvm_dev_path_or_exit(); nmsrs = kvm_get_num_msrs_fd(kvm_fd); list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0])); list->nmsrs = nmsrs; r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list); close(kvm_fd); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i", r); return list; } static int vcpu_save_xsave_state(struct kvm_vm *vm, struct vcpu *vcpu, struct kvm_x86_state *state) { int size; size = vm_check_cap(vm, KVM_CAP_XSAVE2); if (!size) size = sizeof(struct kvm_xsave); state->xsave = malloc(size); if (size == sizeof(struct kvm_xsave)) return ioctl(vcpu->fd, KVM_GET_XSAVE, state->xsave); else return ioctl(vcpu->fd, KVM_GET_XSAVE2, state->xsave); } struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); struct kvm_msr_list *list; struct kvm_x86_state *state; int nmsrs, r, i; static int nested_size = -1; if (nested_size == -1) { nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE); TEST_ASSERT(nested_size <= sizeof(state->nested_), "Nested state size too big, %i > %zi", nested_size, sizeof(state->nested_)); } /* * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees * guest state is consistent only after userspace re-enters the * kernel with KVM_RUN. Complete IO prior to migrating state * to a new VM. */ vcpu_run_complete_io(vm, vcpuid); nmsrs = kvm_get_num_msrs(vm); list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0])); list->nmsrs = nmsrs; r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i", r); state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0])); r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i", r); r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i", r); r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i", r); r = vcpu_save_xsave_state(vm, vcpu, state); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i", r); if (kvm_check_cap(KVM_CAP_XCRS)) { r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i", r); } r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i", r); if (nested_size) { state->nested.size = sizeof(state->nested_); r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i", r); TEST_ASSERT(state->nested.size <= nested_size, "Nested state size too big, %i (KVM_CHECK_CAP gave %i)", state->nested.size, nested_size); } else state->nested.size = 0; state->msrs.nmsrs = nmsrs; for (i = 0; i < nmsrs; i++) state->msrs.entries[i].index = list->indices[i]; r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs); TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)", r, r == nmsrs ? -1 : list->indices[r]); r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i", r); free(list); return state; } void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); int r; r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i", r); r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs); TEST_ASSERT(r == state->msrs.nmsrs, "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)", r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index); if (kvm_check_cap(KVM_CAP_XCRS)) { r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i", r); } r = ioctl(vcpu->fd, KVM_SET_XSAVE, state->xsave); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i", r); r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i", r); r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i", r); r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i", r); r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i", r); if (state->nested.size) { r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i", r); } } void kvm_x86_state_cleanup(struct kvm_x86_state *state) { free(state->xsave); free(state); } static bool cpu_vendor_string_is(const char *vendor) { const uint32_t *chunk = (const uint32_t *)vendor; int eax, ebx, ecx, edx; const int leaf = 0; __asm__ __volatile__( "cpuid" : /* output */ "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx) : /* input */ "0"(leaf), "2"(0)); return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]); } bool is_intel_cpu(void) { return cpu_vendor_string_is("GenuineIntel"); } /* * Exclude early K5 samples with a vendor string of "AMDisbetter!" */ bool is_amd_cpu(void) { return cpu_vendor_string_is("AuthenticAMD"); } uint32_t kvm_get_cpuid_max_basic(void) { return kvm_get_supported_cpuid_entry(0)->eax; } uint32_t kvm_get_cpuid_max_extended(void) { return kvm_get_supported_cpuid_entry(0x80000000)->eax; } void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits) { struct kvm_cpuid_entry2 *entry; bool pae; /* SDM 4.1.4 */ if (kvm_get_cpuid_max_extended() < 0x80000008) { pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6); *pa_bits = pae ? 36 : 32; *va_bits = 32; } else { entry = kvm_get_supported_cpuid_entry(0x80000008); *pa_bits = entry->eax & 0xff; *va_bits = (entry->eax >> 8) & 0xff; } } struct idt_entry { uint16_t offset0; uint16_t selector; uint16_t ist : 3; uint16_t : 5; uint16_t type : 4; uint16_t : 1; uint16_t dpl : 2; uint16_t p : 1; uint16_t offset1; uint32_t offset2; uint32_t reserved; }; static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr, int dpl, unsigned short selector) { struct idt_entry *base = (struct idt_entry *)addr_gva2hva(vm, vm->idt); struct idt_entry *e = &base[vector]; memset(e, 0, sizeof(*e)); e->offset0 = addr; e->selector = selector; e->ist = 0; e->type = 14; e->dpl = dpl; e->p = 1; e->offset1 = addr >> 16; e->offset2 = addr >> 32; } void kvm_exit_unexpected_vector(uint32_t value) { ucall(UCALL_UNHANDLED, 1, value); } void route_exception(struct ex_regs *regs) { typedef void(*handler)(struct ex_regs *); handler *handlers = (handler *)exception_handlers; if (handlers && handlers[regs->vector]) { handlers[regs->vector](regs); return; } kvm_exit_unexpected_vector(regs->vector); } void vm_init_descriptor_tables(struct kvm_vm *vm) { extern void *idt_handlers; int i; vm->idt = vm_vaddr_alloc_page(vm); vm->handlers = vm_vaddr_alloc_page(vm); /* Handlers have the same address in both address spaces.*/ for (i = 0; i < NUM_INTERRUPTS; i++) set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, DEFAULT_CODE_SELECTOR); } void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid) { struct kvm_sregs sregs; vcpu_sregs_get(vm, vcpuid, &sregs); sregs.idt.base = vm->idt; sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1; sregs.gdt.base = vm->gdt; sregs.gdt.limit = getpagesize() - 1; kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs); vcpu_sregs_set(vm, vcpuid, &sregs); *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers; } void vm_install_exception_handler(struct kvm_vm *vm, int vector, void (*handler)(struct ex_regs *)) { vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers); handlers[vector] = (vm_vaddr_t)handler; } void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid) { struct ucall uc; if (get_ucall(vm, vcpuid, &uc) == UCALL_UNHANDLED) { uint64_t vector = uc.args[0]; TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)", vector); } } struct kvm_cpuid_entry2 *get_cpuid(struct kvm_cpuid2 *cpuid, uint32_t function, uint32_t index) { int i; for (i = 0; i < cpuid->nent; i++) { struct kvm_cpuid_entry2 *cur = &cpuid->entries[i]; if (cur->function == function && cur->index == index) return cur; } TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index); return NULL; } bool set_cpuid(struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 *ent) { int i; for (i = 0; i < cpuid->nent; i++) { struct kvm_cpuid_entry2 *cur = &cpuid->entries[i]; if (cur->function != ent->function || cur->index != ent->index) continue; memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2)); return true; } return false; } uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, uint64_t a3) { uint64_t r; asm volatile("vmcall" : "=a"(r) : "b"(a0), "c"(a1), "d"(a2), "S"(a3)); return r; } struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void) { static struct kvm_cpuid2 *cpuid; int ret; int kvm_fd; if (cpuid) return cpuid; cpuid = allocate_kvm_cpuid2(); kvm_fd = open_kvm_dev_path_or_exit(); ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid); TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_HV_CPUID failed %d %d\n", ret, errno); close(kvm_fd); return cpuid; } void vcpu_set_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid) { static struct kvm_cpuid2 *cpuid_full; struct kvm_cpuid2 *cpuid_sys, *cpuid_hv; int i, nent = 0; if (!cpuid_full) { cpuid_sys = kvm_get_supported_cpuid(); cpuid_hv = kvm_get_supported_hv_cpuid(); cpuid_full = malloc(sizeof(*cpuid_full) + (cpuid_sys->nent + cpuid_hv->nent) * sizeof(struct kvm_cpuid_entry2)); if (!cpuid_full) { perror("malloc"); abort(); } /* Need to skip KVM CPUID leaves 0x400000xx */ for (i = 0; i < cpuid_sys->nent; i++) { if (cpuid_sys->entries[i].function >= 0x40000000 && cpuid_sys->entries[i].function < 0x40000100) continue; cpuid_full->entries[nent] = cpuid_sys->entries[i]; nent++; } memcpy(&cpuid_full->entries[nent], cpuid_hv->entries, cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2)); cpuid_full->nent = nent + cpuid_hv->nent; } vcpu_set_cpuid(vm, vcpuid, cpuid_full); } struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid) { static struct kvm_cpuid2 *cpuid; cpuid = allocate_kvm_cpuid2(); vcpu_ioctl(vm, vcpuid, KVM_GET_SUPPORTED_HV_CPUID, cpuid); return cpuid; } unsigned long vm_compute_max_gfn(struct kvm_vm *vm) { const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */ unsigned long ht_gfn, max_gfn, max_pfn; uint32_t eax, ebx, ecx, edx, max_ext_leaf; max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1; /* Avoid reserved HyperTransport region on AMD processors. */ if (!is_amd_cpu()) return max_gfn; /* On parts with <40 physical address bits, the area is fully hidden */ if (vm->pa_bits < 40) return max_gfn; /* Before family 17h, the HyperTransport area is just below 1T. */ ht_gfn = (1 << 28) - num_ht_pages; eax = 1; ecx = 0; cpuid(&eax, &ebx, &ecx, &edx); if (x86_family(eax) < 0x17) goto done; /* * Otherwise it's at the top of the physical address space, possibly * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use * the old conservative value if MAXPHYADDR is not enumerated. */ eax = 0x80000000; cpuid(&eax, &ebx, &ecx, &edx); max_ext_leaf = eax; if (max_ext_leaf < 0x80000008) goto done; eax = 0x80000008; cpuid(&eax, &ebx, &ecx, &edx); max_pfn = (1ULL << ((eax & 0xff) - vm->page_shift)) - 1; if (max_ext_leaf >= 0x8000001f) { eax = 0x8000001f; cpuid(&eax, &ebx, &ecx, &edx); max_pfn >>= (ebx >> 6) & 0x3f; } ht_gfn = max_pfn - num_ht_pages; done: return min(max_gfn, ht_gfn - 1); }