// SPDX-License-Identifier: GPL-2.0 /* * AArch64 code * * Copyright (C) 2018, Red Hat, Inc. */ #include #include #include "guest_modes.h" #include "kvm_util.h" #include "processor.h" #include #define DEFAULT_ARM64_GUEST_STACK_VADDR_MIN 0xac0000 static vm_vaddr_t exception_handlers; static uint64_t page_align(struct kvm_vm *vm, uint64_t v) { return (v + vm->page_size) & ~(vm->page_size - 1); } static uint64_t pgd_index(struct kvm_vm *vm, vm_vaddr_t gva) { unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift; uint64_t mask = (1UL << (vm->va_bits - shift)) - 1; return (gva >> shift) & mask; } static uint64_t pud_index(struct kvm_vm *vm, vm_vaddr_t gva) { unsigned int shift = 2 * (vm->page_shift - 3) + vm->page_shift; uint64_t mask = (1UL << (vm->page_shift - 3)) - 1; TEST_ASSERT(vm->pgtable_levels == 4, "Mode %d does not have 4 page table levels", vm->mode); return (gva >> shift) & mask; } static uint64_t pmd_index(struct kvm_vm *vm, vm_vaddr_t gva) { unsigned int shift = (vm->page_shift - 3) + vm->page_shift; uint64_t mask = (1UL << (vm->page_shift - 3)) - 1; TEST_ASSERT(vm->pgtable_levels >= 3, "Mode %d does not have >= 3 page table levels", vm->mode); return (gva >> shift) & mask; } static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva) { uint64_t mask = (1UL << (vm->page_shift - 3)) - 1; return (gva >> vm->page_shift) & mask; } static uint64_t addr_pte(struct kvm_vm *vm, uint64_t pa, uint64_t attrs) { uint64_t pte; pte = pa & GENMASK(47, vm->page_shift); if (vm->page_shift == 16) pte |= FIELD_GET(GENMASK(51, 48), pa) << 12; pte |= attrs; return pte; } static uint64_t pte_addr(struct kvm_vm *vm, uint64_t pte) { uint64_t pa; pa = pte & GENMASK(47, vm->page_shift); if (vm->page_shift == 16) pa |= FIELD_GET(GENMASK(15, 12), pte) << 48; return pa; } static uint64_t ptrs_per_pgd(struct kvm_vm *vm) { unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift; return 1 << (vm->va_bits - shift); } static uint64_t __maybe_unused ptrs_per_pte(struct kvm_vm *vm) { return 1 << (vm->page_shift - 3); } void virt_arch_pgd_alloc(struct kvm_vm *vm) { size_t nr_pages = page_align(vm, ptrs_per_pgd(vm) * 8) / vm->page_size; if (vm->pgd_created) return; vm->pgd = vm_phy_pages_alloc(vm, nr_pages, KVM_GUEST_PAGE_TABLE_MIN_PADDR, vm->memslots[MEM_REGION_PT]); vm->pgd_created = true; } static void _virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, uint64_t flags) { uint8_t attr_idx = flags & 7; uint64_t *ptep; TEST_ASSERT((vaddr % vm->page_size) == 0, "Virtual address not on page boundary,\n" " vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size); TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)), "Invalid virtual address, vaddr: 0x%lx", vaddr); TEST_ASSERT((paddr % vm->page_size) == 0, "Physical address not on page boundary,\n" " paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size); TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, "Physical address beyond beyond maximum supported,\n" " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", paddr, vm->max_gfn, vm->page_size); ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, vaddr) * 8; if (!*ptep) *ptep = addr_pte(vm, vm_alloc_page_table(vm), 3); switch (vm->pgtable_levels) { case 4: ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, vaddr) * 8; if (!*ptep) *ptep = addr_pte(vm, vm_alloc_page_table(vm), 3); /* fall through */ case 3: ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, vaddr) * 8; if (!*ptep) *ptep = addr_pte(vm, vm_alloc_page_table(vm), 3); /* fall through */ case 2: ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, vaddr) * 8; break; default: TEST_FAIL("Page table levels must be 2, 3, or 4"); } *ptep = addr_pte(vm, paddr, (attr_idx << 2) | (1 << 10) | 3); /* AF */ } void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) { uint64_t attr_idx = MT_NORMAL; _virt_pg_map(vm, vaddr, paddr, attr_idx); } uint64_t *virt_get_pte_hva(struct kvm_vm *vm, vm_vaddr_t gva) { uint64_t *ptep; if (!vm->pgd_created) goto unmapped_gva; ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, gva) * 8; if (!ptep) goto unmapped_gva; switch (vm->pgtable_levels) { case 4: ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, gva) * 8; if (!ptep) goto unmapped_gva; /* fall through */ case 3: ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, gva) * 8; if (!ptep) goto unmapped_gva; /* fall through */ case 2: ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, gva) * 8; if (!ptep) goto unmapped_gva; break; default: TEST_FAIL("Page table levels must be 2, 3, or 4"); } return ptep; unmapped_gva: TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva); exit(EXIT_FAILURE); } vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) { uint64_t *ptep = virt_get_pte_hva(vm, gva); return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1)); } static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent, uint64_t page, int level) { #ifdef DEBUG static const char * const type[] = { "", "pud", "pmd", "pte" }; uint64_t pte, *ptep; if (level == 4) return; for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) { ptep = addr_gpa2hva(vm, pte); if (!*ptep) continue; fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "", type[level], pte, *ptep, ptep); pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level + 1); } #endif } void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) { int level = 4 - (vm->pgtable_levels - 1); uint64_t pgd, *ptep; if (!vm->pgd_created) return; for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pgd(vm) * 8; pgd += 8) { ptep = addr_gpa2hva(vm, pgd); if (!*ptep) continue; fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "", pgd, *ptep, ptep); pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level); } } void aarch64_vcpu_setup(struct kvm_vcpu *vcpu, struct kvm_vcpu_init *init) { struct kvm_vcpu_init default_init = { .target = -1, }; struct kvm_vm *vm = vcpu->vm; uint64_t sctlr_el1, tcr_el1, ttbr0_el1; if (!init) init = &default_init; if (init->target == -1) { struct kvm_vcpu_init preferred; vm_ioctl(vm, KVM_ARM_PREFERRED_TARGET, &preferred); init->target = preferred.target; } vcpu_ioctl(vcpu, KVM_ARM_VCPU_INIT, init); /* * Enable FP/ASIMD to avoid trapping when accessing Q0-Q15 * registers, which the variable argument list macros do. */ vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CPACR_EL1), 3 << 20); vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_SCTLR_EL1), &sctlr_el1); vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TCR_EL1), &tcr_el1); /* Configure base granule size */ switch (vm->mode) { case VM_MODE_P52V48_4K: TEST_FAIL("AArch64 does not support 4K sized pages " "with 52-bit physical address ranges"); case VM_MODE_PXXV48_4K: TEST_FAIL("AArch64 does not support 4K sized pages " "with ANY-bit physical address ranges"); case VM_MODE_P52V48_64K: case VM_MODE_P48V48_64K: case VM_MODE_P40V48_64K: case VM_MODE_P36V48_64K: tcr_el1 |= 1ul << 14; /* TG0 = 64KB */ break; case VM_MODE_P48V48_16K: case VM_MODE_P40V48_16K: case VM_MODE_P36V48_16K: case VM_MODE_P36V47_16K: tcr_el1 |= 2ul << 14; /* TG0 = 16KB */ break; case VM_MODE_P48V48_4K: case VM_MODE_P40V48_4K: case VM_MODE_P36V48_4K: tcr_el1 |= 0ul << 14; /* TG0 = 4KB */ break; default: TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode); } ttbr0_el1 = vm->pgd & GENMASK(47, vm->page_shift); /* Configure output size */ switch (vm->mode) { case VM_MODE_P52V48_64K: tcr_el1 |= 6ul << 32; /* IPS = 52 bits */ ttbr0_el1 |= FIELD_GET(GENMASK(51, 48), vm->pgd) << 2; break; case VM_MODE_P48V48_4K: case VM_MODE_P48V48_16K: case VM_MODE_P48V48_64K: tcr_el1 |= 5ul << 32; /* IPS = 48 bits */ break; case VM_MODE_P40V48_4K: case VM_MODE_P40V48_16K: case VM_MODE_P40V48_64K: tcr_el1 |= 2ul << 32; /* IPS = 40 bits */ break; case VM_MODE_P36V48_4K: case VM_MODE_P36V48_16K: case VM_MODE_P36V48_64K: case VM_MODE_P36V47_16K: tcr_el1 |= 1ul << 32; /* IPS = 36 bits */ break; default: TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode); } sctlr_el1 |= (1 << 0) | (1 << 2) | (1 << 12) /* M | C | I */; /* TCR_EL1 |= IRGN0:WBWA | ORGN0:WBWA | SH0:Inner-Shareable */; tcr_el1 |= (1 << 8) | (1 << 10) | (3 << 12); tcr_el1 |= (64 - vm->va_bits) /* T0SZ */; vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_SCTLR_EL1), sctlr_el1); vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TCR_EL1), tcr_el1); vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_MAIR_EL1), DEFAULT_MAIR_EL1); vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TTBR0_EL1), ttbr0_el1); vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TPIDR_EL1), vcpu->id); } void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent) { uint64_t pstate, pc; vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pstate), &pstate); vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc), &pc); fprintf(stream, "%*spstate: 0x%.16lx pc: 0x%.16lx\n", indent, "", pstate, pc); } struct kvm_vcpu *aarch64_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id, struct kvm_vcpu_init *init, void *guest_code) { size_t stack_size; uint64_t stack_vaddr; struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id); stack_size = vm->page_size == 4096 ? DEFAULT_STACK_PGS * vm->page_size : vm->page_size; stack_vaddr = __vm_vaddr_alloc(vm, stack_size, DEFAULT_ARM64_GUEST_STACK_VADDR_MIN, MEM_REGION_DATA); aarch64_vcpu_setup(vcpu, init); vcpu_set_reg(vcpu, ARM64_CORE_REG(sp_el1), stack_vaddr + stack_size); vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), (uint64_t)guest_code); return vcpu; } struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id, void *guest_code) { return aarch64_vcpu_add(vm, vcpu_id, NULL, guest_code); } void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...) { va_list ap; int i; TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n" " num: %u\n", num); va_start(ap, num); for (i = 0; i < num; i++) { vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.regs[i]), va_arg(ap, uint64_t)); } va_end(ap); } void kvm_exit_unexpected_exception(int vector, uint64_t ec, bool valid_ec) { ucall(UCALL_UNHANDLED, 3, vector, ec, valid_ec); while (1) ; } void assert_on_unhandled_exception(struct kvm_vcpu *vcpu) { struct ucall uc; if (get_ucall(vcpu, &uc) != UCALL_UNHANDLED) return; if (uc.args[2]) /* valid_ec */ { assert(VECTOR_IS_SYNC(uc.args[0])); TEST_FAIL("Unexpected exception (vector:0x%lx, ec:0x%lx)", uc.args[0], uc.args[1]); } else { assert(!VECTOR_IS_SYNC(uc.args[0])); TEST_FAIL("Unexpected exception (vector:0x%lx)", uc.args[0]); } } struct handlers { handler_fn exception_handlers[VECTOR_NUM][ESR_EC_NUM]; }; void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu) { extern char vectors; vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_VBAR_EL1), (uint64_t)&vectors); } void route_exception(struct ex_regs *regs, int vector) { struct handlers *handlers = (struct handlers *)exception_handlers; bool valid_ec; int ec = 0; switch (vector) { case VECTOR_SYNC_CURRENT: case VECTOR_SYNC_LOWER_64: ec = (read_sysreg(esr_el1) >> ESR_EC_SHIFT) & ESR_EC_MASK; valid_ec = true; break; case VECTOR_IRQ_CURRENT: case VECTOR_IRQ_LOWER_64: case VECTOR_FIQ_CURRENT: case VECTOR_FIQ_LOWER_64: case VECTOR_ERROR_CURRENT: case VECTOR_ERROR_LOWER_64: ec = 0; valid_ec = false; break; default: valid_ec = false; goto unexpected_exception; } if (handlers && handlers->exception_handlers[vector][ec]) return handlers->exception_handlers[vector][ec](regs); unexpected_exception: kvm_exit_unexpected_exception(vector, ec, valid_ec); } void vm_init_descriptor_tables(struct kvm_vm *vm) { vm->handlers = __vm_vaddr_alloc(vm, sizeof(struct handlers), vm->page_size, MEM_REGION_DATA); *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers; } void vm_install_sync_handler(struct kvm_vm *vm, int vector, int ec, void (*handler)(struct ex_regs *)) { struct handlers *handlers = addr_gva2hva(vm, vm->handlers); assert(VECTOR_IS_SYNC(vector)); assert(vector < VECTOR_NUM); assert(ec < ESR_EC_NUM); handlers->exception_handlers[vector][ec] = handler; } void vm_install_exception_handler(struct kvm_vm *vm, int vector, void (*handler)(struct ex_regs *)) { struct handlers *handlers = addr_gva2hva(vm, vm->handlers); assert(!VECTOR_IS_SYNC(vector)); assert(vector < VECTOR_NUM); handlers->exception_handlers[vector][0] = handler; } uint32_t guest_get_vcpuid(void) { return read_sysreg(tpidr_el1); } void aarch64_get_supported_page_sizes(uint32_t ipa, bool *ps4k, bool *ps16k, bool *ps64k) { struct kvm_vcpu_init preferred_init; int kvm_fd, vm_fd, vcpu_fd, err; uint64_t val; struct kvm_one_reg reg = { .id = KVM_ARM64_SYS_REG(SYS_ID_AA64MMFR0_EL1), .addr = (uint64_t)&val, }; kvm_fd = open_kvm_dev_path_or_exit(); vm_fd = __kvm_ioctl(kvm_fd, KVM_CREATE_VM, (void *)(unsigned long)ipa); TEST_ASSERT(vm_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm_fd)); vcpu_fd = ioctl(vm_fd, KVM_CREATE_VCPU, 0); TEST_ASSERT(vcpu_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu_fd)); err = ioctl(vm_fd, KVM_ARM_PREFERRED_TARGET, &preferred_init); TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_PREFERRED_TARGET, err)); err = ioctl(vcpu_fd, KVM_ARM_VCPU_INIT, &preferred_init); TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_VCPU_INIT, err)); err = ioctl(vcpu_fd, KVM_GET_ONE_REG, ®); TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_GET_ONE_REG, vcpu_fd)); *ps4k = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_TGRAN4), val) != 0xf; *ps64k = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_TGRAN64), val) == 0; *ps16k = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_TGRAN16), val) != 0; close(vcpu_fd); close(vm_fd); close(kvm_fd); } #define __smccc_call(insn, function_id, arg0, arg1, arg2, arg3, arg4, arg5, \ arg6, res) \ asm volatile("mov w0, %w[function_id]\n" \ "mov x1, %[arg0]\n" \ "mov x2, %[arg1]\n" \ "mov x3, %[arg2]\n" \ "mov x4, %[arg3]\n" \ "mov x5, %[arg4]\n" \ "mov x6, %[arg5]\n" \ "mov x7, %[arg6]\n" \ #insn "#0\n" \ "mov %[res0], x0\n" \ "mov %[res1], x1\n" \ "mov %[res2], x2\n" \ "mov %[res3], x3\n" \ : [res0] "=r"(res->a0), [res1] "=r"(res->a1), \ [res2] "=r"(res->a2), [res3] "=r"(res->a3) \ : [function_id] "r"(function_id), [arg0] "r"(arg0), \ [arg1] "r"(arg1), [arg2] "r"(arg2), [arg3] "r"(arg3), \ [arg4] "r"(arg4), [arg5] "r"(arg5), [arg6] "r"(arg6) \ : "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7") void smccc_hvc(uint32_t function_id, uint64_t arg0, uint64_t arg1, uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5, uint64_t arg6, struct arm_smccc_res *res) { __smccc_call(hvc, function_id, arg0, arg1, arg2, arg3, arg4, arg5, arg6, res); } void smccc_smc(uint32_t function_id, uint64_t arg0, uint64_t arg1, uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5, uint64_t arg6, struct arm_smccc_res *res) { __smccc_call(smc, function_id, arg0, arg1, arg2, arg3, arg4, arg5, arg6, res); } void kvm_selftest_arch_init(void) { /* * arm64 doesn't have a true default mode, so start by computing the * available IPA space and page sizes early. */ guest_modes_append_default(); } void vm_vaddr_populate_bitmap(struct kvm_vm *vm) { /* * arm64 selftests use only TTBR0_EL1, meaning that the valid VA space * is [0, 2^(64 - TCR_EL1.T0SZ)). */ sparsebit_set_num(vm->vpages_valid, 0, (1ULL << vm->va_bits) >> vm->page_shift); }