// SPDX-License-Identifier: GPL-2.0 /* * Randomized tests for eBPF longest-prefix-match maps * * This program runs randomized tests against the lpm-bpf-map. It implements a * "Trivial Longest Prefix Match" (tlpm) based on simple, linear, singly linked * lists. The implementation should be pretty straightforward. * * Based on tlpm, this inserts randomized data into bpf-lpm-maps and verifies * the trie-based bpf-map implementation behaves the same way as tlpm. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bpf_util.h" #include "bpf_rlimit.h" struct tlpm_node { struct tlpm_node *next; size_t n_bits; uint8_t key[]; }; static struct tlpm_node *tlpm_match(struct tlpm_node *list, const uint8_t *key, size_t n_bits); static struct tlpm_node *tlpm_add(struct tlpm_node *list, const uint8_t *key, size_t n_bits) { struct tlpm_node *node; size_t n; n = (n_bits + 7) / 8; /* 'overwrite' an equivalent entry if one already exists */ node = tlpm_match(list, key, n_bits); if (node && node->n_bits == n_bits) { memcpy(node->key, key, n); return list; } /* add new entry with @key/@n_bits to @list and return new head */ node = malloc(sizeof(*node) + n); assert(node); node->next = list; node->n_bits = n_bits; memcpy(node->key, key, n); return node; } static void tlpm_clear(struct tlpm_node *list) { struct tlpm_node *node; /* free all entries in @list */ while ((node = list)) { list = list->next; free(node); } } static struct tlpm_node *tlpm_match(struct tlpm_node *list, const uint8_t *key, size_t n_bits) { struct tlpm_node *best = NULL; size_t i; /* Perform longest prefix-match on @key/@n_bits. That is, iterate all * entries and match each prefix against @key. Remember the "best" * entry we find (i.e., the longest prefix that matches) and return it * to the caller when done. */ for ( ; list; list = list->next) { for (i = 0; i < n_bits && i < list->n_bits; ++i) { if ((key[i / 8] & (1 << (7 - i % 8))) != (list->key[i / 8] & (1 << (7 - i % 8)))) break; } if (i >= list->n_bits) { if (!best || i > best->n_bits) best = list; } } return best; } static struct tlpm_node *tlpm_delete(struct tlpm_node *list, const uint8_t *key, size_t n_bits) { struct tlpm_node *best = tlpm_match(list, key, n_bits); struct tlpm_node *node; if (!best || best->n_bits != n_bits) return list; if (best == list) { node = best->next; free(best); return node; } for (node = list; node; node = node->next) { if (node->next == best) { node->next = best->next; free(best); return list; } } /* should never get here */ assert(0); return list; } static void test_lpm_basic(void) { struct tlpm_node *list = NULL, *t1, *t2; /* very basic, static tests to verify tlpm works as expected */ assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8)); t1 = list = tlpm_add(list, (uint8_t[]){ 0xff }, 8); assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0x00 }, 16)); assert(!tlpm_match(list, (uint8_t[]){ 0x7f }, 8)); assert(!tlpm_match(list, (uint8_t[]){ 0xfe }, 8)); assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 7)); t2 = list = tlpm_add(list, (uint8_t[]){ 0xff, 0xff }, 16); assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); assert(t2 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 15)); assert(!tlpm_match(list, (uint8_t[]){ 0x7f, 0xff }, 16)); list = tlpm_delete(list, (uint8_t[]){ 0xff, 0xff }, 16); assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); list = tlpm_delete(list, (uint8_t[]){ 0xff }, 8); assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8)); tlpm_clear(list); } static void test_lpm_order(void) { struct tlpm_node *t1, *t2, *l1 = NULL, *l2 = NULL; size_t i, j; /* Verify the tlpm implementation works correctly regardless of the * order of entries. Insert a random set of entries into @l1, and copy * the same data in reverse order into @l2. Then verify a lookup of * random keys will yield the same result in both sets. */ for (i = 0; i < (1 << 12); ++i) l1 = tlpm_add(l1, (uint8_t[]){ rand() % 0xff, rand() % 0xff, }, rand() % 16 + 1); for (t1 = l1; t1; t1 = t1->next) l2 = tlpm_add(l2, t1->key, t1->n_bits); for (i = 0; i < (1 << 8); ++i) { uint8_t key[] = { rand() % 0xff, rand() % 0xff }; t1 = tlpm_match(l1, key, 16); t2 = tlpm_match(l2, key, 16); assert(!t1 == !t2); if (t1) { assert(t1->n_bits == t2->n_bits); for (j = 0; j < t1->n_bits; ++j) assert((t1->key[j / 8] & (1 << (7 - j % 8))) == (t2->key[j / 8] & (1 << (7 - j % 8)))); } } tlpm_clear(l1); tlpm_clear(l2); } static void test_lpm_map(int keysize) { size_t i, j, n_matches, n_matches_after_delete, n_nodes, n_lookups; struct tlpm_node *t, *list = NULL; struct bpf_lpm_trie_key *key; uint8_t *data, *value; int r, map; /* Compare behavior of tlpm vs. bpf-lpm. Create a randomized set of * prefixes and insert it into both tlpm and bpf-lpm. Then run some * randomized lookups and verify both maps return the same result. */ n_matches = 0; n_matches_after_delete = 0; n_nodes = 1 << 8; n_lookups = 1 << 16; data = alloca(keysize); memset(data, 0, keysize); value = alloca(keysize + 1); memset(value, 0, keysize + 1); key = alloca(sizeof(*key) + keysize); memset(key, 0, sizeof(*key) + keysize); map = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, sizeof(*key) + keysize, keysize + 1, 4096, BPF_F_NO_PREALLOC); assert(map >= 0); for (i = 0; i < n_nodes; ++i) { for (j = 0; j < keysize; ++j) value[j] = rand() & 0xff; value[keysize] = rand() % (8 * keysize + 1); list = tlpm_add(list, value, value[keysize]); key->prefixlen = value[keysize]; memcpy(key->data, value, keysize); r = bpf_map_update_elem(map, key, value, 0); assert(!r); } for (i = 0; i < n_lookups; ++i) { for (j = 0; j < keysize; ++j) data[j] = rand() & 0xff; t = tlpm_match(list, data, 8 * keysize); key->prefixlen = 8 * keysize; memcpy(key->data, data, keysize); r = bpf_map_lookup_elem(map, key, value); assert(!r || errno == ENOENT); assert(!t == !!r); if (t) { ++n_matches; assert(t->n_bits == value[keysize]); for (j = 0; j < t->n_bits; ++j) assert((t->key[j / 8] & (1 << (7 - j % 8))) == (value[j / 8] & (1 << (7 - j % 8)))); } } /* Remove the first half of the elements in the tlpm and the * corresponding nodes from the bpf-lpm. Then run the same * large number of random lookups in both and make sure they match. * Note: we need to count the number of nodes actually inserted * since there may have been duplicates. */ for (i = 0, t = list; t; i++, t = t->next) ; for (j = 0; j < i / 2; ++j) { key->prefixlen = list->n_bits; memcpy(key->data, list->key, keysize); r = bpf_map_delete_elem(map, key); assert(!r); list = tlpm_delete(list, list->key, list->n_bits); assert(list); } for (i = 0; i < n_lookups; ++i) { for (j = 0; j < keysize; ++j) data[j] = rand() & 0xff; t = tlpm_match(list, data, 8 * keysize); key->prefixlen = 8 * keysize; memcpy(key->data, data, keysize); r = bpf_map_lookup_elem(map, key, value); assert(!r || errno == ENOENT); assert(!t == !!r); if (t) { ++n_matches_after_delete; assert(t->n_bits == value[keysize]); for (j = 0; j < t->n_bits; ++j) assert((t->key[j / 8] & (1 << (7 - j % 8))) == (value[j / 8] & (1 << (7 - j % 8)))); } } close(map); tlpm_clear(list); /* With 255 random nodes in the map, we are pretty likely to match * something on every lookup. For statistics, use this: * * printf(" nodes: %zu\n" * " lookups: %zu\n" * " matches: %zu\n" * "matches(delete): %zu\n", * n_nodes, n_lookups, n_matches, n_matches_after_delete); */ } /* Test the implementation with some 'real world' examples */ static void test_lpm_ipaddr(void) { struct bpf_lpm_trie_key *key_ipv4; struct bpf_lpm_trie_key *key_ipv6; size_t key_size_ipv4; size_t key_size_ipv6; int map_fd_ipv4; int map_fd_ipv6; __u64 value; key_size_ipv4 = sizeof(*key_ipv4) + sizeof(__u32); key_size_ipv6 = sizeof(*key_ipv6) + sizeof(__u32) * 4; key_ipv4 = alloca(key_size_ipv4); key_ipv6 = alloca(key_size_ipv6); map_fd_ipv4 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, key_size_ipv4, sizeof(value), 100, BPF_F_NO_PREALLOC); assert(map_fd_ipv4 >= 0); map_fd_ipv6 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, key_size_ipv6, sizeof(value), 100, BPF_F_NO_PREALLOC); assert(map_fd_ipv6 >= 0); /* Fill data some IPv4 and IPv6 address ranges */ value = 1; key_ipv4->prefixlen = 16; inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); value = 2; key_ipv4->prefixlen = 24; inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); value = 3; key_ipv4->prefixlen = 24; inet_pton(AF_INET, "192.168.128.0", key_ipv4->data); assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); value = 5; key_ipv4->prefixlen = 24; inet_pton(AF_INET, "192.168.1.0", key_ipv4->data); assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); value = 4; key_ipv4->prefixlen = 23; inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); value = 0xdeadbeef; key_ipv6->prefixlen = 64; inet_pton(AF_INET6, "2a00:1450:4001:814::200e", key_ipv6->data); assert(bpf_map_update_elem(map_fd_ipv6, key_ipv6, &value, 0) == 0); /* Set tprefixlen to maximum for lookups */ key_ipv4->prefixlen = 32; key_ipv6->prefixlen = 128; /* Test some lookups that should come back with a value */ inet_pton(AF_INET, "192.168.128.23", key_ipv4->data); assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0); assert(value == 3); inet_pton(AF_INET, "192.168.0.1", key_ipv4->data); assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0); assert(value == 2); inet_pton(AF_INET6, "2a00:1450:4001:814::", key_ipv6->data); assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0); assert(value == 0xdeadbeef); inet_pton(AF_INET6, "2a00:1450:4001:814::1", key_ipv6->data); assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0); assert(value == 0xdeadbeef); /* Test some lookups that should not match any entry */ inet_pton(AF_INET, "10.0.0.1", key_ipv4->data); assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 && errno == ENOENT); inet_pton(AF_INET, "11.11.11.11", key_ipv4->data); assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 && errno == ENOENT); inet_pton(AF_INET6, "2a00:ffff::", key_ipv6->data); assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == -1 && errno == ENOENT); close(map_fd_ipv4); close(map_fd_ipv6); } static void test_lpm_delete(void) { struct bpf_lpm_trie_key *key; size_t key_size; int map_fd; __u64 value; key_size = sizeof(*key) + sizeof(__u32); key = alloca(key_size); map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, key_size, sizeof(value), 100, BPF_F_NO_PREALLOC); assert(map_fd >= 0); /* Add nodes: * 192.168.0.0/16 (1) * 192.168.0.0/24 (2) * 192.168.128.0/24 (3) * 192.168.1.0/24 (4) * * (1) * / \ * (IM) (3) * / \ * (2) (4) */ value = 1; key->prefixlen = 16; inet_pton(AF_INET, "192.168.0.0", key->data); assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); value = 2; key->prefixlen = 24; inet_pton(AF_INET, "192.168.0.0", key->data); assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); value = 3; key->prefixlen = 24; inet_pton(AF_INET, "192.168.128.0", key->data); assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); value = 4; key->prefixlen = 24; inet_pton(AF_INET, "192.168.1.0", key->data); assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); /* remove non-existent node */ key->prefixlen = 32; inet_pton(AF_INET, "10.0.0.1", key->data); assert(bpf_map_lookup_elem(map_fd, key, &value) == -1 && errno == ENOENT); /* assert initial lookup */ key->prefixlen = 32; inet_pton(AF_INET, "192.168.0.1", key->data); assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); assert(value == 2); /* remove leaf node */ key->prefixlen = 24; inet_pton(AF_INET, "192.168.0.0", key->data); assert(bpf_map_delete_elem(map_fd, key) == 0); key->prefixlen = 32; inet_pton(AF_INET, "192.168.0.1", key->data); assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); assert(value == 1); /* remove leaf (and intermediary) node */ key->prefixlen = 24; inet_pton(AF_INET, "192.168.1.0", key->data); assert(bpf_map_delete_elem(map_fd, key) == 0); key->prefixlen = 32; inet_pton(AF_INET, "192.168.1.1", key->data); assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); assert(value == 1); /* remove root node */ key->prefixlen = 16; inet_pton(AF_INET, "192.168.0.0", key->data); assert(bpf_map_delete_elem(map_fd, key) == 0); key->prefixlen = 32; inet_pton(AF_INET, "192.168.128.1", key->data); assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); assert(value == 3); /* remove last node */ key->prefixlen = 24; inet_pton(AF_INET, "192.168.128.0", key->data); assert(bpf_map_delete_elem(map_fd, key) == 0); key->prefixlen = 32; inet_pton(AF_INET, "192.168.128.1", key->data); assert(bpf_map_lookup_elem(map_fd, key, &value) == -1 && errno == ENOENT); close(map_fd); } static void test_lpm_get_next_key(void) { struct bpf_lpm_trie_key *key_p, *next_key_p; size_t key_size; __u32 value = 0; int map_fd; key_size = sizeof(*key_p) + sizeof(__u32); key_p = alloca(key_size); next_key_p = alloca(key_size); map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, key_size, sizeof(value), 100, BPF_F_NO_PREALLOC); assert(map_fd >= 0); /* empty tree. get_next_key should return ENOENT */ assert(bpf_map_get_next_key(map_fd, NULL, key_p) == -1 && errno == ENOENT); /* get and verify the first key, get the second one should fail. */ key_p->prefixlen = 16; inet_pton(AF_INET, "192.168.0.0", key_p->data); assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); memset(key_p, 0, key_size); assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); assert(key_p->prefixlen == 16 && key_p->data[0] == 192 && key_p->data[1] == 168); assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && errno == ENOENT); /* no exact matching key should get the first one in post order. */ key_p->prefixlen = 8; assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); assert(key_p->prefixlen == 16 && key_p->data[0] == 192 && key_p->data[1] == 168); /* add one more element (total two) */ key_p->prefixlen = 24; inet_pton(AF_INET, "192.168.0.0", key_p->data); assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); memset(key_p, 0, key_size); assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && key_p->data[1] == 168 && key_p->data[2] == 0); memset(next_key_p, 0, key_size); assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && next_key_p->data[1] == 168); memcpy(key_p, next_key_p, key_size); assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && errno == ENOENT); /* Add one more element (total three) */ key_p->prefixlen = 24; inet_pton(AF_INET, "192.168.128.0", key_p->data); assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); memset(key_p, 0, key_size); assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && key_p->data[1] == 168 && key_p->data[2] == 0); memset(next_key_p, 0, key_size); assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && next_key_p->data[1] == 168 && next_key_p->data[2] == 128); memcpy(key_p, next_key_p, key_size); assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && next_key_p->data[1] == 168); memcpy(key_p, next_key_p, key_size); assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && errno == ENOENT); /* Add one more element (total four) */ key_p->prefixlen = 24; inet_pton(AF_INET, "192.168.1.0", key_p->data); assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); memset(key_p, 0, key_size); assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && key_p->data[1] == 168 && key_p->data[2] == 0); memset(next_key_p, 0, key_size); assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && next_key_p->data[1] == 168 && next_key_p->data[2] == 1); memcpy(key_p, next_key_p, key_size); assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && next_key_p->data[1] == 168 && next_key_p->data[2] == 128); memcpy(key_p, next_key_p, key_size); assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && next_key_p->data[1] == 168); memcpy(key_p, next_key_p, key_size); assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && errno == ENOENT); /* no exact matching key should return the first one in post order */ key_p->prefixlen = 22; inet_pton(AF_INET, "192.168.1.0", key_p->data); assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && next_key_p->data[1] == 168 && next_key_p->data[2] == 0); close(map_fd); } #define MAX_TEST_KEYS 4 struct lpm_mt_test_info { int cmd; /* 0: update, 1: delete, 2: lookup, 3: get_next_key */ int iter; int map_fd; struct { __u32 prefixlen; __u32 data; } key[MAX_TEST_KEYS]; }; static void *lpm_test_command(void *arg) { int i, j, ret, iter, key_size; struct lpm_mt_test_info *info = arg; struct bpf_lpm_trie_key *key_p; key_size = sizeof(struct bpf_lpm_trie_key) + sizeof(__u32); key_p = alloca(key_size); for (iter = 0; iter < info->iter; iter++) for (i = 0; i < MAX_TEST_KEYS; i++) { /* first half of iterations in forward order, * and second half in backward order. */ j = (iter < (info->iter / 2)) ? i : MAX_TEST_KEYS - i - 1; key_p->prefixlen = info->key[j].prefixlen; memcpy(key_p->data, &info->key[j].data, sizeof(__u32)); if (info->cmd == 0) { __u32 value = j; /* update must succeed */ assert(bpf_map_update_elem(info->map_fd, key_p, &value, 0) == 0); } else if (info->cmd == 1) { ret = bpf_map_delete_elem(info->map_fd, key_p); assert(ret == 0 || errno == ENOENT); } else if (info->cmd == 2) { __u32 value; ret = bpf_map_lookup_elem(info->map_fd, key_p, &value); assert(ret == 0 || errno == ENOENT); } else { struct bpf_lpm_trie_key *next_key_p = alloca(key_size); ret = bpf_map_get_next_key(info->map_fd, key_p, next_key_p); assert(ret == 0 || errno == ENOENT || errno == ENOMEM); } } // Pass successful exit info back to the main thread pthread_exit((void *)info); } static void setup_lpm_mt_test_info(struct lpm_mt_test_info *info, int map_fd) { info->iter = 2000; info->map_fd = map_fd; info->key[0].prefixlen = 16; inet_pton(AF_INET, "192.168.0.0", &info->key[0].data); info->key[1].prefixlen = 24; inet_pton(AF_INET, "192.168.0.0", &info->key[1].data); info->key[2].prefixlen = 24; inet_pton(AF_INET, "192.168.128.0", &info->key[2].data); info->key[3].prefixlen = 24; inet_pton(AF_INET, "192.168.1.0", &info->key[3].data); } static void test_lpm_multi_thread(void) { struct lpm_mt_test_info info[4]; size_t key_size, value_size; pthread_t thread_id[4]; int i, map_fd; void *ret; /* create a trie */ value_size = sizeof(__u32); key_size = sizeof(struct bpf_lpm_trie_key) + value_size; map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, key_size, value_size, 100, BPF_F_NO_PREALLOC); /* create 4 threads to test update, delete, lookup and get_next_key */ setup_lpm_mt_test_info(&info[0], map_fd); for (i = 0; i < 4; i++) { if (i != 0) memcpy(&info[i], &info[0], sizeof(info[i])); info[i].cmd = i; assert(pthread_create(&thread_id[i], NULL, &lpm_test_command, &info[i]) == 0); } for (i = 0; i < 4; i++) assert(pthread_join(thread_id[i], &ret) == 0 && ret == (void *)&info[i]); close(map_fd); } int main(void) { int i; /* we want predictable, pseudo random tests */ srand(0xf00ba1); test_lpm_basic(); test_lpm_order(); /* Test with 8, 16, 24, 32, ... 128 bit prefix length */ for (i = 1; i <= 16; ++i) test_lpm_map(i); test_lpm_ipaddr(); test_lpm_delete(); test_lpm_get_next_key(); test_lpm_multi_thread(); printf("test_lpm: OK\n"); return 0; }