// SPDX-License-Identifier: LGPL-2.1 OR BSD-2-Clause /* Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. */ #include "vmlinux.h" #include #include #include #define TC_ACT_OK 0 #define TC_ACT_SHOT 2 #define NSEC_PER_SEC 1000000000L #define ETH_ALEN 6 #define ETH_P_IP 0x0800 #define ETH_P_IPV6 0x86DD #define tcp_flag_word(tp) (((union tcp_word_hdr *)(tp))->words[3]) #define IP_DF 0x4000 #define IP_MF 0x2000 #define IP_OFFSET 0x1fff #define NEXTHDR_TCP 6 #define TCPOPT_NOP 1 #define TCPOPT_EOL 0 #define TCPOPT_MSS 2 #define TCPOPT_WINDOW 3 #define TCPOPT_SACK_PERM 4 #define TCPOPT_TIMESTAMP 8 #define TCPOLEN_MSS 4 #define TCPOLEN_WINDOW 3 #define TCPOLEN_SACK_PERM 2 #define TCPOLEN_TIMESTAMP 10 #define TCP_TS_HZ 1000 #define TS_OPT_WSCALE_MASK 0xf #define TS_OPT_SACK (1 << 4) #define TS_OPT_ECN (1 << 5) #define TSBITS 6 #define TSMASK (((__u32)1 << TSBITS) - 1) #define TCP_MAX_WSCALE 14U #define IPV4_MAXLEN 60 #define TCP_MAXLEN 60 #define DEFAULT_MSS4 1460 #define DEFAULT_MSS6 1440 #define DEFAULT_WSCALE 7 #define DEFAULT_TTL 64 #define MAX_ALLOWED_PORTS 8 #define MAX_PACKET_OFF 0xffff #define swap(a, b) \ do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) #define __get_unaligned_t(type, ptr) ({ \ const struct { type x; } __attribute__((__packed__)) *__pptr = (typeof(__pptr))(ptr); \ __pptr->x; \ }) #define get_unaligned(ptr) __get_unaligned_t(typeof(*(ptr)), (ptr)) struct { __uint(type, BPF_MAP_TYPE_ARRAY); __type(key, __u32); __type(value, __u64); __uint(max_entries, 2); } values SEC(".maps"); struct { __uint(type, BPF_MAP_TYPE_ARRAY); __type(key, __u32); __type(value, __u16); __uint(max_entries, MAX_ALLOWED_PORTS); } allowed_ports SEC(".maps"); /* Some symbols defined in net/netfilter/nf_conntrack_bpf.c are unavailable in * vmlinux.h if CONFIG_NF_CONNTRACK=m, so they are redefined locally. */ struct bpf_ct_opts___local { s32 netns_id; s32 error; u8 l4proto; u8 dir; u8 reserved[2]; } __attribute__((preserve_access_index)); #define BPF_F_CURRENT_NETNS (-1) extern struct nf_conn *bpf_xdp_ct_lookup(struct xdp_md *xdp_ctx, struct bpf_sock_tuple *bpf_tuple, __u32 len_tuple, struct bpf_ct_opts___local *opts, __u32 len_opts) __ksym; extern struct nf_conn *bpf_skb_ct_lookup(struct __sk_buff *skb_ctx, struct bpf_sock_tuple *bpf_tuple, u32 len_tuple, struct bpf_ct_opts___local *opts, u32 len_opts) __ksym; extern void bpf_ct_release(struct nf_conn *ct) __ksym; static __always_inline void swap_eth_addr(__u8 *a, __u8 *b) { __u8 tmp[ETH_ALEN]; __builtin_memcpy(tmp, a, ETH_ALEN); __builtin_memcpy(a, b, ETH_ALEN); __builtin_memcpy(b, tmp, ETH_ALEN); } static __always_inline __u16 csum_fold(__u32 csum) { csum = (csum & 0xffff) + (csum >> 16); csum = (csum & 0xffff) + (csum >> 16); return (__u16)~csum; } static __always_inline __u16 csum_tcpudp_magic(__be32 saddr, __be32 daddr, __u32 len, __u8 proto, __u32 csum) { __u64 s = csum; s += (__u32)saddr; s += (__u32)daddr; #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ s += proto + len; #elif __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ s += (proto + len) << 8; #else #error Unknown endian #endif s = (s & 0xffffffff) + (s >> 32); s = (s & 0xffffffff) + (s >> 32); return csum_fold((__u32)s); } static __always_inline __u16 csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr, __u32 len, __u8 proto, __u32 csum) { __u64 sum = csum; int i; #pragma unroll for (i = 0; i < 4; i++) sum += (__u32)saddr->in6_u.u6_addr32[i]; #pragma unroll for (i = 0; i < 4; i++) sum += (__u32)daddr->in6_u.u6_addr32[i]; /* Don't combine additions to avoid 32-bit overflow. */ sum += bpf_htonl(len); sum += bpf_htonl(proto); sum = (sum & 0xffffffff) + (sum >> 32); sum = (sum & 0xffffffff) + (sum >> 32); return csum_fold((__u32)sum); } static __always_inline __u64 tcp_clock_ns(void) { return bpf_ktime_get_ns(); } static __always_inline __u32 tcp_ns_to_ts(__u64 ns) { return ns / (NSEC_PER_SEC / TCP_TS_HZ); } static __always_inline __u32 tcp_time_stamp_raw(void) { return tcp_ns_to_ts(tcp_clock_ns()); } struct tcpopt_context { void *data; void *data_end; __be32 *tsecr; __u8 wscale; bool option_timestamp; bool option_sack; __u32 off; }; static __always_inline u8 *next(struct tcpopt_context *ctx, __u32 sz) { __u64 off = ctx->off; __u8 *data; /* Verifier forbids access to packet when offset exceeds MAX_PACKET_OFF */ if (off > MAX_PACKET_OFF - sz) return NULL; data = ctx->data + off; barrier_var(data); if (data + sz >= ctx->data_end) return NULL; ctx->off += sz; return data; } static int tscookie_tcpopt_parse(struct tcpopt_context *ctx) { __u8 *opcode, *opsize, *wscale, *tsecr; __u32 off = ctx->off; opcode = next(ctx, 1); if (!opcode) return 1; if (*opcode == TCPOPT_EOL) return 1; if (*opcode == TCPOPT_NOP) return 0; opsize = next(ctx, 1); if (!opsize || *opsize < 2) return 1; switch (*opcode) { case TCPOPT_WINDOW: wscale = next(ctx, 1); if (!wscale) return 1; if (*opsize == TCPOLEN_WINDOW) ctx->wscale = *wscale < TCP_MAX_WSCALE ? *wscale : TCP_MAX_WSCALE; break; case TCPOPT_TIMESTAMP: tsecr = next(ctx, 4); if (!tsecr) return 1; if (*opsize == TCPOLEN_TIMESTAMP) { ctx->option_timestamp = true; /* Client's tsval becomes our tsecr. */ *ctx->tsecr = get_unaligned((__be32 *)tsecr); } break; case TCPOPT_SACK_PERM: if (*opsize == TCPOLEN_SACK_PERM) ctx->option_sack = true; break; } ctx->off = off + *opsize; return 0; } static int tscookie_tcpopt_parse_batch(__u32 index, void *context) { int i; for (i = 0; i < 7; i++) if (tscookie_tcpopt_parse(context)) return 1; return 0; } static __always_inline bool tscookie_init(struct tcphdr *tcp_header, __u16 tcp_len, __be32 *tsval, __be32 *tsecr, void *data, void *data_end) { struct tcpopt_context loop_ctx = { .data = data, .data_end = data_end, .tsecr = tsecr, .wscale = TS_OPT_WSCALE_MASK, .option_timestamp = false, .option_sack = false, /* Note: currently verifier would track .off as unbound scalar. * In case if verifier would at some point get smarter and * compute bounded value for this var, beware that it might * hinder bpf_loop() convergence validation. */ .off = (__u8 *)(tcp_header + 1) - (__u8 *)data, }; u32 cookie; bpf_loop(6, tscookie_tcpopt_parse_batch, &loop_ctx, 0); if (!loop_ctx.option_timestamp) return false; cookie = tcp_time_stamp_raw() & ~TSMASK; cookie |= loop_ctx.wscale & TS_OPT_WSCALE_MASK; if (loop_ctx.option_sack) cookie |= TS_OPT_SACK; if (tcp_header->ece && tcp_header->cwr) cookie |= TS_OPT_ECN; *tsval = bpf_htonl(cookie); return true; } static __always_inline void values_get_tcpipopts(__u16 *mss, __u8 *wscale, __u8 *ttl, bool ipv6) { __u32 key = 0; __u64 *value; value = bpf_map_lookup_elem(&values, &key); if (value && *value != 0) { if (ipv6) *mss = (*value >> 32) & 0xffff; else *mss = *value & 0xffff; *wscale = (*value >> 16) & 0xf; *ttl = (*value >> 24) & 0xff; return; } *mss = ipv6 ? DEFAULT_MSS6 : DEFAULT_MSS4; *wscale = DEFAULT_WSCALE; *ttl = DEFAULT_TTL; } static __always_inline void values_inc_synacks(void) { __u32 key = 1; __u64 *value; value = bpf_map_lookup_elem(&values, &key); if (value) __sync_fetch_and_add(value, 1); } static __always_inline bool check_port_allowed(__u16 port) { __u32 i; for (i = 0; i < MAX_ALLOWED_PORTS; i++) { __u32 key = i; __u16 *value; value = bpf_map_lookup_elem(&allowed_ports, &key); if (!value) break; /* 0 is a terminator value. Check it first to avoid matching on * a forbidden port == 0 and returning true. */ if (*value == 0) break; if (*value == port) return true; } return false; } struct header_pointers { struct ethhdr *eth; struct iphdr *ipv4; struct ipv6hdr *ipv6; struct tcphdr *tcp; __u16 tcp_len; }; static __always_inline int tcp_dissect(void *data, void *data_end, struct header_pointers *hdr) { hdr->eth = data; if (hdr->eth + 1 > data_end) return XDP_DROP; switch (bpf_ntohs(hdr->eth->h_proto)) { case ETH_P_IP: hdr->ipv6 = NULL; hdr->ipv4 = (void *)hdr->eth + sizeof(*hdr->eth); if (hdr->ipv4 + 1 > data_end) return XDP_DROP; if (hdr->ipv4->ihl * 4 < sizeof(*hdr->ipv4)) return XDP_DROP; if (hdr->ipv4->version != 4) return XDP_DROP; if (hdr->ipv4->protocol != IPPROTO_TCP) return XDP_PASS; hdr->tcp = (void *)hdr->ipv4 + hdr->ipv4->ihl * 4; break; case ETH_P_IPV6: hdr->ipv4 = NULL; hdr->ipv6 = (void *)hdr->eth + sizeof(*hdr->eth); if (hdr->ipv6 + 1 > data_end) return XDP_DROP; if (hdr->ipv6->version != 6) return XDP_DROP; /* XXX: Extension headers are not supported and could circumvent * XDP SYN flood protection. */ if (hdr->ipv6->nexthdr != NEXTHDR_TCP) return XDP_PASS; hdr->tcp = (void *)hdr->ipv6 + sizeof(*hdr->ipv6); break; default: /* XXX: VLANs will circumvent XDP SYN flood protection. */ return XDP_PASS; } if (hdr->tcp + 1 > data_end) return XDP_DROP; hdr->tcp_len = hdr->tcp->doff * 4; if (hdr->tcp_len < sizeof(*hdr->tcp)) return XDP_DROP; return XDP_TX; } static __always_inline int tcp_lookup(void *ctx, struct header_pointers *hdr, bool xdp) { struct bpf_ct_opts___local ct_lookup_opts = { .netns_id = BPF_F_CURRENT_NETNS, .l4proto = IPPROTO_TCP, }; struct bpf_sock_tuple tup = {}; struct nf_conn *ct; __u32 tup_size; if (hdr->ipv4) { /* TCP doesn't normally use fragments, and XDP can't reassemble * them. */ if ((hdr->ipv4->frag_off & bpf_htons(IP_DF | IP_MF | IP_OFFSET)) != bpf_htons(IP_DF)) return XDP_DROP; tup.ipv4.saddr = hdr->ipv4->saddr; tup.ipv4.daddr = hdr->ipv4->daddr; tup.ipv4.sport = hdr->tcp->source; tup.ipv4.dport = hdr->tcp->dest; tup_size = sizeof(tup.ipv4); } else if (hdr->ipv6) { __builtin_memcpy(tup.ipv6.saddr, &hdr->ipv6->saddr, sizeof(tup.ipv6.saddr)); __builtin_memcpy(tup.ipv6.daddr, &hdr->ipv6->daddr, sizeof(tup.ipv6.daddr)); tup.ipv6.sport = hdr->tcp->source; tup.ipv6.dport = hdr->tcp->dest; tup_size = sizeof(tup.ipv6); } else { /* The verifier can't track that either ipv4 or ipv6 is not * NULL. */ return XDP_ABORTED; } if (xdp) ct = bpf_xdp_ct_lookup(ctx, &tup, tup_size, &ct_lookup_opts, sizeof(ct_lookup_opts)); else ct = bpf_skb_ct_lookup(ctx, &tup, tup_size, &ct_lookup_opts, sizeof(ct_lookup_opts)); if (ct) { unsigned long status = ct->status; bpf_ct_release(ct); if (status & IPS_CONFIRMED) return XDP_PASS; } else if (ct_lookup_opts.error != -ENOENT) { return XDP_ABORTED; } /* error == -ENOENT || !(status & IPS_CONFIRMED) */ return XDP_TX; } static __always_inline __u8 tcp_mkoptions(__be32 *buf, __be32 *tsopt, __u16 mss, __u8 wscale) { __be32 *start = buf; *buf++ = bpf_htonl((TCPOPT_MSS << 24) | (TCPOLEN_MSS << 16) | mss); if (!tsopt) return buf - start; if (tsopt[0] & bpf_htonl(1 << 4)) *buf++ = bpf_htonl((TCPOPT_SACK_PERM << 24) | (TCPOLEN_SACK_PERM << 16) | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP); else *buf++ = bpf_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP); *buf++ = tsopt[0]; *buf++ = tsopt[1]; if ((tsopt[0] & bpf_htonl(0xf)) != bpf_htonl(0xf)) *buf++ = bpf_htonl((TCPOPT_NOP << 24) | (TCPOPT_WINDOW << 16) | (TCPOLEN_WINDOW << 8) | wscale); return buf - start; } static __always_inline void tcp_gen_synack(struct tcphdr *tcp_header, __u32 cookie, __be32 *tsopt, __u16 mss, __u8 wscale) { void *tcp_options; tcp_flag_word(tcp_header) = TCP_FLAG_SYN | TCP_FLAG_ACK; if (tsopt && (tsopt[0] & bpf_htonl(1 << 5))) tcp_flag_word(tcp_header) |= TCP_FLAG_ECE; tcp_header->doff = 5; /* doff is part of tcp_flag_word. */ swap(tcp_header->source, tcp_header->dest); tcp_header->ack_seq = bpf_htonl(bpf_ntohl(tcp_header->seq) + 1); tcp_header->seq = bpf_htonl(cookie); tcp_header->window = 0; tcp_header->urg_ptr = 0; tcp_header->check = 0; /* Calculate checksum later. */ tcp_options = (void *)(tcp_header + 1); tcp_header->doff += tcp_mkoptions(tcp_options, tsopt, mss, wscale); } static __always_inline void tcpv4_gen_synack(struct header_pointers *hdr, __u32 cookie, __be32 *tsopt) { __u8 wscale; __u16 mss; __u8 ttl; values_get_tcpipopts(&mss, &wscale, &ttl, false); swap_eth_addr(hdr->eth->h_source, hdr->eth->h_dest); swap(hdr->ipv4->saddr, hdr->ipv4->daddr); hdr->ipv4->check = 0; /* Calculate checksum later. */ hdr->ipv4->tos = 0; hdr->ipv4->id = 0; hdr->ipv4->ttl = ttl; tcp_gen_synack(hdr->tcp, cookie, tsopt, mss, wscale); hdr->tcp_len = hdr->tcp->doff * 4; hdr->ipv4->tot_len = bpf_htons(sizeof(*hdr->ipv4) + hdr->tcp_len); } static __always_inline void tcpv6_gen_synack(struct header_pointers *hdr, __u32 cookie, __be32 *tsopt) { __u8 wscale; __u16 mss; __u8 ttl; values_get_tcpipopts(&mss, &wscale, &ttl, true); swap_eth_addr(hdr->eth->h_source, hdr->eth->h_dest); swap(hdr->ipv6->saddr, hdr->ipv6->daddr); *(__be32 *)hdr->ipv6 = bpf_htonl(0x60000000); hdr->ipv6->hop_limit = ttl; tcp_gen_synack(hdr->tcp, cookie, tsopt, mss, wscale); hdr->tcp_len = hdr->tcp->doff * 4; hdr->ipv6->payload_len = bpf_htons(hdr->tcp_len); } static __always_inline int syncookie_handle_syn(struct header_pointers *hdr, void *ctx, void *data, void *data_end, bool xdp) { __u32 old_pkt_size, new_pkt_size; /* Unlike clang 10, clang 11 and 12 generate code that doesn't pass the * BPF verifier if tsopt is not volatile. Volatile forces it to store * the pointer value and use it directly, otherwise tcp_mkoptions is * (mis)compiled like this: * if (!tsopt) * return buf - start; * reg = stored_return_value_of_tscookie_init; * if (reg) * tsopt = tsopt_buf; * else * tsopt = NULL; * ... * *buf++ = tsopt[1]; * It creates a dead branch where tsopt is assigned NULL, but the * verifier can't prove it's dead and blocks the program. */ __be32 * volatile tsopt = NULL; __be32 tsopt_buf[2] = {}; __u16 ip_len; __u32 cookie; __s64 value; /* Checksum is not yet verified, but both checksum failure and TCP * header checks return XDP_DROP, so the order doesn't matter. */ if (hdr->tcp->fin || hdr->tcp->rst) return XDP_DROP; /* Issue SYN cookies on allowed ports, drop SYN packets on blocked * ports. */ if (!check_port_allowed(bpf_ntohs(hdr->tcp->dest))) return XDP_DROP; if (hdr->ipv4) { /* Check the IPv4 and TCP checksums before creating a SYNACK. */ value = bpf_csum_diff(0, 0, (void *)hdr->ipv4, hdr->ipv4->ihl * 4, 0); if (value < 0) return XDP_ABORTED; if (csum_fold(value) != 0) return XDP_DROP; /* Bad IPv4 checksum. */ value = bpf_csum_diff(0, 0, (void *)hdr->tcp, hdr->tcp_len, 0); if (value < 0) return XDP_ABORTED; if (csum_tcpudp_magic(hdr->ipv4->saddr, hdr->ipv4->daddr, hdr->tcp_len, IPPROTO_TCP, value) != 0) return XDP_DROP; /* Bad TCP checksum. */ ip_len = sizeof(*hdr->ipv4); value = bpf_tcp_raw_gen_syncookie_ipv4(hdr->ipv4, hdr->tcp, hdr->tcp_len); } else if (hdr->ipv6) { /* Check the TCP checksum before creating a SYNACK. */ value = bpf_csum_diff(0, 0, (void *)hdr->tcp, hdr->tcp_len, 0); if (value < 0) return XDP_ABORTED; if (csum_ipv6_magic(&hdr->ipv6->saddr, &hdr->ipv6->daddr, hdr->tcp_len, IPPROTO_TCP, value) != 0) return XDP_DROP; /* Bad TCP checksum. */ ip_len = sizeof(*hdr->ipv6); value = bpf_tcp_raw_gen_syncookie_ipv6(hdr->ipv6, hdr->tcp, hdr->tcp_len); } else { return XDP_ABORTED; } if (value < 0) return XDP_ABORTED; cookie = (__u32)value; if (tscookie_init((void *)hdr->tcp, hdr->tcp_len, &tsopt_buf[0], &tsopt_buf[1], data, data_end)) tsopt = tsopt_buf; /* Check that there is enough space for a SYNACK. It also covers * the check that the destination of the __builtin_memmove below * doesn't overflow. */ if (data + sizeof(*hdr->eth) + ip_len + TCP_MAXLEN > data_end) return XDP_ABORTED; if (hdr->ipv4) { if (hdr->ipv4->ihl * 4 > sizeof(*hdr->ipv4)) { struct tcphdr *new_tcp_header; new_tcp_header = data + sizeof(*hdr->eth) + sizeof(*hdr->ipv4); __builtin_memmove(new_tcp_header, hdr->tcp, sizeof(*hdr->tcp)); hdr->tcp = new_tcp_header; hdr->ipv4->ihl = sizeof(*hdr->ipv4) / 4; } tcpv4_gen_synack(hdr, cookie, tsopt); } else if (hdr->ipv6) { tcpv6_gen_synack(hdr, cookie, tsopt); } else { return XDP_ABORTED; } /* Recalculate checksums. */ hdr->tcp->check = 0; value = bpf_csum_diff(0, 0, (void *)hdr->tcp, hdr->tcp_len, 0); if (value < 0) return XDP_ABORTED; if (hdr->ipv4) { hdr->tcp->check = csum_tcpudp_magic(hdr->ipv4->saddr, hdr->ipv4->daddr, hdr->tcp_len, IPPROTO_TCP, value); hdr->ipv4->check = 0; value = bpf_csum_diff(0, 0, (void *)hdr->ipv4, sizeof(*hdr->ipv4), 0); if (value < 0) return XDP_ABORTED; hdr->ipv4->check = csum_fold(value); } else if (hdr->ipv6) { hdr->tcp->check = csum_ipv6_magic(&hdr->ipv6->saddr, &hdr->ipv6->daddr, hdr->tcp_len, IPPROTO_TCP, value); } else { return XDP_ABORTED; } /* Set the new packet size. */ old_pkt_size = data_end - data; new_pkt_size = sizeof(*hdr->eth) + ip_len + hdr->tcp->doff * 4; if (xdp) { if (bpf_xdp_adjust_tail(ctx, new_pkt_size - old_pkt_size)) return XDP_ABORTED; } else { if (bpf_skb_change_tail(ctx, new_pkt_size, 0)) return XDP_ABORTED; } values_inc_synacks(); return XDP_TX; } static __always_inline int syncookie_handle_ack(struct header_pointers *hdr) { int err; if (hdr->tcp->rst) return XDP_DROP; if (hdr->ipv4) err = bpf_tcp_raw_check_syncookie_ipv4(hdr->ipv4, hdr->tcp); else if (hdr->ipv6) err = bpf_tcp_raw_check_syncookie_ipv6(hdr->ipv6, hdr->tcp); else return XDP_ABORTED; if (err) return XDP_DROP; return XDP_PASS; } static __always_inline int syncookie_part1(void *ctx, void *data, void *data_end, struct header_pointers *hdr, bool xdp) { int ret; ret = tcp_dissect(data, data_end, hdr); if (ret != XDP_TX) return ret; ret = tcp_lookup(ctx, hdr, xdp); if (ret != XDP_TX) return ret; /* Packet is TCP and doesn't belong to an established connection. */ if ((hdr->tcp->syn ^ hdr->tcp->ack) != 1) return XDP_DROP; /* Grow the TCP header to TCP_MAXLEN to be able to pass any hdr->tcp_len * to bpf_tcp_raw_gen_syncookie_ipv{4,6} and pass the verifier. */ if (xdp) { if (bpf_xdp_adjust_tail(ctx, TCP_MAXLEN - hdr->tcp_len)) return XDP_ABORTED; } else { /* Without volatile the verifier throws this error: * R9 32-bit pointer arithmetic prohibited */ volatile u64 old_len = data_end - data; if (bpf_skb_change_tail(ctx, old_len + TCP_MAXLEN - hdr->tcp_len, 0)) return XDP_ABORTED; } return XDP_TX; } static __always_inline int syncookie_part2(void *ctx, void *data, void *data_end, struct header_pointers *hdr, bool xdp) { if (hdr->ipv4) { hdr->eth = data; hdr->ipv4 = (void *)hdr->eth + sizeof(*hdr->eth); /* IPV4_MAXLEN is needed when calculating checksum. * At least sizeof(struct iphdr) is needed here to access ihl. */ if ((void *)hdr->ipv4 + IPV4_MAXLEN > data_end) return XDP_ABORTED; hdr->tcp = (void *)hdr->ipv4 + hdr->ipv4->ihl * 4; } else if (hdr->ipv6) { hdr->eth = data; hdr->ipv6 = (void *)hdr->eth + sizeof(*hdr->eth); hdr->tcp = (void *)hdr->ipv6 + sizeof(*hdr->ipv6); } else { return XDP_ABORTED; } if ((void *)hdr->tcp + TCP_MAXLEN > data_end) return XDP_ABORTED; /* We run out of registers, tcp_len gets spilled to the stack, and the * verifier forgets its min and max values checked above in tcp_dissect. */ hdr->tcp_len = hdr->tcp->doff * 4; if (hdr->tcp_len < sizeof(*hdr->tcp)) return XDP_ABORTED; return hdr->tcp->syn ? syncookie_handle_syn(hdr, ctx, data, data_end, xdp) : syncookie_handle_ack(hdr); } SEC("xdp") int syncookie_xdp(struct xdp_md *ctx) { void *data_end = (void *)(long)ctx->data_end; void *data = (void *)(long)ctx->data; struct header_pointers hdr; int ret; ret = syncookie_part1(ctx, data, data_end, &hdr, true); if (ret != XDP_TX) return ret; data_end = (void *)(long)ctx->data_end; data = (void *)(long)ctx->data; return syncookie_part2(ctx, data, data_end, &hdr, true); } SEC("tc") int syncookie_tc(struct __sk_buff *skb) { void *data_end = (void *)(long)skb->data_end; void *data = (void *)(long)skb->data; struct header_pointers hdr; int ret; ret = syncookie_part1(skb, data, data_end, &hdr, false); if (ret != XDP_TX) return ret == XDP_PASS ? TC_ACT_OK : TC_ACT_SHOT; data_end = (void *)(long)skb->data_end; data = (void *)(long)skb->data; ret = syncookie_part2(skb, data, data_end, &hdr, false); switch (ret) { case XDP_PASS: return TC_ACT_OK; case XDP_TX: return bpf_redirect(skb->ifindex, 0); default: return TC_ACT_SHOT; } } char _license[] SEC("license") = "GPL";