// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2020 Facebook */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include "bench.h" #include "testing_helpers.h" struct env env = { .warmup_sec = 1, .duration_sec = 5, .affinity = false, .quiet = false, .consumer_cnt = 0, .producer_cnt = 1, }; static int libbpf_print_fn(enum libbpf_print_level level, const char *format, va_list args) { if (level == LIBBPF_DEBUG && !env.verbose) return 0; return vfprintf(stderr, format, args); } void setup_libbpf(void) { libbpf_set_strict_mode(LIBBPF_STRICT_ALL); libbpf_set_print(libbpf_print_fn); } void false_hits_report_progress(int iter, struct bench_res *res, long delta_ns) { long total = res->false_hits + res->hits + res->drops; printf("Iter %3d (%7.3lfus): ", iter, (delta_ns - 1000000000) / 1000.0); printf("%ld false hits of %ld total operations. Percentage = %2.2f %%\n", res->false_hits, total, ((float)res->false_hits / total) * 100); } void false_hits_report_final(struct bench_res res[], int res_cnt) { long total_hits = 0, total_drops = 0, total_false_hits = 0, total_ops = 0; int i; for (i = 0; i < res_cnt; i++) { total_hits += res[i].hits; total_false_hits += res[i].false_hits; total_drops += res[i].drops; } total_ops = total_hits + total_false_hits + total_drops; printf("Summary: %ld false hits of %ld total operations. ", total_false_hits, total_ops); printf("Percentage = %2.2f %%\n", ((float)total_false_hits / total_ops) * 100); } void hits_drops_report_progress(int iter, struct bench_res *res, long delta_ns) { double hits_per_sec, drops_per_sec; double hits_per_prod; hits_per_sec = res->hits / 1000000.0 / (delta_ns / 1000000000.0); hits_per_prod = hits_per_sec / env.producer_cnt; drops_per_sec = res->drops / 1000000.0 / (delta_ns / 1000000000.0); printf("Iter %3d (%7.3lfus): ", iter, (delta_ns - 1000000000) / 1000.0); printf("hits %8.3lfM/s (%7.3lfM/prod), drops %8.3lfM/s, total operations %8.3lfM/s\n", hits_per_sec, hits_per_prod, drops_per_sec, hits_per_sec + drops_per_sec); } void grace_period_latency_basic_stats(struct bench_res res[], int res_cnt, struct basic_stats *gp_stat) { int i; memset(gp_stat, 0, sizeof(struct basic_stats)); for (i = 0; i < res_cnt; i++) gp_stat->mean += res[i].gp_ns / 1000.0 / (double)res[i].gp_ct / (0.0 + res_cnt); #define IT_MEAN_DIFF (res[i].gp_ns / 1000.0 / (double)res[i].gp_ct - gp_stat->mean) if (res_cnt > 1) { for (i = 0; i < res_cnt; i++) gp_stat->stddev += (IT_MEAN_DIFF * IT_MEAN_DIFF) / (res_cnt - 1.0); } gp_stat->stddev = sqrt(gp_stat->stddev); #undef IT_MEAN_DIFF } void grace_period_ticks_basic_stats(struct bench_res res[], int res_cnt, struct basic_stats *gp_stat) { int i; memset(gp_stat, 0, sizeof(struct basic_stats)); for (i = 0; i < res_cnt; i++) gp_stat->mean += res[i].stime / (double)res[i].gp_ct / (0.0 + res_cnt); #define IT_MEAN_DIFF (res[i].stime / (double)res[i].gp_ct - gp_stat->mean) if (res_cnt > 1) { for (i = 0; i < res_cnt; i++) gp_stat->stddev += (IT_MEAN_DIFF * IT_MEAN_DIFF) / (res_cnt - 1.0); } gp_stat->stddev = sqrt(gp_stat->stddev); #undef IT_MEAN_DIFF } void hits_drops_report_final(struct bench_res res[], int res_cnt) { int i; double hits_mean = 0.0, drops_mean = 0.0, total_ops_mean = 0.0; double hits_stddev = 0.0, drops_stddev = 0.0, total_ops_stddev = 0.0; double total_ops; for (i = 0; i < res_cnt; i++) { hits_mean += res[i].hits / 1000000.0 / (0.0 + res_cnt); drops_mean += res[i].drops / 1000000.0 / (0.0 + res_cnt); } total_ops_mean = hits_mean + drops_mean; if (res_cnt > 1) { for (i = 0; i < res_cnt; i++) { hits_stddev += (hits_mean - res[i].hits / 1000000.0) * (hits_mean - res[i].hits / 1000000.0) / (res_cnt - 1.0); drops_stddev += (drops_mean - res[i].drops / 1000000.0) * (drops_mean - res[i].drops / 1000000.0) / (res_cnt - 1.0); total_ops = res[i].hits + res[i].drops; total_ops_stddev += (total_ops_mean - total_ops / 1000000.0) * (total_ops_mean - total_ops / 1000000.0) / (res_cnt - 1.0); } hits_stddev = sqrt(hits_stddev); drops_stddev = sqrt(drops_stddev); total_ops_stddev = sqrt(total_ops_stddev); } printf("Summary: hits %8.3lf \u00B1 %5.3lfM/s (%7.3lfM/prod), ", hits_mean, hits_stddev, hits_mean / env.producer_cnt); printf("drops %8.3lf \u00B1 %5.3lfM/s, ", drops_mean, drops_stddev); printf("total operations %8.3lf \u00B1 %5.3lfM/s\n", total_ops_mean, total_ops_stddev); } void ops_report_progress(int iter, struct bench_res *res, long delta_ns) { double hits_per_sec, hits_per_prod; hits_per_sec = res->hits / 1000000.0 / (delta_ns / 1000000000.0); hits_per_prod = hits_per_sec / env.producer_cnt; printf("Iter %3d (%7.3lfus): ", iter, (delta_ns - 1000000000) / 1000.0); printf("hits %8.3lfM/s (%7.3lfM/prod)\n", hits_per_sec, hits_per_prod); } void ops_report_final(struct bench_res res[], int res_cnt) { double hits_mean = 0.0, hits_stddev = 0.0; int i; for (i = 0; i < res_cnt; i++) hits_mean += res[i].hits / 1000000.0 / (0.0 + res_cnt); if (res_cnt > 1) { for (i = 0; i < res_cnt; i++) hits_stddev += (hits_mean - res[i].hits / 1000000.0) * (hits_mean - res[i].hits / 1000000.0) / (res_cnt - 1.0); hits_stddev = sqrt(hits_stddev); } printf("Summary: throughput %8.3lf \u00B1 %5.3lf M ops/s (%7.3lfM ops/prod), ", hits_mean, hits_stddev, hits_mean / env.producer_cnt); printf("latency %8.3lf ns/op\n", 1000.0 / hits_mean * env.producer_cnt); } void local_storage_report_progress(int iter, struct bench_res *res, long delta_ns) { double important_hits_per_sec, hits_per_sec; double delta_sec = delta_ns / 1000000000.0; hits_per_sec = res->hits / 1000000.0 / delta_sec; important_hits_per_sec = res->important_hits / 1000000.0 / delta_sec; printf("Iter %3d (%7.3lfus): ", iter, (delta_ns - 1000000000) / 1000.0); printf("hits %8.3lfM/s ", hits_per_sec); printf("important_hits %8.3lfM/s\n", important_hits_per_sec); } void local_storage_report_final(struct bench_res res[], int res_cnt) { double important_hits_mean = 0.0, important_hits_stddev = 0.0; double hits_mean = 0.0, hits_stddev = 0.0; int i; for (i = 0; i < res_cnt; i++) { hits_mean += res[i].hits / 1000000.0 / (0.0 + res_cnt); important_hits_mean += res[i].important_hits / 1000000.0 / (0.0 + res_cnt); } if (res_cnt > 1) { for (i = 0; i < res_cnt; i++) { hits_stddev += (hits_mean - res[i].hits / 1000000.0) * (hits_mean - res[i].hits / 1000000.0) / (res_cnt - 1.0); important_hits_stddev += (important_hits_mean - res[i].important_hits / 1000000.0) * (important_hits_mean - res[i].important_hits / 1000000.0) / (res_cnt - 1.0); } hits_stddev = sqrt(hits_stddev); important_hits_stddev = sqrt(important_hits_stddev); } printf("Summary: hits throughput %8.3lf \u00B1 %5.3lf M ops/s, ", hits_mean, hits_stddev); printf("hits latency %8.3lf ns/op, ", 1000.0 / hits_mean); printf("important_hits throughput %8.3lf \u00B1 %5.3lf M ops/s\n", important_hits_mean, important_hits_stddev); } const char *argp_program_version = "benchmark"; const char *argp_program_bug_address = ""; const char argp_program_doc[] = "benchmark Generic benchmarking framework.\n" "\n" "This tool runs benchmarks.\n" "\n" "USAGE: benchmark \n" "\n" "EXAMPLES:\n" " # run 'count-local' benchmark with 1 producer and 1 consumer\n" " benchmark count-local\n" " # run 'count-local' with 16 producer and 8 consumer thread, pinned to CPUs\n" " benchmark -p16 -c8 -a count-local\n"; enum { ARG_PROD_AFFINITY_SET = 1000, ARG_CONS_AFFINITY_SET = 1001, }; static const struct argp_option opts[] = { { "list", 'l', NULL, 0, "List available benchmarks"}, { "duration", 'd', "SEC", 0, "Duration of benchmark, seconds"}, { "warmup", 'w', "SEC", 0, "Warm-up period, seconds"}, { "producers", 'p', "NUM", 0, "Number of producer threads"}, { "consumers", 'c', "NUM", 0, "Number of consumer threads"}, { "verbose", 'v', NULL, 0, "Verbose debug output"}, { "affinity", 'a', NULL, 0, "Set consumer/producer thread affinity"}, { "quiet", 'q', NULL, 0, "Be more quiet"}, { "prod-affinity", ARG_PROD_AFFINITY_SET, "CPUSET", 0, "Set of CPUs for producer threads; implies --affinity"}, { "cons-affinity", ARG_CONS_AFFINITY_SET, "CPUSET", 0, "Set of CPUs for consumer threads; implies --affinity"}, {}, }; extern struct argp bench_ringbufs_argp; extern struct argp bench_bloom_map_argp; extern struct argp bench_bpf_loop_argp; extern struct argp bench_local_storage_argp; extern struct argp bench_local_storage_rcu_tasks_trace_argp; extern struct argp bench_strncmp_argp; extern struct argp bench_hashmap_lookup_argp; extern struct argp bench_local_storage_create_argp; static const struct argp_child bench_parsers[] = { { &bench_ringbufs_argp, 0, "Ring buffers benchmark", 0 }, { &bench_bloom_map_argp, 0, "Bloom filter map benchmark", 0 }, { &bench_bpf_loop_argp, 0, "bpf_loop helper benchmark", 0 }, { &bench_local_storage_argp, 0, "local_storage benchmark", 0 }, { &bench_strncmp_argp, 0, "bpf_strncmp helper benchmark", 0 }, { &bench_local_storage_rcu_tasks_trace_argp, 0, "local_storage RCU Tasks Trace slowdown benchmark", 0 }, { &bench_hashmap_lookup_argp, 0, "Hashmap lookup benchmark", 0 }, { &bench_local_storage_create_argp, 0, "local-storage-create benchmark", 0 }, {}, }; /* Make pos_args global, so that we can run argp_parse twice, if necessary */ static int pos_args; static error_t parse_arg(int key, char *arg, struct argp_state *state) { switch (key) { case 'v': env.verbose = true; break; case 'l': env.list = true; break; case 'd': env.duration_sec = strtol(arg, NULL, 10); if (env.duration_sec <= 0) { fprintf(stderr, "Invalid duration: %s\n", arg); argp_usage(state); } break; case 'w': env.warmup_sec = strtol(arg, NULL, 10); if (env.warmup_sec <= 0) { fprintf(stderr, "Invalid warm-up duration: %s\n", arg); argp_usage(state); } break; case 'p': env.producer_cnt = strtol(arg, NULL, 10); if (env.producer_cnt <= 0) { fprintf(stderr, "Invalid producer count: %s\n", arg); argp_usage(state); } break; case 'c': env.consumer_cnt = strtol(arg, NULL, 10); if (env.consumer_cnt <= 0) { fprintf(stderr, "Invalid consumer count: %s\n", arg); argp_usage(state); } break; case 'a': env.affinity = true; break; case 'q': env.quiet = true; break; case ARG_PROD_AFFINITY_SET: env.affinity = true; if (parse_num_list(arg, &env.prod_cpus.cpus, &env.prod_cpus.cpus_len)) { fprintf(stderr, "Invalid format of CPU set for producers."); argp_usage(state); } break; case ARG_CONS_AFFINITY_SET: env.affinity = true; if (parse_num_list(arg, &env.cons_cpus.cpus, &env.cons_cpus.cpus_len)) { fprintf(stderr, "Invalid format of CPU set for consumers."); argp_usage(state); } break; case ARGP_KEY_ARG: if (pos_args++) { fprintf(stderr, "Unrecognized positional argument: %s\n", arg); argp_usage(state); } env.bench_name = strdup(arg); break; default: return ARGP_ERR_UNKNOWN; } return 0; } static void parse_cmdline_args_init(int argc, char **argv) { static const struct argp argp = { .options = opts, .parser = parse_arg, .doc = argp_program_doc, .children = bench_parsers, }; if (argp_parse(&argp, argc, argv, 0, NULL, NULL)) exit(1); } static void parse_cmdline_args_final(int argc, char **argv) { struct argp_child bench_parsers[2] = {}; const struct argp argp = { .options = opts, .parser = parse_arg, .doc = argp_program_doc, .children = bench_parsers, }; /* Parse arguments the second time with the correct set of parsers */ if (bench->argp) { bench_parsers[0].argp = bench->argp; bench_parsers[0].header = bench->name; pos_args = 0; if (argp_parse(&argp, argc, argv, 0, NULL, NULL)) exit(1); } } static void collect_measurements(long delta_ns); static __u64 last_time_ns; static void sigalarm_handler(int signo) { long new_time_ns = get_time_ns(); long delta_ns = new_time_ns - last_time_ns; collect_measurements(delta_ns); last_time_ns = new_time_ns; } /* set up periodic 1-second timer */ static void setup_timer() { static struct sigaction sigalarm_action = { .sa_handler = sigalarm_handler, }; struct itimerval timer_settings = {}; int err; last_time_ns = get_time_ns(); err = sigaction(SIGALRM, &sigalarm_action, NULL); if (err < 0) { fprintf(stderr, "failed to install SIGALRM handler: %d\n", -errno); exit(1); } timer_settings.it_interval.tv_sec = 1; timer_settings.it_value.tv_sec = 1; err = setitimer(ITIMER_REAL, &timer_settings, NULL); if (err < 0) { fprintf(stderr, "failed to arm interval timer: %d\n", -errno); exit(1); } } static void set_thread_affinity(pthread_t thread, int cpu) { cpu_set_t cpuset; int err; CPU_ZERO(&cpuset); CPU_SET(cpu, &cpuset); err = pthread_setaffinity_np(thread, sizeof(cpuset), &cpuset); if (err) { fprintf(stderr, "setting affinity to CPU #%d failed: %d\n", cpu, -err); exit(1); } } static int next_cpu(struct cpu_set *cpu_set) { if (cpu_set->cpus) { int i; /* find next available CPU */ for (i = cpu_set->next_cpu; i < cpu_set->cpus_len; i++) { if (cpu_set->cpus[i]) { cpu_set->next_cpu = i + 1; return i; } } fprintf(stderr, "Not enough CPUs specified, need CPU #%d or higher.\n", i); exit(1); } return cpu_set->next_cpu++ % env.nr_cpus; } static struct bench_state { int res_cnt; struct bench_res *results; pthread_t *consumers; pthread_t *producers; } state; const struct bench *bench = NULL; extern const struct bench bench_count_global; extern const struct bench bench_count_local; extern const struct bench bench_rename_base; extern const struct bench bench_rename_kprobe; extern const struct bench bench_rename_kretprobe; extern const struct bench bench_rename_rawtp; extern const struct bench bench_rename_fentry; extern const struct bench bench_rename_fexit; extern const struct bench bench_trig_base; extern const struct bench bench_trig_tp; extern const struct bench bench_trig_rawtp; extern const struct bench bench_trig_kprobe; extern const struct bench bench_trig_fentry; extern const struct bench bench_trig_fentry_sleep; extern const struct bench bench_trig_fmodret; extern const struct bench bench_trig_uprobe_base; extern const struct bench bench_trig_uprobe_with_nop; extern const struct bench bench_trig_uretprobe_with_nop; extern const struct bench bench_trig_uprobe_without_nop; extern const struct bench bench_trig_uretprobe_without_nop; extern const struct bench bench_rb_libbpf; extern const struct bench bench_rb_custom; extern const struct bench bench_pb_libbpf; extern const struct bench bench_pb_custom; extern const struct bench bench_bloom_lookup; extern const struct bench bench_bloom_update; extern const struct bench bench_bloom_false_positive; extern const struct bench bench_hashmap_without_bloom; extern const struct bench bench_hashmap_with_bloom; extern const struct bench bench_bpf_loop; extern const struct bench bench_strncmp_no_helper; extern const struct bench bench_strncmp_helper; extern const struct bench bench_bpf_hashmap_full_update; extern const struct bench bench_local_storage_cache_seq_get; extern const struct bench bench_local_storage_cache_interleaved_get; extern const struct bench bench_local_storage_cache_hashmap_control; extern const struct bench bench_local_storage_tasks_trace; extern const struct bench bench_bpf_hashmap_lookup; extern const struct bench bench_local_storage_create; static const struct bench *benchs[] = { &bench_count_global, &bench_count_local, &bench_rename_base, &bench_rename_kprobe, &bench_rename_kretprobe, &bench_rename_rawtp, &bench_rename_fentry, &bench_rename_fexit, &bench_trig_base, &bench_trig_tp, &bench_trig_rawtp, &bench_trig_kprobe, &bench_trig_fentry, &bench_trig_fentry_sleep, &bench_trig_fmodret, &bench_trig_uprobe_base, &bench_trig_uprobe_with_nop, &bench_trig_uretprobe_with_nop, &bench_trig_uprobe_without_nop, &bench_trig_uretprobe_without_nop, &bench_rb_libbpf, &bench_rb_custom, &bench_pb_libbpf, &bench_pb_custom, &bench_bloom_lookup, &bench_bloom_update, &bench_bloom_false_positive, &bench_hashmap_without_bloom, &bench_hashmap_with_bloom, &bench_bpf_loop, &bench_strncmp_no_helper, &bench_strncmp_helper, &bench_bpf_hashmap_full_update, &bench_local_storage_cache_seq_get, &bench_local_storage_cache_interleaved_get, &bench_local_storage_cache_hashmap_control, &bench_local_storage_tasks_trace, &bench_bpf_hashmap_lookup, &bench_local_storage_create, }; static void find_benchmark(void) { int i; if (!env.bench_name) { fprintf(stderr, "benchmark name is not specified\n"); exit(1); } for (i = 0; i < ARRAY_SIZE(benchs); i++) { if (strcmp(benchs[i]->name, env.bench_name) == 0) { bench = benchs[i]; break; } } if (!bench) { fprintf(stderr, "benchmark '%s' not found\n", env.bench_name); exit(1); } } static void setup_benchmark(void) { int i, err; if (!env.quiet) printf("Setting up benchmark '%s'...\n", bench->name); state.producers = calloc(env.producer_cnt, sizeof(*state.producers)); state.consumers = calloc(env.consumer_cnt, sizeof(*state.consumers)); state.results = calloc(env.duration_sec + env.warmup_sec + 2, sizeof(*state.results)); if (!state.producers || !state.consumers || !state.results) exit(1); if (bench->validate) bench->validate(); if (bench->setup) bench->setup(); for (i = 0; i < env.consumer_cnt; i++) { err = pthread_create(&state.consumers[i], NULL, bench->consumer_thread, (void *)(long)i); if (err) { fprintf(stderr, "failed to create consumer thread #%d: %d\n", i, -err); exit(1); } if (env.affinity) set_thread_affinity(state.consumers[i], next_cpu(&env.cons_cpus)); } /* unless explicit producer CPU list is specified, continue after * last consumer CPU */ if (!env.prod_cpus.cpus) env.prod_cpus.next_cpu = env.cons_cpus.next_cpu; for (i = 0; i < env.producer_cnt; i++) { err = pthread_create(&state.producers[i], NULL, bench->producer_thread, (void *)(long)i); if (err) { fprintf(stderr, "failed to create producer thread #%d: %d\n", i, -err); exit(1); } if (env.affinity) set_thread_affinity(state.producers[i], next_cpu(&env.prod_cpus)); } if (!env.quiet) printf("Benchmark '%s' started.\n", bench->name); } static pthread_mutex_t bench_done_mtx = PTHREAD_MUTEX_INITIALIZER; static pthread_cond_t bench_done = PTHREAD_COND_INITIALIZER; static void collect_measurements(long delta_ns) { int iter = state.res_cnt++; struct bench_res *res = &state.results[iter]; bench->measure(res); if (bench->report_progress) bench->report_progress(iter, res, delta_ns); if (iter == env.duration_sec + env.warmup_sec) { pthread_mutex_lock(&bench_done_mtx); pthread_cond_signal(&bench_done); pthread_mutex_unlock(&bench_done_mtx); } } int main(int argc, char **argv) { env.nr_cpus = get_nprocs(); parse_cmdline_args_init(argc, argv); if (env.list) { int i; printf("Available benchmarks:\n"); for (i = 0; i < ARRAY_SIZE(benchs); i++) { printf("- %s\n", benchs[i]->name); } return 0; } find_benchmark(); parse_cmdline_args_final(argc, argv); setup_benchmark(); setup_timer(); pthread_mutex_lock(&bench_done_mtx); pthread_cond_wait(&bench_done, &bench_done_mtx); pthread_mutex_unlock(&bench_done_mtx); if (bench->report_final) /* skip first sample */ bench->report_final(state.results + env.warmup_sec, state.res_cnt - env.warmup_sec); return 0; }