// SPDX-License-Identifier: GPL-2.0-or-later #include "alloc_api.h" /* * A simple test that tries to allocate a small memory region. * Expect to allocate an aligned region near the end of the available memory. */ static int alloc_top_down_simple_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; void *allocated_ptr = NULL; phys_addr_t size = SZ_2; phys_addr_t expected_start; setup_memblock(); expected_start = memblock_end_of_DRAM() - SMP_CACHE_BYTES; allocated_ptr = memblock_alloc(size, SMP_CACHE_BYTES); assert(allocated_ptr); assert(rgn->size == size); assert(rgn->base == expected_start); assert(memblock.reserved.cnt == 1); assert(memblock.reserved.total_size == size); return 0; } /* * A test that tries to allocate memory next to a reserved region that starts at * the misaligned address. Expect to create two separate entries, with the new * entry aligned to the provided alignment: * * + * | +--------+ +--------| * | | rgn2 | | rgn1 | * +------------+--------+---------+--------+ * ^ * | * Aligned address boundary * * The allocation direction is top-down and region arrays are sorted from lower * to higher addresses, so the new region will be the first entry in * memory.reserved array. The previously reserved region does not get modified. * Region counter and total size get updated. */ static int alloc_top_down_disjoint_check(void) { /* After allocation, this will point to the "old" region */ struct memblock_region *rgn1 = &memblock.reserved.regions[1]; struct memblock_region *rgn2 = &memblock.reserved.regions[0]; struct region r1; void *allocated_ptr = NULL; phys_addr_t r2_size = SZ_16; /* Use custom alignment */ phys_addr_t alignment = SMP_CACHE_BYTES * 2; phys_addr_t total_size; phys_addr_t expected_start; setup_memblock(); r1.base = memblock_end_of_DRAM() - SZ_2; r1.size = SZ_2; total_size = r1.size + r2_size; expected_start = memblock_end_of_DRAM() - alignment; memblock_reserve(r1.base, r1.size); allocated_ptr = memblock_alloc(r2_size, alignment); assert(allocated_ptr); assert(rgn1->size == r1.size); assert(rgn1->base == r1.base); assert(rgn2->size == r2_size); assert(rgn2->base == expected_start); assert(memblock.reserved.cnt == 2); assert(memblock.reserved.total_size == total_size); return 0; } /* * A test that tries to allocate memory when there is enough space at the end * of the previously reserved block (i.e. first fit): * * | +--------+--------------| * | | r1 | r2 | * +--------------+--------+--------------+ * * Expect a merge of both regions. Only the region size gets updated. */ static int alloc_top_down_before_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; void *allocated_ptr = NULL; /* * The first region ends at the aligned address to test region merging */ phys_addr_t r1_size = SMP_CACHE_BYTES; phys_addr_t r2_size = SZ_512; phys_addr_t total_size = r1_size + r2_size; setup_memblock(); memblock_reserve(memblock_end_of_DRAM() - total_size, r1_size); allocated_ptr = memblock_alloc(r2_size, SMP_CACHE_BYTES); assert(allocated_ptr); assert(rgn->size == total_size); assert(rgn->base == memblock_end_of_DRAM() - total_size); assert(memblock.reserved.cnt == 1); assert(memblock.reserved.total_size == total_size); return 0; } /* * A test that tries to allocate memory when there is not enough space at the * end of the previously reserved block (i.e. second fit): * * | +-----------+------+ | * | | r2 | r1 | | * +------------+-----------+------+-----+ * * Expect a merge of both regions. Both the base address and size of the region * get updated. */ static int alloc_top_down_after_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; struct region r1; void *allocated_ptr = NULL; phys_addr_t r2_size = SZ_512; phys_addr_t total_size; setup_memblock(); /* * The first region starts at the aligned address to test region merging */ r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES; r1.size = SZ_8; total_size = r1.size + r2_size; memblock_reserve(r1.base, r1.size); allocated_ptr = memblock_alloc(r2_size, SMP_CACHE_BYTES); assert(allocated_ptr); assert(rgn->size == total_size); assert(rgn->base == r1.base - r2_size); assert(memblock.reserved.cnt == 1); assert(memblock.reserved.total_size == total_size); return 0; } /* * A test that tries to allocate memory when there are two reserved regions with * a gap too small to fit the new region: * * | +--------+----------+ +------| * | | r3 | r2 | | r1 | * +-------+--------+----------+---+------+ * * Expect to allocate a region before the one that starts at the lower address, * and merge them into one. The region counter and total size fields get * updated. */ static int alloc_top_down_second_fit_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; struct region r1, r2; void *allocated_ptr = NULL; phys_addr_t r3_size = SZ_1K; phys_addr_t total_size; setup_memblock(); r1.base = memblock_end_of_DRAM() - SZ_512; r1.size = SZ_512; r2.base = r1.base - SZ_512; r2.size = SZ_256; total_size = r1.size + r2.size + r3_size; memblock_reserve(r1.base, r1.size); memblock_reserve(r2.base, r2.size); allocated_ptr = memblock_alloc(r3_size, SMP_CACHE_BYTES); assert(allocated_ptr); assert(rgn->size == r2.size + r3_size); assert(rgn->base == r2.base - r3_size); assert(memblock.reserved.cnt == 2); assert(memblock.reserved.total_size == total_size); return 0; } /* * A test that tries to allocate memory when there are two reserved regions with * a gap big enough to accommodate the new region: * * | +--------+--------+--------+ | * | | r2 | r3 | r1 | | * +-----+--------+--------+--------+-----+ * * Expect to merge all of them, creating one big entry in memblock.reserved * array. The region counter and total size fields get updated. */ static int alloc_in_between_generic_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; struct region r1, r2; void *allocated_ptr = NULL; phys_addr_t gap_size = SMP_CACHE_BYTES; phys_addr_t r3_size = SZ_64; /* * Calculate regions size so there's just enough space for the new entry */ phys_addr_t rgn_size = (MEM_SIZE - (2 * gap_size + r3_size)) / 2; phys_addr_t total_size; setup_memblock(); r1.size = rgn_size; r1.base = memblock_end_of_DRAM() - (gap_size + rgn_size); r2.size = rgn_size; r2.base = memblock_start_of_DRAM() + gap_size; total_size = r1.size + r2.size + r3_size; memblock_reserve(r1.base, r1.size); memblock_reserve(r2.base, r2.size); allocated_ptr = memblock_alloc(r3_size, SMP_CACHE_BYTES); assert(allocated_ptr); assert(rgn->size == total_size); assert(rgn->base == r1.base - r2.size - r3_size); assert(memblock.reserved.cnt == 1); assert(memblock.reserved.total_size == total_size); return 0; } /* * A test that tries to allocate memory when the memory is filled with reserved * regions with memory gaps too small to fit the new region: * * +-------+ * | new | * +--+----+ * | +-----+ +-----+ +-----+ | * | | res | | res | | res | | * +----+-----+----+-----+----+-----+----+ * * Expect no allocation to happen. */ static int alloc_small_gaps_generic_check(void) { void *allocated_ptr = NULL; phys_addr_t region_size = SZ_1K; phys_addr_t gap_size = SZ_256; phys_addr_t region_end; setup_memblock(); region_end = memblock_start_of_DRAM(); while (region_end < memblock_end_of_DRAM()) { memblock_reserve(region_end + gap_size, region_size); region_end += gap_size + region_size; } allocated_ptr = memblock_alloc(region_size, SMP_CACHE_BYTES); assert(!allocated_ptr); return 0; } /* * A test that tries to allocate memory when all memory is reserved. * Expect no allocation to happen. */ static int alloc_all_reserved_generic_check(void) { void *allocated_ptr = NULL; setup_memblock(); /* Simulate full memory */ memblock_reserve(memblock_start_of_DRAM(), MEM_SIZE); allocated_ptr = memblock_alloc(SZ_256, SMP_CACHE_BYTES); assert(!allocated_ptr); return 0; } /* * A test that tries to allocate memory when the memory is almost full, * with not enough space left for the new region: * * +-------+ * | new | * +-------+ * |-----------------------------+ | * | reserved | | * +-----------------------------+---+ * * Expect no allocation to happen. */ static int alloc_no_space_generic_check(void) { void *allocated_ptr = NULL; setup_memblock(); phys_addr_t available_size = SZ_256; phys_addr_t reserved_size = MEM_SIZE - available_size; /* Simulate almost-full memory */ memblock_reserve(memblock_start_of_DRAM(), reserved_size); allocated_ptr = memblock_alloc(SZ_1K, SMP_CACHE_BYTES); assert(!allocated_ptr); return 0; } /* * A test that tries to allocate memory when the memory is almost full, * but there is just enough space left: * * |---------------------------+---------| * | reserved | new | * +---------------------------+---------+ * * Expect to allocate memory and merge all the regions. The total size field * gets updated. */ static int alloc_limited_space_generic_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; void *allocated_ptr = NULL; phys_addr_t available_size = SZ_256; phys_addr_t reserved_size = MEM_SIZE - available_size; setup_memblock(); /* Simulate almost-full memory */ memblock_reserve(memblock_start_of_DRAM(), reserved_size); allocated_ptr = memblock_alloc(available_size, SMP_CACHE_BYTES); assert(allocated_ptr); assert(rgn->size == MEM_SIZE); assert(rgn->base == memblock_start_of_DRAM()); assert(memblock.reserved.cnt == 1); assert(memblock.reserved.total_size == MEM_SIZE); return 0; } /* * A test that tries to allocate memory when there is no available memory * registered (i.e. memblock.memory has only a dummy entry). * Expect no allocation to happen. */ static int alloc_no_memory_generic_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; void *allocated_ptr = NULL; reset_memblock_regions(); allocated_ptr = memblock_alloc(SZ_1K, SMP_CACHE_BYTES); assert(!allocated_ptr); assert(rgn->size == 0); assert(rgn->base == 0); assert(memblock.reserved.total_size == 0); return 0; } /* * A simple test that tries to allocate a small memory region. * Expect to allocate an aligned region at the beginning of the available * memory. */ static int alloc_bottom_up_simple_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; void *allocated_ptr = NULL; setup_memblock(); allocated_ptr = memblock_alloc(SZ_2, SMP_CACHE_BYTES); assert(allocated_ptr); assert(rgn->size == SZ_2); assert(rgn->base == memblock_start_of_DRAM()); assert(memblock.reserved.cnt == 1); assert(memblock.reserved.total_size == SZ_2); return 0; } /* * A test that tries to allocate memory next to a reserved region that starts at * the misaligned address. Expect to create two separate entries, with the new * entry aligned to the provided alignment: * * + * | +----------+ +----------+ | * | | rgn1 | | rgn2 | | * +----+----------+---+----------+-----+ * ^ * | * Aligned address boundary * * The allocation direction is bottom-up, so the new region will be the second * entry in memory.reserved array. The previously reserved region does not get * modified. Region counter and total size get updated. */ static int alloc_bottom_up_disjoint_check(void) { struct memblock_region *rgn1 = &memblock.reserved.regions[0]; struct memblock_region *rgn2 = &memblock.reserved.regions[1]; struct region r1; void *allocated_ptr = NULL; phys_addr_t r2_size = SZ_16; /* Use custom alignment */ phys_addr_t alignment = SMP_CACHE_BYTES * 2; phys_addr_t total_size; phys_addr_t expected_start; setup_memblock(); r1.base = memblock_start_of_DRAM() + SZ_2; r1.size = SZ_2; total_size = r1.size + r2_size; expected_start = memblock_start_of_DRAM() + alignment; memblock_reserve(r1.base, r1.size); allocated_ptr = memblock_alloc(r2_size, alignment); assert(allocated_ptr); assert(rgn1->size == r1.size); assert(rgn1->base == r1.base); assert(rgn2->size == r2_size); assert(rgn2->base == expected_start); assert(memblock.reserved.cnt == 2); assert(memblock.reserved.total_size == total_size); return 0; } /* * A test that tries to allocate memory when there is enough space at * the beginning of the previously reserved block (i.e. first fit): * * |------------------+--------+ | * | r1 | r2 | | * +------------------+--------+---------+ * * Expect a merge of both regions. Only the region size gets updated. */ static int alloc_bottom_up_before_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; void *allocated_ptr = NULL; phys_addr_t r1_size = SZ_512; phys_addr_t r2_size = SZ_128; phys_addr_t total_size = r1_size + r2_size; setup_memblock(); memblock_reserve(memblock_start_of_DRAM() + r1_size, r2_size); allocated_ptr = memblock_alloc(r1_size, SMP_CACHE_BYTES); assert(allocated_ptr); assert(rgn->size == total_size); assert(rgn->base == memblock_start_of_DRAM()); assert(memblock.reserved.cnt == 1); assert(memblock.reserved.total_size == total_size); return 0; } /* * A test that tries to allocate memory when there is not enough space at * the beginning of the previously reserved block (i.e. second fit): * * | +--------+--------------+ | * | | r1 | r2 | | * +----+--------+--------------+---------+ * * Expect a merge of both regions. Only the region size gets updated. */ static int alloc_bottom_up_after_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; struct region r1; void *allocated_ptr = NULL; phys_addr_t r2_size = SZ_512; phys_addr_t total_size; setup_memblock(); /* * The first region starts at the aligned address to test region merging */ r1.base = memblock_start_of_DRAM() + SMP_CACHE_BYTES; r1.size = SZ_64; total_size = r1.size + r2_size; memblock_reserve(r1.base, r1.size); allocated_ptr = memblock_alloc(r2_size, SMP_CACHE_BYTES); assert(allocated_ptr); assert(rgn->size == total_size); assert(rgn->base == r1.base); assert(memblock.reserved.cnt == 1); assert(memblock.reserved.total_size == total_size); return 0; } /* * A test that tries to allocate memory when there are two reserved regions, the * first one starting at the beginning of the available memory, with a gap too * small to fit the new region: * * |------------+ +--------+--------+ | * | r1 | | r2 | r3 | | * +------------+-----+--------+--------+--+ * * Expect to allocate after the second region, which starts at the higher * address, and merge them into one. The region counter and total size fields * get updated. */ static int alloc_bottom_up_second_fit_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[1]; struct region r1, r2; void *allocated_ptr = NULL; phys_addr_t r3_size = SZ_1K; phys_addr_t total_size; setup_memblock(); r1.base = memblock_start_of_DRAM(); r1.size = SZ_512; r2.base = r1.base + r1.size + SZ_512; r2.size = SZ_256; total_size = r1.size + r2.size + r3_size; memblock_reserve(r1.base, r1.size); memblock_reserve(r2.base, r2.size); allocated_ptr = memblock_alloc(r3_size, SMP_CACHE_BYTES); assert(allocated_ptr); assert(rgn->size == r2.size + r3_size); assert(rgn->base == r2.base); assert(memblock.reserved.cnt == 2); assert(memblock.reserved.total_size == total_size); return 0; } /* Test case wrappers */ static int alloc_simple_check(void) { memblock_set_bottom_up(false); alloc_top_down_simple_check(); memblock_set_bottom_up(true); alloc_bottom_up_simple_check(); return 0; } static int alloc_disjoint_check(void) { memblock_set_bottom_up(false); alloc_top_down_disjoint_check(); memblock_set_bottom_up(true); alloc_bottom_up_disjoint_check(); return 0; } static int alloc_before_check(void) { memblock_set_bottom_up(false); alloc_top_down_before_check(); memblock_set_bottom_up(true); alloc_bottom_up_before_check(); return 0; } static int alloc_after_check(void) { memblock_set_bottom_up(false); alloc_top_down_after_check(); memblock_set_bottom_up(true); alloc_bottom_up_after_check(); return 0; } static int alloc_in_between_check(void) { memblock_set_bottom_up(false); alloc_in_between_generic_check(); memblock_set_bottom_up(true); alloc_in_between_generic_check(); return 0; } static int alloc_second_fit_check(void) { memblock_set_bottom_up(false); alloc_top_down_second_fit_check(); memblock_set_bottom_up(true); alloc_bottom_up_second_fit_check(); return 0; } static int alloc_small_gaps_check(void) { memblock_set_bottom_up(false); alloc_small_gaps_generic_check(); memblock_set_bottom_up(true); alloc_small_gaps_generic_check(); return 0; } static int alloc_all_reserved_check(void) { memblock_set_bottom_up(false); alloc_all_reserved_generic_check(); memblock_set_bottom_up(true); alloc_all_reserved_generic_check(); return 0; } static int alloc_no_space_check(void) { memblock_set_bottom_up(false); alloc_no_space_generic_check(); memblock_set_bottom_up(true); alloc_no_space_generic_check(); return 0; } static int alloc_limited_space_check(void) { memblock_set_bottom_up(false); alloc_limited_space_generic_check(); memblock_set_bottom_up(true); alloc_limited_space_generic_check(); return 0; } static int alloc_no_memory_check(void) { memblock_set_bottom_up(false); alloc_no_memory_generic_check(); memblock_set_bottom_up(true); alloc_no_memory_generic_check(); return 0; } int memblock_alloc_checks(void) { reset_memblock_attributes(); dummy_physical_memory_init(); alloc_simple_check(); alloc_disjoint_check(); alloc_before_check(); alloc_after_check(); alloc_second_fit_check(); alloc_small_gaps_check(); alloc_in_between_check(); alloc_all_reserved_check(); alloc_no_space_check(); alloc_limited_space_check(); alloc_no_memory_check(); dummy_physical_memory_cleanup(); return 0; }