// SPDX-License-Identifier: GPL-2.0 #include <stdio.h> #include "evsel.h" #include "stat.h" #include "color.h" #include "pmu.h" #include "rblist.h" #include "evlist.h" #include "expr.h" #include "metricgroup.h" /* * AGGR_GLOBAL: Use CPU 0 * AGGR_SOCKET: Use first CPU of socket * AGGR_CORE: Use first CPU of core * AGGR_NONE: Use matching CPU * AGGR_THREAD: Not supported? */ static bool have_frontend_stalled; struct runtime_stat rt_stat; struct stats walltime_nsecs_stats; struct saved_value { struct rb_node rb_node; struct perf_evsel *evsel; enum stat_type type; int ctx; int cpu; struct runtime_stat *stat; struct stats stats; }; static int saved_value_cmp(struct rb_node *rb_node, const void *entry) { struct saved_value *a = container_of(rb_node, struct saved_value, rb_node); const struct saved_value *b = entry; if (a->cpu != b->cpu) return a->cpu - b->cpu; /* * Previously the rbtree was used to link generic metrics. * The keys were evsel/cpu. Now the rbtree is extended to support * per-thread shadow stats. For shadow stats case, the keys * are cpu/type/ctx/stat (evsel is NULL). For generic metrics * case, the keys are still evsel/cpu (type/ctx/stat are 0 or NULL). */ if (a->type != b->type) return a->type - b->type; if (a->ctx != b->ctx) return a->ctx - b->ctx; if (a->evsel == NULL && b->evsel == NULL) { if (a->stat == b->stat) return 0; if ((char *)a->stat < (char *)b->stat) return -1; return 1; } if (a->evsel == b->evsel) return 0; if ((char *)a->evsel < (char *)b->evsel) return -1; return +1; } static struct rb_node *saved_value_new(struct rblist *rblist __maybe_unused, const void *entry) { struct saved_value *nd = malloc(sizeof(struct saved_value)); if (!nd) return NULL; memcpy(nd, entry, sizeof(struct saved_value)); return &nd->rb_node; } static void saved_value_delete(struct rblist *rblist __maybe_unused, struct rb_node *rb_node) { struct saved_value *v; BUG_ON(!rb_node); v = container_of(rb_node, struct saved_value, rb_node); free(v); } static struct saved_value *saved_value_lookup(struct perf_evsel *evsel, int cpu, bool create, enum stat_type type, int ctx, struct runtime_stat *st) { struct rblist *rblist; struct rb_node *nd; struct saved_value dm = { .cpu = cpu, .evsel = evsel, .type = type, .ctx = ctx, .stat = st, }; rblist = &st->value_list; nd = rblist__find(rblist, &dm); if (nd) return container_of(nd, struct saved_value, rb_node); if (create) { rblist__add_node(rblist, &dm); nd = rblist__find(rblist, &dm); if (nd) return container_of(nd, struct saved_value, rb_node); } return NULL; } void runtime_stat__init(struct runtime_stat *st) { struct rblist *rblist = &st->value_list; rblist__init(rblist); rblist->node_cmp = saved_value_cmp; rblist->node_new = saved_value_new; rblist->node_delete = saved_value_delete; } void runtime_stat__exit(struct runtime_stat *st) { rblist__exit(&st->value_list); } void perf_stat__init_shadow_stats(void) { have_frontend_stalled = pmu_have_event("cpu", "stalled-cycles-frontend"); runtime_stat__init(&rt_stat); } static int evsel_context(struct perf_evsel *evsel) { int ctx = 0; if (evsel->attr.exclude_kernel) ctx |= CTX_BIT_KERNEL; if (evsel->attr.exclude_user) ctx |= CTX_BIT_USER; if (evsel->attr.exclude_hv) ctx |= CTX_BIT_HV; if (evsel->attr.exclude_host) ctx |= CTX_BIT_HOST; if (evsel->attr.exclude_idle) ctx |= CTX_BIT_IDLE; return ctx; } static void reset_stat(struct runtime_stat *st) { struct rblist *rblist; struct rb_node *pos, *next; rblist = &st->value_list; next = rb_first(&rblist->entries); while (next) { pos = next; next = rb_next(pos); memset(&container_of(pos, struct saved_value, rb_node)->stats, 0, sizeof(struct stats)); } } void perf_stat__reset_shadow_stats(void) { reset_stat(&rt_stat); memset(&walltime_nsecs_stats, 0, sizeof(walltime_nsecs_stats)); } void perf_stat__reset_shadow_per_stat(struct runtime_stat *st) { reset_stat(st); } static void update_runtime_stat(struct runtime_stat *st, enum stat_type type, int ctx, int cpu, u64 count) { struct saved_value *v = saved_value_lookup(NULL, cpu, true, type, ctx, st); if (v) update_stats(&v->stats, count); } /* * Update various tracking values we maintain to print * more semantic information such as miss/hit ratios, * instruction rates, etc: */ void perf_stat__update_shadow_stats(struct perf_evsel *counter, u64 count, int cpu, struct runtime_stat *st) { int ctx = evsel_context(counter); count *= counter->scale; if (perf_evsel__match(counter, SOFTWARE, SW_TASK_CLOCK) || perf_evsel__match(counter, SOFTWARE, SW_CPU_CLOCK)) update_runtime_stat(st, STAT_NSECS, 0, cpu, count); else if (perf_evsel__match(counter, HARDWARE, HW_CPU_CYCLES)) update_runtime_stat(st, STAT_CYCLES, ctx, cpu, count); else if (perf_stat_evsel__is(counter, CYCLES_IN_TX)) update_runtime_stat(st, STAT_CYCLES_IN_TX, ctx, cpu, count); else if (perf_stat_evsel__is(counter, TRANSACTION_START)) update_runtime_stat(st, STAT_TRANSACTION, ctx, cpu, count); else if (perf_stat_evsel__is(counter, ELISION_START)) update_runtime_stat(st, STAT_ELISION, ctx, cpu, count); else if (perf_stat_evsel__is(counter, TOPDOWN_TOTAL_SLOTS)) update_runtime_stat(st, STAT_TOPDOWN_TOTAL_SLOTS, ctx, cpu, count); else if (perf_stat_evsel__is(counter, TOPDOWN_SLOTS_ISSUED)) update_runtime_stat(st, STAT_TOPDOWN_SLOTS_ISSUED, ctx, cpu, count); else if (perf_stat_evsel__is(counter, TOPDOWN_SLOTS_RETIRED)) update_runtime_stat(st, STAT_TOPDOWN_SLOTS_RETIRED, ctx, cpu, count); else if (perf_stat_evsel__is(counter, TOPDOWN_FETCH_BUBBLES)) update_runtime_stat(st, STAT_TOPDOWN_FETCH_BUBBLES, ctx, cpu, count); else if (perf_stat_evsel__is(counter, TOPDOWN_RECOVERY_BUBBLES)) update_runtime_stat(st, STAT_TOPDOWN_RECOVERY_BUBBLES, ctx, cpu, count); else if (perf_evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_FRONTEND)) update_runtime_stat(st, STAT_STALLED_CYCLES_FRONT, ctx, cpu, count); else if (perf_evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_BACKEND)) update_runtime_stat(st, STAT_STALLED_CYCLES_BACK, ctx, cpu, count); else if (perf_evsel__match(counter, HARDWARE, HW_BRANCH_INSTRUCTIONS)) update_runtime_stat(st, STAT_BRANCHES, ctx, cpu, count); else if (perf_evsel__match(counter, HARDWARE, HW_CACHE_REFERENCES)) update_runtime_stat(st, STAT_CACHEREFS, ctx, cpu, count); else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_L1D)) update_runtime_stat(st, STAT_L1_DCACHE, ctx, cpu, count); else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_L1I)) update_runtime_stat(st, STAT_L1_ICACHE, ctx, cpu, count); else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_LL)) update_runtime_stat(st, STAT_LL_CACHE, ctx, cpu, count); else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_DTLB)) update_runtime_stat(st, STAT_DTLB_CACHE, ctx, cpu, count); else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_ITLB)) update_runtime_stat(st, STAT_ITLB_CACHE, ctx, cpu, count); else if (perf_stat_evsel__is(counter, SMI_NUM)) update_runtime_stat(st, STAT_SMI_NUM, ctx, cpu, count); else if (perf_stat_evsel__is(counter, APERF)) update_runtime_stat(st, STAT_APERF, ctx, cpu, count); if (counter->collect_stat) { struct saved_value *v = saved_value_lookup(counter, cpu, true, STAT_NONE, 0, st); update_stats(&v->stats, count); } } /* used for get_ratio_color() */ enum grc_type { GRC_STALLED_CYCLES_FE, GRC_STALLED_CYCLES_BE, GRC_CACHE_MISSES, GRC_MAX_NR }; static const char *get_ratio_color(enum grc_type type, double ratio) { static const double grc_table[GRC_MAX_NR][3] = { [GRC_STALLED_CYCLES_FE] = { 50.0, 30.0, 10.0 }, [GRC_STALLED_CYCLES_BE] = { 75.0, 50.0, 20.0 }, [GRC_CACHE_MISSES] = { 20.0, 10.0, 5.0 }, }; const char *color = PERF_COLOR_NORMAL; if (ratio > grc_table[type][0]) color = PERF_COLOR_RED; else if (ratio > grc_table[type][1]) color = PERF_COLOR_MAGENTA; else if (ratio > grc_table[type][2]) color = PERF_COLOR_YELLOW; return color; } static struct perf_evsel *perf_stat__find_event(struct perf_evlist *evsel_list, const char *name) { struct perf_evsel *c2; evlist__for_each_entry (evsel_list, c2) { if (!strcasecmp(c2->name, name)) return c2; } return NULL; } /* Mark MetricExpr target events and link events using them to them. */ void perf_stat__collect_metric_expr(struct perf_evlist *evsel_list) { struct perf_evsel *counter, *leader, **metric_events, *oc; bool found; const char **metric_names; int i; int num_metric_names; evlist__for_each_entry(evsel_list, counter) { bool invalid = false; leader = counter->leader; if (!counter->metric_expr) continue; metric_events = counter->metric_events; if (!metric_events) { if (expr__find_other(counter->metric_expr, counter->name, &metric_names, &num_metric_names) < 0) continue; metric_events = calloc(sizeof(struct perf_evsel *), num_metric_names + 1); if (!metric_events) return; counter->metric_events = metric_events; } for (i = 0; i < num_metric_names; i++) { found = false; if (leader) { /* Search in group */ for_each_group_member (oc, leader) { if (!strcasecmp(oc->name, metric_names[i])) { found = true; break; } } } if (!found) { /* Search ignoring groups */ oc = perf_stat__find_event(evsel_list, metric_names[i]); } if (!oc) { /* Deduping one is good enough to handle duplicated PMUs. */ static char *printed; /* * Adding events automatically would be difficult, because * it would risk creating groups that are not schedulable. * perf stat doesn't understand all the scheduling constraints * of events. So we ask the user instead to add the missing * events. */ if (!printed || strcasecmp(printed, metric_names[i])) { fprintf(stderr, "Add %s event to groups to get metric expression for %s\n", metric_names[i], counter->name); printed = strdup(metric_names[i]); } invalid = true; continue; } metric_events[i] = oc; oc->collect_stat = true; } metric_events[i] = NULL; free(metric_names); if (invalid) { free(metric_events); counter->metric_events = NULL; counter->metric_expr = NULL; } } } static double runtime_stat_avg(struct runtime_stat *st, enum stat_type type, int ctx, int cpu) { struct saved_value *v; v = saved_value_lookup(NULL, cpu, false, type, ctx, st); if (!v) return 0.0; return avg_stats(&v->stats); } static double runtime_stat_n(struct runtime_stat *st, enum stat_type type, int ctx, int cpu) { struct saved_value *v; v = saved_value_lookup(NULL, cpu, false, type, ctx, st); if (!v) return 0.0; return v->stats.n; } static void print_stalled_cycles_frontend(struct perf_stat_config *config, int cpu, struct perf_evsel *evsel, double avg, struct perf_stat_output_ctx *out, struct runtime_stat *st) { double total, ratio = 0.0; const char *color; int ctx = evsel_context(evsel); total = runtime_stat_avg(st, STAT_CYCLES, ctx, cpu); if (total) ratio = avg / total * 100.0; color = get_ratio_color(GRC_STALLED_CYCLES_FE, ratio); if (ratio) out->print_metric(config, out->ctx, color, "%7.2f%%", "frontend cycles idle", ratio); else out->print_metric(config, out->ctx, NULL, NULL, "frontend cycles idle", 0); } static void print_stalled_cycles_backend(struct perf_stat_config *config, int cpu, struct perf_evsel *evsel, double avg, struct perf_stat_output_ctx *out, struct runtime_stat *st) { double total, ratio = 0.0; const char *color; int ctx = evsel_context(evsel); total = runtime_stat_avg(st, STAT_CYCLES, ctx, cpu); if (total) ratio = avg / total * 100.0; color = get_ratio_color(GRC_STALLED_CYCLES_BE, ratio); out->print_metric(config, out->ctx, color, "%7.2f%%", "backend cycles idle", ratio); } static void print_branch_misses(struct perf_stat_config *config, int cpu, struct perf_evsel *evsel, double avg, struct perf_stat_output_ctx *out, struct runtime_stat *st) { double total, ratio = 0.0; const char *color; int ctx = evsel_context(evsel); total = runtime_stat_avg(st, STAT_BRANCHES, ctx, cpu); if (total) ratio = avg / total * 100.0; color = get_ratio_color(GRC_CACHE_MISSES, ratio); out->print_metric(config, out->ctx, color, "%7.2f%%", "of all branches", ratio); } static void print_l1_dcache_misses(struct perf_stat_config *config, int cpu, struct perf_evsel *evsel, double avg, struct perf_stat_output_ctx *out, struct runtime_stat *st) { double total, ratio = 0.0; const char *color; int ctx = evsel_context(evsel); total = runtime_stat_avg(st, STAT_L1_DCACHE, ctx, cpu); if (total) ratio = avg / total * 100.0; color = get_ratio_color(GRC_CACHE_MISSES, ratio); out->print_metric(config, out->ctx, color, "%7.2f%%", "of all L1-dcache hits", ratio); } static void print_l1_icache_misses(struct perf_stat_config *config, int cpu, struct perf_evsel *evsel, double avg, struct perf_stat_output_ctx *out, struct runtime_stat *st) { double total, ratio = 0.0; const char *color; int ctx = evsel_context(evsel); total = runtime_stat_avg(st, STAT_L1_ICACHE, ctx, cpu); if (total) ratio = avg / total * 100.0; color = get_ratio_color(GRC_CACHE_MISSES, ratio); out->print_metric(config, out->ctx, color, "%7.2f%%", "of all L1-icache hits", ratio); } static void print_dtlb_cache_misses(struct perf_stat_config *config, int cpu, struct perf_evsel *evsel, double avg, struct perf_stat_output_ctx *out, struct runtime_stat *st) { double total, ratio = 0.0; const char *color; int ctx = evsel_context(evsel); total = runtime_stat_avg(st, STAT_DTLB_CACHE, ctx, cpu); if (total) ratio = avg / total * 100.0; color = get_ratio_color(GRC_CACHE_MISSES, ratio); out->print_metric(config, out->ctx, color, "%7.2f%%", "of all dTLB cache hits", ratio); } static void print_itlb_cache_misses(struct perf_stat_config *config, int cpu, struct perf_evsel *evsel, double avg, struct perf_stat_output_ctx *out, struct runtime_stat *st) { double total, ratio = 0.0; const char *color; int ctx = evsel_context(evsel); total = runtime_stat_avg(st, STAT_ITLB_CACHE, ctx, cpu); if (total) ratio = avg / total * 100.0; color = get_ratio_color(GRC_CACHE_MISSES, ratio); out->print_metric(config, out->ctx, color, "%7.2f%%", "of all iTLB cache hits", ratio); } static void print_ll_cache_misses(struct perf_stat_config *config, int cpu, struct perf_evsel *evsel, double avg, struct perf_stat_output_ctx *out, struct runtime_stat *st) { double total, ratio = 0.0; const char *color; int ctx = evsel_context(evsel); total = runtime_stat_avg(st, STAT_LL_CACHE, ctx, cpu); if (total) ratio = avg / total * 100.0; color = get_ratio_color(GRC_CACHE_MISSES, ratio); out->print_metric(config, out->ctx, color, "%7.2f%%", "of all LL-cache hits", ratio); } /* * High level "TopDown" CPU core pipe line bottleneck break down. * * Basic concept following * Yasin, A Top Down Method for Performance analysis and Counter architecture * ISPASS14 * * The CPU pipeline is divided into 4 areas that can be bottlenecks: * * Frontend -> Backend -> Retiring * BadSpeculation in addition means out of order execution that is thrown away * (for example branch mispredictions) * Frontend is instruction decoding. * Backend is execution, like computation and accessing data in memory * Retiring is good execution that is not directly bottlenecked * * The formulas are computed in slots. * A slot is an entry in the pipeline each for the pipeline width * (for example a 4-wide pipeline has 4 slots for each cycle) * * Formulas: * BadSpeculation = ((SlotsIssued - SlotsRetired) + RecoveryBubbles) / * TotalSlots * Retiring = SlotsRetired / TotalSlots * FrontendBound = FetchBubbles / TotalSlots * BackendBound = 1.0 - BadSpeculation - Retiring - FrontendBound * * The kernel provides the mapping to the low level CPU events and any scaling * needed for the CPU pipeline width, for example: * * TotalSlots = Cycles * 4 * * The scaling factor is communicated in the sysfs unit. * * In some cases the CPU may not be able to measure all the formulas due to * missing events. In this case multiple formulas are combined, as possible. * * Full TopDown supports more levels to sub-divide each area: for example * BackendBound into computing bound and memory bound. For now we only * support Level 1 TopDown. */ static double sanitize_val(double x) { if (x < 0 && x >= -0.02) return 0.0; return x; } static double td_total_slots(int ctx, int cpu, struct runtime_stat *st) { return runtime_stat_avg(st, STAT_TOPDOWN_TOTAL_SLOTS, ctx, cpu); } static double td_bad_spec(int ctx, int cpu, struct runtime_stat *st) { double bad_spec = 0; double total_slots; double total; total = runtime_stat_avg(st, STAT_TOPDOWN_SLOTS_ISSUED, ctx, cpu) - runtime_stat_avg(st, STAT_TOPDOWN_SLOTS_RETIRED, ctx, cpu) + runtime_stat_avg(st, STAT_TOPDOWN_RECOVERY_BUBBLES, ctx, cpu); total_slots = td_total_slots(ctx, cpu, st); if (total_slots) bad_spec = total / total_slots; return sanitize_val(bad_spec); } static double td_retiring(int ctx, int cpu, struct runtime_stat *st) { double retiring = 0; double total_slots = td_total_slots(ctx, cpu, st); double ret_slots = runtime_stat_avg(st, STAT_TOPDOWN_SLOTS_RETIRED, ctx, cpu); if (total_slots) retiring = ret_slots / total_slots; return retiring; } static double td_fe_bound(int ctx, int cpu, struct runtime_stat *st) { double fe_bound = 0; double total_slots = td_total_slots(ctx, cpu, st); double fetch_bub = runtime_stat_avg(st, STAT_TOPDOWN_FETCH_BUBBLES, ctx, cpu); if (total_slots) fe_bound = fetch_bub / total_slots; return fe_bound; } static double td_be_bound(int ctx, int cpu, struct runtime_stat *st) { double sum = (td_fe_bound(ctx, cpu, st) + td_bad_spec(ctx, cpu, st) + td_retiring(ctx, cpu, st)); if (sum == 0) return 0; return sanitize_val(1.0 - sum); } static void print_smi_cost(struct perf_stat_config *config, int cpu, struct perf_evsel *evsel, struct perf_stat_output_ctx *out, struct runtime_stat *st) { double smi_num, aperf, cycles, cost = 0.0; int ctx = evsel_context(evsel); const char *color = NULL; smi_num = runtime_stat_avg(st, STAT_SMI_NUM, ctx, cpu); aperf = runtime_stat_avg(st, STAT_APERF, ctx, cpu); cycles = runtime_stat_avg(st, STAT_CYCLES, ctx, cpu); if ((cycles == 0) || (aperf == 0)) return; if (smi_num) cost = (aperf - cycles) / aperf * 100.00; if (cost > 10) color = PERF_COLOR_RED; out->print_metric(config, out->ctx, color, "%8.1f%%", "SMI cycles%", cost); out->print_metric(config, out->ctx, NULL, "%4.0f", "SMI#", smi_num); } static void generic_metric(struct perf_stat_config *config, const char *metric_expr, struct perf_evsel **metric_events, char *name, const char *metric_name, double avg, int cpu, struct perf_stat_output_ctx *out, struct runtime_stat *st) { print_metric_t print_metric = out->print_metric; struct parse_ctx pctx; double ratio; int i; void *ctxp = out->ctx; expr__ctx_init(&pctx); expr__add_id(&pctx, name, avg); for (i = 0; metric_events[i]; i++) { struct saved_value *v; struct stats *stats; double scale; if (!strcmp(metric_events[i]->name, "duration_time")) { stats = &walltime_nsecs_stats; scale = 1e-9; } else { v = saved_value_lookup(metric_events[i], cpu, false, STAT_NONE, 0, st); if (!v) break; stats = &v->stats; scale = 1.0; } expr__add_id(&pctx, metric_events[i]->name, avg_stats(stats)*scale); } if (!metric_events[i]) { const char *p = metric_expr; if (expr__parse(&ratio, &pctx, &p) == 0) print_metric(config, ctxp, NULL, "%8.1f", metric_name ? metric_name : out->force_header ? name : "", ratio); else print_metric(config, ctxp, NULL, NULL, out->force_header ? (metric_name ? metric_name : name) : "", 0); } else print_metric(config, ctxp, NULL, NULL, "", 0); } void perf_stat__print_shadow_stats(struct perf_stat_config *config, struct perf_evsel *evsel, double avg, int cpu, struct perf_stat_output_ctx *out, struct rblist *metric_events, struct runtime_stat *st) { void *ctxp = out->ctx; print_metric_t print_metric = out->print_metric; double total, ratio = 0.0, total2; const char *color = NULL; int ctx = evsel_context(evsel); struct metric_event *me; int num = 1; if (perf_evsel__match(evsel, HARDWARE, HW_INSTRUCTIONS)) { total = runtime_stat_avg(st, STAT_CYCLES, ctx, cpu); if (total) { ratio = avg / total; print_metric(config, ctxp, NULL, "%7.2f ", "insn per cycle", ratio); } else { print_metric(config, ctxp, NULL, NULL, "insn per cycle", 0); } total = runtime_stat_avg(st, STAT_STALLED_CYCLES_FRONT, ctx, cpu); total = max(total, runtime_stat_avg(st, STAT_STALLED_CYCLES_BACK, ctx, cpu)); if (total && avg) { out->new_line(config, ctxp); ratio = total / avg; print_metric(config, ctxp, NULL, "%7.2f ", "stalled cycles per insn", ratio); } else if (have_frontend_stalled) { print_metric(config, ctxp, NULL, NULL, "stalled cycles per insn", 0); } } else if (perf_evsel__match(evsel, HARDWARE, HW_BRANCH_MISSES)) { if (runtime_stat_n(st, STAT_BRANCHES, ctx, cpu) != 0) print_branch_misses(config, cpu, evsel, avg, out, st); else print_metric(config, ctxp, NULL, NULL, "of all branches", 0); } else if ( evsel->attr.type == PERF_TYPE_HW_CACHE && evsel->attr.config == ( PERF_COUNT_HW_CACHE_L1D | ((PERF_COUNT_HW_CACHE_OP_READ) << 8) | ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) { if (runtime_stat_n(st, STAT_L1_DCACHE, ctx, cpu) != 0) print_l1_dcache_misses(config, cpu, evsel, avg, out, st); else print_metric(config, ctxp, NULL, NULL, "of all L1-dcache hits", 0); } else if ( evsel->attr.type == PERF_TYPE_HW_CACHE && evsel->attr.config == ( PERF_COUNT_HW_CACHE_L1I | ((PERF_COUNT_HW_CACHE_OP_READ) << 8) | ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) { if (runtime_stat_n(st, STAT_L1_ICACHE, ctx, cpu) != 0) print_l1_icache_misses(config, cpu, evsel, avg, out, st); else print_metric(config, ctxp, NULL, NULL, "of all L1-icache hits", 0); } else if ( evsel->attr.type == PERF_TYPE_HW_CACHE && evsel->attr.config == ( PERF_COUNT_HW_CACHE_DTLB | ((PERF_COUNT_HW_CACHE_OP_READ) << 8) | ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) { if (runtime_stat_n(st, STAT_DTLB_CACHE, ctx, cpu) != 0) print_dtlb_cache_misses(config, cpu, evsel, avg, out, st); else print_metric(config, ctxp, NULL, NULL, "of all dTLB cache hits", 0); } else if ( evsel->attr.type == PERF_TYPE_HW_CACHE && evsel->attr.config == ( PERF_COUNT_HW_CACHE_ITLB | ((PERF_COUNT_HW_CACHE_OP_READ) << 8) | ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) { if (runtime_stat_n(st, STAT_ITLB_CACHE, ctx, cpu) != 0) print_itlb_cache_misses(config, cpu, evsel, avg, out, st); else print_metric(config, ctxp, NULL, NULL, "of all iTLB cache hits", 0); } else if ( evsel->attr.type == PERF_TYPE_HW_CACHE && evsel->attr.config == ( PERF_COUNT_HW_CACHE_LL | ((PERF_COUNT_HW_CACHE_OP_READ) << 8) | ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) { if (runtime_stat_n(st, STAT_LL_CACHE, ctx, cpu) != 0) print_ll_cache_misses(config, cpu, evsel, avg, out, st); else print_metric(config, ctxp, NULL, NULL, "of all LL-cache hits", 0); } else if (perf_evsel__match(evsel, HARDWARE, HW_CACHE_MISSES)) { total = runtime_stat_avg(st, STAT_CACHEREFS, ctx, cpu); if (total) ratio = avg * 100 / total; if (runtime_stat_n(st, STAT_CACHEREFS, ctx, cpu) != 0) print_metric(config, ctxp, NULL, "%8.3f %%", "of all cache refs", ratio); else print_metric(config, ctxp, NULL, NULL, "of all cache refs", 0); } else if (perf_evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_FRONTEND)) { print_stalled_cycles_frontend(config, cpu, evsel, avg, out, st); } else if (perf_evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_BACKEND)) { print_stalled_cycles_backend(config, cpu, evsel, avg, out, st); } else if (perf_evsel__match(evsel, HARDWARE, HW_CPU_CYCLES)) { total = runtime_stat_avg(st, STAT_NSECS, 0, cpu); if (total) { ratio = avg / total; print_metric(config, ctxp, NULL, "%8.3f", "GHz", ratio); } else { print_metric(config, ctxp, NULL, NULL, "Ghz", 0); } } else if (perf_stat_evsel__is(evsel, CYCLES_IN_TX)) { total = runtime_stat_avg(st, STAT_CYCLES, ctx, cpu); if (total) print_metric(config, ctxp, NULL, "%7.2f%%", "transactional cycles", 100.0 * (avg / total)); else print_metric(config, ctxp, NULL, NULL, "transactional cycles", 0); } else if (perf_stat_evsel__is(evsel, CYCLES_IN_TX_CP)) { total = runtime_stat_avg(st, STAT_CYCLES, ctx, cpu); total2 = runtime_stat_avg(st, STAT_CYCLES_IN_TX, ctx, cpu); if (total2 < avg) total2 = avg; if (total) print_metric(config, ctxp, NULL, "%7.2f%%", "aborted cycles", 100.0 * ((total2-avg) / total)); else print_metric(config, ctxp, NULL, NULL, "aborted cycles", 0); } else if (perf_stat_evsel__is(evsel, TRANSACTION_START)) { total = runtime_stat_avg(st, STAT_CYCLES_IN_TX, ctx, cpu); if (avg) ratio = total / avg; if (runtime_stat_n(st, STAT_CYCLES_IN_TX, ctx, cpu) != 0) print_metric(config, ctxp, NULL, "%8.0f", "cycles / transaction", ratio); else print_metric(config, ctxp, NULL, NULL, "cycles / transaction", 0); } else if (perf_stat_evsel__is(evsel, ELISION_START)) { total = runtime_stat_avg(st, STAT_CYCLES_IN_TX, ctx, cpu); if (avg) ratio = total / avg; print_metric(config, ctxp, NULL, "%8.0f", "cycles / elision", ratio); } else if (perf_evsel__is_clock(evsel)) { if ((ratio = avg_stats(&walltime_nsecs_stats)) != 0) print_metric(config, ctxp, NULL, "%8.3f", "CPUs utilized", avg / (ratio * evsel->scale)); else print_metric(config, ctxp, NULL, NULL, "CPUs utilized", 0); } else if (perf_stat_evsel__is(evsel, TOPDOWN_FETCH_BUBBLES)) { double fe_bound = td_fe_bound(ctx, cpu, st); if (fe_bound > 0.2) color = PERF_COLOR_RED; print_metric(config, ctxp, color, "%8.1f%%", "frontend bound", fe_bound * 100.); } else if (perf_stat_evsel__is(evsel, TOPDOWN_SLOTS_RETIRED)) { double retiring = td_retiring(ctx, cpu, st); if (retiring > 0.7) color = PERF_COLOR_GREEN; print_metric(config, ctxp, color, "%8.1f%%", "retiring", retiring * 100.); } else if (perf_stat_evsel__is(evsel, TOPDOWN_RECOVERY_BUBBLES)) { double bad_spec = td_bad_spec(ctx, cpu, st); if (bad_spec > 0.1) color = PERF_COLOR_RED; print_metric(config, ctxp, color, "%8.1f%%", "bad speculation", bad_spec * 100.); } else if (perf_stat_evsel__is(evsel, TOPDOWN_SLOTS_ISSUED)) { double be_bound = td_be_bound(ctx, cpu, st); const char *name = "backend bound"; static int have_recovery_bubbles = -1; /* In case the CPU does not support topdown-recovery-bubbles */ if (have_recovery_bubbles < 0) have_recovery_bubbles = pmu_have_event("cpu", "topdown-recovery-bubbles"); if (!have_recovery_bubbles) name = "backend bound/bad spec"; if (be_bound > 0.2) color = PERF_COLOR_RED; if (td_total_slots(ctx, cpu, st) > 0) print_metric(config, ctxp, color, "%8.1f%%", name, be_bound * 100.); else print_metric(config, ctxp, NULL, NULL, name, 0); } else if (evsel->metric_expr) { generic_metric(config, evsel->metric_expr, evsel->metric_events, evsel->name, evsel->metric_name, avg, cpu, out, st); } else if (runtime_stat_n(st, STAT_NSECS, 0, cpu) != 0) { char unit = 'M'; char unit_buf[10]; total = runtime_stat_avg(st, STAT_NSECS, 0, cpu); if (total) ratio = 1000.0 * avg / total; if (ratio < 0.001) { ratio *= 1000; unit = 'K'; } snprintf(unit_buf, sizeof(unit_buf), "%c/sec", unit); print_metric(config, ctxp, NULL, "%8.3f", unit_buf, ratio); } else if (perf_stat_evsel__is(evsel, SMI_NUM)) { print_smi_cost(config, cpu, evsel, out, st); } else { num = 0; } if ((me = metricgroup__lookup(metric_events, evsel, false)) != NULL) { struct metric_expr *mexp; list_for_each_entry (mexp, &me->head, nd) { if (num++ > 0) out->new_line(config, ctxp); generic_metric(config, mexp->metric_expr, mexp->metric_events, evsel->name, mexp->metric_name, avg, cpu, out, st); } } if (num == 0) print_metric(config, ctxp, NULL, NULL, NULL, 0); }