#include #include #include #include #include #include #include "color.h" #include "counts.h" #include "evlist.h" #include "evsel.h" #include "stat.h" #include "top.h" #include "thread_map.h" #include "cpumap.h" #include "string2.h" #include #include "cgroup.h" #include #include "util.h" #define CNTR_NOT_SUPPORTED "" #define CNTR_NOT_COUNTED "" static void print_running(struct perf_stat_config *config, u64 run, u64 ena) { if (config->csv_output) { fprintf(config->output, "%s%" PRIu64 "%s%.2f", config->csv_sep, run, config->csv_sep, ena ? 100.0 * run / ena : 100.0); } else if (run != ena) { fprintf(config->output, " (%.2f%%)", 100.0 * run / ena); } } static void print_noise_pct(struct perf_stat_config *config, double total, double avg) { double pct = rel_stddev_stats(total, avg); if (config->csv_output) fprintf(config->output, "%s%.2f%%", config->csv_sep, pct); else if (pct) fprintf(config->output, " ( +-%6.2f%% )", pct); } static void print_noise(struct perf_stat_config *config, struct evsel *evsel, double avg) { struct perf_stat_evsel *ps; if (config->run_count == 1) return; ps = evsel->stats; print_noise_pct(config, stddev_stats(&ps->res_stats[0]), avg); } static void print_cgroup(struct perf_stat_config *config, struct evsel *evsel) { if (nr_cgroups) { const char *cgrp_name = evsel->cgrp ? evsel->cgrp->name : ""; fprintf(config->output, "%s%s", config->csv_sep, cgrp_name); } } static void aggr_printout(struct perf_stat_config *config, struct evsel *evsel, struct aggr_cpu_id id, int nr) { switch (config->aggr_mode) { case AGGR_CORE: fprintf(config->output, "S%d-D%d-C%*d%s%*d%s", id.socket, id.die, config->csv_output ? 0 : -8, id.core, config->csv_sep, config->csv_output ? 0 : 4, nr, config->csv_sep); break; case AGGR_DIE: fprintf(config->output, "S%d-D%*d%s%*d%s", id.socket, config->csv_output ? 0 : -8, id.die, config->csv_sep, config->csv_output ? 0 : 4, nr, config->csv_sep); break; case AGGR_SOCKET: fprintf(config->output, "S%*d%s%*d%s", config->csv_output ? 0 : -5, id.socket, config->csv_sep, config->csv_output ? 0 : 4, nr, config->csv_sep); break; case AGGR_NODE: fprintf(config->output, "N%*d%s%*d%s", config->csv_output ? 0 : -5, id.node, config->csv_sep, config->csv_output ? 0 : 4, nr, config->csv_sep); break; case AGGR_NONE: if (evsel->percore && !config->percore_show_thread) { fprintf(config->output, "S%d-D%d-C%*d%s", id.socket, id.die, config->csv_output ? 0 : -3, id.core, config->csv_sep); } else if (id.core > -1) { fprintf(config->output, "CPU%*d%s", config->csv_output ? 0 : -7, evsel__cpus(evsel)->map[id.core], config->csv_sep); } break; case AGGR_THREAD: fprintf(config->output, "%*s-%*d%s", config->csv_output ? 0 : 16, perf_thread_map__comm(evsel->core.threads, id.thread), config->csv_output ? 0 : -8, perf_thread_map__pid(evsel->core.threads, id.thread), config->csv_sep); break; case AGGR_GLOBAL: case AGGR_UNSET: default: break; } } struct outstate { FILE *fh; bool newline; const char *prefix; int nfields; int nr; struct aggr_cpu_id id; struct evsel *evsel; }; #define METRIC_LEN 35 static void new_line_std(struct perf_stat_config *config __maybe_unused, void *ctx) { struct outstate *os = ctx; os->newline = true; } static void do_new_line_std(struct perf_stat_config *config, struct outstate *os) { fputc('\n', os->fh); fputs(os->prefix, os->fh); aggr_printout(config, os->evsel, os->id, os->nr); if (config->aggr_mode == AGGR_NONE) fprintf(os->fh, " "); fprintf(os->fh, " "); } static void print_metric_std(struct perf_stat_config *config, void *ctx, const char *color, const char *fmt, const char *unit, double val) { struct outstate *os = ctx; FILE *out = os->fh; int n; bool newline = os->newline; os->newline = false; if (unit == NULL || fmt == NULL) { fprintf(out, "%-*s", METRIC_LEN, ""); return; } if (newline) do_new_line_std(config, os); n = fprintf(out, " # "); if (color) n += color_fprintf(out, color, fmt, val); else n += fprintf(out, fmt, val); fprintf(out, " %-*s", METRIC_LEN - n - 1, unit); } static void new_line_csv(struct perf_stat_config *config, void *ctx) { struct outstate *os = ctx; int i; fputc('\n', os->fh); if (os->prefix) fprintf(os->fh, "%s%s", os->prefix, config->csv_sep); aggr_printout(config, os->evsel, os->id, os->nr); for (i = 0; i < os->nfields; i++) fputs(config->csv_sep, os->fh); } static void print_metric_csv(struct perf_stat_config *config __maybe_unused, void *ctx, const char *color __maybe_unused, const char *fmt, const char *unit, double val) { struct outstate *os = ctx; FILE *out = os->fh; char buf[64], *vals, *ends; if (unit == NULL || fmt == NULL) { fprintf(out, "%s%s", config->csv_sep, config->csv_sep); return; } snprintf(buf, sizeof(buf), fmt, val); ends = vals = skip_spaces(buf); while (isdigit(*ends) || *ends == '.') ends++; *ends = 0; fprintf(out, "%s%s%s%s", config->csv_sep, vals, config->csv_sep, skip_spaces(unit)); } /* Filter out some columns that don't work well in metrics only mode */ static bool valid_only_metric(const char *unit) { if (!unit) return false; if (strstr(unit, "/sec") || strstr(unit, "CPUs utilized")) return false; return true; } static const char *fixunit(char *buf, struct evsel *evsel, const char *unit) { if (!strncmp(unit, "of all", 6)) { snprintf(buf, 1024, "%s %s", evsel__name(evsel), unit); return buf; } return unit; } static void print_metric_only(struct perf_stat_config *config, void *ctx, const char *color, const char *fmt, const char *unit, double val) { struct outstate *os = ctx; FILE *out = os->fh; char buf[1024], str[1024]; unsigned mlen = config->metric_only_len; if (!valid_only_metric(unit)) return; unit = fixunit(buf, os->evsel, unit); if (mlen < strlen(unit)) mlen = strlen(unit) + 1; if (color) mlen += strlen(color) + sizeof(PERF_COLOR_RESET) - 1; color_snprintf(str, sizeof(str), color ?: "", fmt, val); fprintf(out, "%*s ", mlen, str); } static void print_metric_only_csv(struct perf_stat_config *config __maybe_unused, void *ctx, const char *color __maybe_unused, const char *fmt, const char *unit, double val) { struct outstate *os = ctx; FILE *out = os->fh; char buf[64], *vals, *ends; char tbuf[1024]; if (!valid_only_metric(unit)) return; unit = fixunit(tbuf, os->evsel, unit); snprintf(buf, sizeof buf, fmt, val); ends = vals = skip_spaces(buf); while (isdigit(*ends) || *ends == '.') ends++; *ends = 0; fprintf(out, "%s%s", vals, config->csv_sep); } static void new_line_metric(struct perf_stat_config *config __maybe_unused, void *ctx __maybe_unused) { } static void print_metric_header(struct perf_stat_config *config, void *ctx, const char *color __maybe_unused, const char *fmt __maybe_unused, const char *unit, double val __maybe_unused) { struct outstate *os = ctx; char tbuf[1024]; if (!valid_only_metric(unit)) return; unit = fixunit(tbuf, os->evsel, unit); if (config->csv_output) fprintf(os->fh, "%s%s", unit, config->csv_sep); else fprintf(os->fh, "%*s ", config->metric_only_len, unit); } static int first_shadow_cpu(struct perf_stat_config *config, struct evsel *evsel, struct aggr_cpu_id id) { struct evlist *evlist = evsel->evlist; int i; if (config->aggr_mode == AGGR_NONE) return id.core; if (!config->aggr_get_id) return 0; for (i = 0; i < evsel__nr_cpus(evsel); i++) { int cpu2 = evsel__cpus(evsel)->map[i]; if (cpu_map__compare_aggr_cpu_id( config->aggr_get_id(config, evlist->core.cpus, cpu2), id)) { return cpu2; } } return 0; } static void abs_printout(struct perf_stat_config *config, struct aggr_cpu_id id, int nr, struct evsel *evsel, double avg) { FILE *output = config->output; double sc = evsel->scale; const char *fmt; if (config->csv_output) { fmt = floor(sc) != sc ? "%.2f%s" : "%.0f%s"; } else { if (config->big_num) fmt = floor(sc) != sc ? "%'18.2f%s" : "%'18.0f%s"; else fmt = floor(sc) != sc ? "%18.2f%s" : "%18.0f%s"; } aggr_printout(config, evsel, id, nr); fprintf(output, fmt, avg, config->csv_sep); if (evsel->unit) fprintf(output, "%-*s%s", config->csv_output ? 0 : config->unit_width, evsel->unit, config->csv_sep); fprintf(output, "%-*s", config->csv_output ? 0 : 25, evsel__name(evsel)); print_cgroup(config, evsel); } static bool is_mixed_hw_group(struct evsel *counter) { struct evlist *evlist = counter->evlist; u32 pmu_type = counter->core.attr.type; struct evsel *pos; if (counter->core.nr_members < 2) return false; evlist__for_each_entry(evlist, pos) { /* software events can be part of any hardware group */ if (pos->core.attr.type == PERF_TYPE_SOFTWARE) continue; if (pmu_type == PERF_TYPE_SOFTWARE) { pmu_type = pos->core.attr.type; continue; } if (pmu_type != pos->core.attr.type) return true; } return false; } static void printout(struct perf_stat_config *config, struct aggr_cpu_id id, int nr, struct evsel *counter, double uval, char *prefix, u64 run, u64 ena, double noise, struct runtime_stat *st) { struct perf_stat_output_ctx out; struct outstate os = { .fh = config->output, .prefix = prefix ? prefix : "", .id = id, .nr = nr, .evsel = counter, }; print_metric_t pm = print_metric_std; new_line_t nl; if (config->metric_only) { nl = new_line_metric; if (config->csv_output) pm = print_metric_only_csv; else pm = print_metric_only; } else nl = new_line_std; if (config->csv_output && !config->metric_only) { static int aggr_fields[] = { [AGGR_GLOBAL] = 0, [AGGR_THREAD] = 1, [AGGR_NONE] = 1, [AGGR_SOCKET] = 2, [AGGR_DIE] = 2, [AGGR_CORE] = 2, }; pm = print_metric_csv; nl = new_line_csv; os.nfields = 3; os.nfields += aggr_fields[config->aggr_mode]; if (counter->cgrp) os.nfields++; } if (run == 0 || ena == 0 || counter->counts->scaled == -1) { if (config->metric_only) { pm(config, &os, NULL, "", "", 0); return; } aggr_printout(config, counter, id, nr); fprintf(config->output, "%*s%s", config->csv_output ? 0 : 18, counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED, config->csv_sep); if (counter->supported) { config->print_free_counters_hint = 1; if (is_mixed_hw_group(counter)) config->print_mixed_hw_group_error = 1; } fprintf(config->output, "%-*s%s", config->csv_output ? 0 : config->unit_width, counter->unit, config->csv_sep); fprintf(config->output, "%*s", config->csv_output ? 0 : -25, evsel__name(counter)); print_cgroup(config, counter); if (!config->csv_output) pm(config, &os, NULL, NULL, "", 0); print_noise(config, counter, noise); print_running(config, run, ena); if (config->csv_output) pm(config, &os, NULL, NULL, "", 0); return; } if (!config->metric_only) abs_printout(config, id, nr, counter, uval); out.print_metric = pm; out.new_line = nl; out.ctx = &os; out.force_header = false; if (config->csv_output && !config->metric_only) { print_noise(config, counter, noise); print_running(config, run, ena); } perf_stat__print_shadow_stats(config, counter, uval, first_shadow_cpu(config, counter, id), &out, &config->metric_events, st); if (!config->csv_output && !config->metric_only) { print_noise(config, counter, noise); print_running(config, run, ena); } } static void aggr_update_shadow(struct perf_stat_config *config, struct evlist *evlist) { int cpu, s; struct aggr_cpu_id s2, id; u64 val; struct evsel *counter; for (s = 0; s < config->aggr_map->nr; s++) { id = config->aggr_map->map[s]; evlist__for_each_entry(evlist, counter) { val = 0; for (cpu = 0; cpu < evsel__nr_cpus(counter); cpu++) { s2 = config->aggr_get_id(config, evlist->core.cpus, cpu); if (!cpu_map__compare_aggr_cpu_id(s2, id)) continue; val += perf_counts(counter->counts, cpu, 0)->val; } perf_stat__update_shadow_stats(counter, val, first_shadow_cpu(config, counter, id), &rt_stat); } } } static void uniquify_event_name(struct evsel *counter) { char *new_name; char *config; if (counter->uniquified_name || !counter->pmu_name || !strncmp(counter->name, counter->pmu_name, strlen(counter->pmu_name))) return; config = strchr(counter->name, '/'); if (config) { if (asprintf(&new_name, "%s%s", counter->pmu_name, config) > 0) { free(counter->name); counter->name = new_name; } } else { if (asprintf(&new_name, "%s [%s]", counter->name, counter->pmu_name) > 0) { free(counter->name); counter->name = new_name; } } counter->uniquified_name = true; } static void collect_all_aliases(struct perf_stat_config *config, struct evsel *counter, void (*cb)(struct perf_stat_config *config, struct evsel *counter, void *data, bool first), void *data) { struct evlist *evlist = counter->evlist; struct evsel *alias; alias = list_prepare_entry(counter, &(evlist->core.entries), core.node); list_for_each_entry_continue (alias, &evlist->core.entries, core.node) { if (strcmp(evsel__name(alias), evsel__name(counter)) || alias->scale != counter->scale || alias->cgrp != counter->cgrp || strcmp(alias->unit, counter->unit) || evsel__is_clock(alias) != evsel__is_clock(counter) || !strcmp(alias->pmu_name, counter->pmu_name)) break; alias->merged_stat = true; cb(config, alias, data, false); } } static bool collect_data(struct perf_stat_config *config, struct evsel *counter, void (*cb)(struct perf_stat_config *config, struct evsel *counter, void *data, bool first), void *data) { if (counter->merged_stat) return false; cb(config, counter, data, true); if (config->no_merge) uniquify_event_name(counter); else if (counter->auto_merge_stats) collect_all_aliases(config, counter, cb, data); return true; } struct aggr_data { u64 ena, run, val; struct aggr_cpu_id id; int nr; int cpu; }; static void aggr_cb(struct perf_stat_config *config, struct evsel *counter, void *data, bool first) { struct aggr_data *ad = data; int cpu; struct aggr_cpu_id s2; for (cpu = 0; cpu < evsel__nr_cpus(counter); cpu++) { struct perf_counts_values *counts; s2 = config->aggr_get_id(config, evsel__cpus(counter), cpu); if (!cpu_map__compare_aggr_cpu_id(s2, ad->id)) continue; if (first) ad->nr++; counts = perf_counts(counter->counts, cpu, 0); /* * When any result is bad, make them all to give * consistent output in interval mode. */ if (counts->ena == 0 || counts->run == 0 || counter->counts->scaled == -1) { ad->ena = 0; ad->run = 0; break; } ad->val += counts->val; ad->ena += counts->ena; ad->run += counts->run; } } static void print_counter_aggrdata(struct perf_stat_config *config, struct evsel *counter, int s, char *prefix, bool metric_only, bool *first, int cpu) { struct aggr_data ad; FILE *output = config->output; u64 ena, run, val; int nr; struct aggr_cpu_id id; double uval; ad.id = id = config->aggr_map->map[s]; ad.val = ad.ena = ad.run = 0; ad.nr = 0; if (!collect_data(config, counter, aggr_cb, &ad)) return; nr = ad.nr; ena = ad.ena; run = ad.run; val = ad.val; if (*first && metric_only) { *first = false; aggr_printout(config, counter, id, nr); } if (prefix && !metric_only) fprintf(output, "%s", prefix); uval = val * counter->scale; if (cpu != -1) { id = cpu_map__empty_aggr_cpu_id(); id.core = cpu; } printout(config, id, nr, counter, uval, prefix, run, ena, 1.0, &rt_stat); if (!metric_only) fputc('\n', output); } static void print_aggr(struct perf_stat_config *config, struct evlist *evlist, char *prefix) { bool metric_only = config->metric_only; FILE *output = config->output; struct evsel *counter; int s; bool first; if (!config->aggr_map || !config->aggr_get_id) return; aggr_update_shadow(config, evlist); /* * With metric_only everything is on a single line. * Without each counter has its own line. */ for (s = 0; s < config->aggr_map->nr; s++) { if (prefix && metric_only) fprintf(output, "%s", prefix); first = true; evlist__for_each_entry(evlist, counter) { print_counter_aggrdata(config, counter, s, prefix, metric_only, &first, -1); } if (metric_only) fputc('\n', output); } } static int cmp_val(const void *a, const void *b) { return ((struct perf_aggr_thread_value *)b)->val - ((struct perf_aggr_thread_value *)a)->val; } static struct perf_aggr_thread_value *sort_aggr_thread( struct evsel *counter, int nthreads, int ncpus, int *ret, struct target *_target) { int cpu, thread, i = 0; double uval; struct perf_aggr_thread_value *buf; buf = calloc(nthreads, sizeof(struct perf_aggr_thread_value)); if (!buf) return NULL; for (thread = 0; thread < nthreads; thread++) { u64 ena = 0, run = 0, val = 0; for (cpu = 0; cpu < ncpus; cpu++) { val += perf_counts(counter->counts, cpu, thread)->val; ena += perf_counts(counter->counts, cpu, thread)->ena; run += perf_counts(counter->counts, cpu, thread)->run; } uval = val * counter->scale; /* * Skip value 0 when enabling --per-thread globally, * otherwise too many 0 output. */ if (uval == 0.0 && target__has_per_thread(_target)) continue; buf[i].counter = counter; buf[i].id = cpu_map__empty_aggr_cpu_id(); buf[i].id.thread = thread; buf[i].uval = uval; buf[i].val = val; buf[i].run = run; buf[i].ena = ena; i++; } qsort(buf, i, sizeof(struct perf_aggr_thread_value), cmp_val); if (ret) *ret = i; return buf; } static void print_aggr_thread(struct perf_stat_config *config, struct target *_target, struct evsel *counter, char *prefix) { FILE *output = config->output; int nthreads = perf_thread_map__nr(counter->core.threads); int ncpus = perf_cpu_map__nr(counter->core.cpus); int thread, sorted_threads; struct aggr_cpu_id id; struct perf_aggr_thread_value *buf; buf = sort_aggr_thread(counter, nthreads, ncpus, &sorted_threads, _target); if (!buf) { perror("cannot sort aggr thread"); return; } for (thread = 0; thread < sorted_threads; thread++) { if (prefix) fprintf(output, "%s", prefix); id = buf[thread].id; if (config->stats) printout(config, id, 0, buf[thread].counter, buf[thread].uval, prefix, buf[thread].run, buf[thread].ena, 1.0, &config->stats[id.thread]); else printout(config, id, 0, buf[thread].counter, buf[thread].uval, prefix, buf[thread].run, buf[thread].ena, 1.0, &rt_stat); fputc('\n', output); } free(buf); } struct caggr_data { double avg, avg_enabled, avg_running; }; static void counter_aggr_cb(struct perf_stat_config *config __maybe_unused, struct evsel *counter, void *data, bool first __maybe_unused) { struct caggr_data *cd = data; struct perf_stat_evsel *ps = counter->stats; cd->avg += avg_stats(&ps->res_stats[0]); cd->avg_enabled += avg_stats(&ps->res_stats[1]); cd->avg_running += avg_stats(&ps->res_stats[2]); } /* * Print out the results of a single counter: * aggregated counts in system-wide mode */ static void print_counter_aggr(struct perf_stat_config *config, struct evsel *counter, char *prefix) { bool metric_only = config->metric_only; FILE *output = config->output; double uval; struct caggr_data cd = { .avg = 0.0 }; if (!collect_data(config, counter, counter_aggr_cb, &cd)) return; if (prefix && !metric_only) fprintf(output, "%s", prefix); uval = cd.avg * counter->scale; printout(config, cpu_map__empty_aggr_cpu_id(), 0, counter, uval, prefix, cd.avg_running, cd.avg_enabled, cd.avg, &rt_stat); if (!metric_only) fprintf(output, "\n"); } static void counter_cb(struct perf_stat_config *config __maybe_unused, struct evsel *counter, void *data, bool first __maybe_unused) { struct aggr_data *ad = data; ad->val += perf_counts(counter->counts, ad->cpu, 0)->val; ad->ena += perf_counts(counter->counts, ad->cpu, 0)->ena; ad->run += perf_counts(counter->counts, ad->cpu, 0)->run; } /* * Print out the results of a single counter: * does not use aggregated count in system-wide */ static void print_counter(struct perf_stat_config *config, struct evsel *counter, char *prefix) { FILE *output = config->output; u64 ena, run, val; double uval; int cpu; struct aggr_cpu_id id; for (cpu = 0; cpu < evsel__nr_cpus(counter); cpu++) { struct aggr_data ad = { .cpu = cpu }; if (!collect_data(config, counter, counter_cb, &ad)) return; val = ad.val; ena = ad.ena; run = ad.run; if (prefix) fprintf(output, "%s", prefix); uval = val * counter->scale; id = cpu_map__empty_aggr_cpu_id(); id.core = cpu; printout(config, id, 0, counter, uval, prefix, run, ena, 1.0, &rt_stat); fputc('\n', output); } } static void print_no_aggr_metric(struct perf_stat_config *config, struct evlist *evlist, char *prefix) { int cpu; int nrcpus = 0; struct evsel *counter; u64 ena, run, val; double uval; struct aggr_cpu_id id; nrcpus = evlist->core.cpus->nr; for (cpu = 0; cpu < nrcpus; cpu++) { bool first = true; if (prefix) fputs(prefix, config->output); evlist__for_each_entry(evlist, counter) { id = cpu_map__empty_aggr_cpu_id(); id.core = cpu; if (first) { aggr_printout(config, counter, id, 0); first = false; } val = perf_counts(counter->counts, cpu, 0)->val; ena = perf_counts(counter->counts, cpu, 0)->ena; run = perf_counts(counter->counts, cpu, 0)->run; uval = val * counter->scale; printout(config, id, 0, counter, uval, prefix, run, ena, 1.0, &rt_stat); } fputc('\n', config->output); } } static int aggr_header_lens[] = { [AGGR_CORE] = 24, [AGGR_DIE] = 18, [AGGR_SOCKET] = 12, [AGGR_NONE] = 6, [AGGR_THREAD] = 24, [AGGR_GLOBAL] = 0, }; static const char *aggr_header_csv[] = { [AGGR_CORE] = "core,cpus,", [AGGR_DIE] = "die,cpus", [AGGR_SOCKET] = "socket,cpus", [AGGR_NONE] = "cpu,", [AGGR_THREAD] = "comm-pid,", [AGGR_GLOBAL] = "" }; static void print_metric_headers(struct perf_stat_config *config, struct evlist *evlist, const char *prefix, bool no_indent) { struct perf_stat_output_ctx out; struct evsel *counter; struct outstate os = { .fh = config->output }; if (prefix) fprintf(config->output, "%s", prefix); if (!config->csv_output && !no_indent) fprintf(config->output, "%*s", aggr_header_lens[config->aggr_mode], ""); if (config->csv_output) { if (config->interval) fputs("time,", config->output); fputs(aggr_header_csv[config->aggr_mode], config->output); } /* Print metrics headers only */ evlist__for_each_entry(evlist, counter) { os.evsel = counter; out.ctx = &os; out.print_metric = print_metric_header; out.new_line = new_line_metric; out.force_header = true; perf_stat__print_shadow_stats(config, counter, 0, 0, &out, &config->metric_events, &rt_stat); } fputc('\n', config->output); } static void print_interval(struct perf_stat_config *config, struct evlist *evlist, char *prefix, struct timespec *ts) { bool metric_only = config->metric_only; unsigned int unit_width = config->unit_width; FILE *output = config->output; static int num_print_interval; if (config->interval_clear) puts(CONSOLE_CLEAR); sprintf(prefix, "%6lu.%09lu%s", ts->tv_sec, ts->tv_nsec, config->csv_sep); if ((num_print_interval == 0 && !config->csv_output) || config->interval_clear) { switch (config->aggr_mode) { case AGGR_NODE: fprintf(output, "# time node cpus"); if (!metric_only) fprintf(output, " counts %*s events\n", unit_width, "unit"); break; case AGGR_SOCKET: fprintf(output, "# time socket cpus"); if (!metric_only) fprintf(output, " counts %*s events\n", unit_width, "unit"); break; case AGGR_DIE: fprintf(output, "# time die cpus"); if (!metric_only) fprintf(output, " counts %*s events\n", unit_width, "unit"); break; case AGGR_CORE: fprintf(output, "# time core cpus"); if (!metric_only) fprintf(output, " counts %*s events\n", unit_width, "unit"); break; case AGGR_NONE: fprintf(output, "# time CPU "); if (!metric_only) fprintf(output, " counts %*s events\n", unit_width, "unit"); break; case AGGR_THREAD: fprintf(output, "# time comm-pid"); if (!metric_only) fprintf(output, " counts %*s events\n", unit_width, "unit"); break; case AGGR_GLOBAL: default: fprintf(output, "# time"); if (!metric_only) fprintf(output, " counts %*s events\n", unit_width, "unit"); case AGGR_UNSET: break; } } if ((num_print_interval == 0 || config->interval_clear) && metric_only) print_metric_headers(config, evlist, " ", true); if (++num_print_interval == 25) num_print_interval = 0; } static void print_header(struct perf_stat_config *config, struct target *_target, int argc, const char **argv) { FILE *output = config->output; int i; fflush(stdout); if (!config->csv_output) { fprintf(output, "\n"); fprintf(output, " Performance counter stats for "); if (_target->system_wide) fprintf(output, "\'system wide"); else if (_target->cpu_list) fprintf(output, "\'CPU(s) %s", _target->cpu_list); else if (!target__has_task(_target)) { fprintf(output, "\'%s", argv ? argv[0] : "pipe"); for (i = 1; argv && (i < argc); i++) fprintf(output, " %s", argv[i]); } else if (_target->pid) fprintf(output, "process id \'%s", _target->pid); else fprintf(output, "thread id \'%s", _target->tid); fprintf(output, "\'"); if (config->run_count > 1) fprintf(output, " (%d runs)", config->run_count); fprintf(output, ":\n\n"); } } static int get_precision(double num) { if (num > 1) return 0; return lround(ceil(-log10(num))); } static void print_table(struct perf_stat_config *config, FILE *output, int precision, double avg) { char tmp[64]; int idx, indent = 0; scnprintf(tmp, 64, " %17.*f", precision, avg); while (tmp[indent] == ' ') indent++; fprintf(output, "%*s# Table of individual measurements:\n", indent, ""); for (idx = 0; idx < config->run_count; idx++) { double run = (double) config->walltime_run[idx] / NSEC_PER_SEC; int h, n = 1 + abs((int) (100.0 * (run - avg)/run) / 5); fprintf(output, " %17.*f (%+.*f) ", precision, run, precision, run - avg); for (h = 0; h < n; h++) fprintf(output, "#"); fprintf(output, "\n"); } fprintf(output, "\n%*s# Final result:\n", indent, ""); } static double timeval2double(struct timeval *t) { return t->tv_sec + (double) t->tv_usec/USEC_PER_SEC; } static void print_footer(struct perf_stat_config *config) { double avg = avg_stats(config->walltime_nsecs_stats) / NSEC_PER_SEC; FILE *output = config->output; if (!config->null_run) fprintf(output, "\n"); if (config->run_count == 1) { fprintf(output, " %17.9f seconds time elapsed", avg); if (config->ru_display) { double ru_utime = timeval2double(&config->ru_data.ru_utime); double ru_stime = timeval2double(&config->ru_data.ru_stime); fprintf(output, "\n\n"); fprintf(output, " %17.9f seconds user\n", ru_utime); fprintf(output, " %17.9f seconds sys\n", ru_stime); } } else { double sd = stddev_stats(config->walltime_nsecs_stats) / NSEC_PER_SEC; /* * Display at most 2 more significant * digits than the stddev inaccuracy. */ int precision = get_precision(sd) + 2; if (config->walltime_run_table) print_table(config, output, precision, avg); fprintf(output, " %17.*f +- %.*f seconds time elapsed", precision, avg, precision, sd); print_noise_pct(config, sd, avg); } fprintf(output, "\n\n"); if (config->print_free_counters_hint && sysctl__nmi_watchdog_enabled()) fprintf(output, "Some events weren't counted. Try disabling the NMI watchdog:\n" " echo 0 > /proc/sys/kernel/nmi_watchdog\n" " perf stat ...\n" " echo 1 > /proc/sys/kernel/nmi_watchdog\n"); if (config->print_mixed_hw_group_error) fprintf(output, "The events in group usually have to be from " "the same PMU. Try reorganizing the group.\n"); } static void print_percore_thread(struct perf_stat_config *config, struct evsel *counter, char *prefix) { int s; struct aggr_cpu_id s2, id; bool first = true; for (int i = 0; i < evsel__nr_cpus(counter); i++) { s2 = config->aggr_get_id(config, evsel__cpus(counter), i); for (s = 0; s < config->aggr_map->nr; s++) { id = config->aggr_map->map[s]; if (cpu_map__compare_aggr_cpu_id(s2, id)) break; } print_counter_aggrdata(config, counter, s, prefix, false, &first, i); } } static void print_percore(struct perf_stat_config *config, struct evsel *counter, char *prefix) { bool metric_only = config->metric_only; FILE *output = config->output; int s; bool first = true; if (!config->aggr_map || !config->aggr_get_id) return; if (config->percore_show_thread) return print_percore_thread(config, counter, prefix); for (s = 0; s < config->aggr_map->nr; s++) { if (prefix && metric_only) fprintf(output, "%s", prefix); print_counter_aggrdata(config, counter, s, prefix, metric_only, &first, -1); } if (metric_only) fputc('\n', output); } void evlist__print_counters(struct evlist *evlist, struct perf_stat_config *config, struct target *_target, struct timespec *ts, int argc, const char **argv) { bool metric_only = config->metric_only; int interval = config->interval; struct evsel *counter; char buf[64], *prefix = NULL; if (interval) print_interval(config, evlist, prefix = buf, ts); else print_header(config, _target, argc, argv); if (metric_only) { static int num_print_iv; if (num_print_iv == 0 && !interval) print_metric_headers(config, evlist, prefix, false); if (num_print_iv++ == 25) num_print_iv = 0; if (config->aggr_mode == AGGR_GLOBAL && prefix) fprintf(config->output, "%s", prefix); } switch (config->aggr_mode) { case AGGR_CORE: case AGGR_DIE: case AGGR_SOCKET: case AGGR_NODE: print_aggr(config, evlist, prefix); break; case AGGR_THREAD: evlist__for_each_entry(evlist, counter) { print_aggr_thread(config, _target, counter, prefix); } break; case AGGR_GLOBAL: evlist__for_each_entry(evlist, counter) { print_counter_aggr(config, counter, prefix); } if (metric_only) fputc('\n', config->output); break; case AGGR_NONE: if (metric_only) print_no_aggr_metric(config, evlist, prefix); else { evlist__for_each_entry(evlist, counter) { if (counter->percore) print_percore(config, counter, prefix); else print_counter(config, counter, prefix); } } break; case AGGR_UNSET: default: break; } if (!interval && !config->csv_output) print_footer(config); fflush(config->output); }