// SPDX-License-Identifier: GPL-2.0 #include #include #include "string2.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_LIBBPF_SUPPORT #include #endif #include #include // reallocarray #include "dso.h" #include "evlist.h" #include "evsel.h" #include "util/evsel_fprintf.h" #include "header.h" #include "memswap.h" #include "trace-event.h" #include "session.h" #include "symbol.h" #include "debug.h" #include "cpumap.h" #include "pmu.h" #include "pmus.h" #include "vdso.h" #include "strbuf.h" #include "build-id.h" #include "data.h" #include #include "asm/bug.h" #include "tool.h" #include "time-utils.h" #include "units.h" #include "util/util.h" // perf_exe() #include "cputopo.h" #include "bpf-event.h" #include "bpf-utils.h" #include "clockid.h" #include #include #ifdef HAVE_LIBTRACEEVENT #include #endif /* * magic2 = "PERFILE2" * must be a numerical value to let the endianness * determine the memory layout. That way we are able * to detect endianness when reading the perf.data file * back. * * we check for legacy (PERFFILE) format. */ static const char *__perf_magic1 = "PERFFILE"; static const u64 __perf_magic2 = 0x32454c4946524550ULL; static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; #define PERF_MAGIC __perf_magic2 const char perf_version_string[] = PERF_VERSION; struct perf_file_attr { struct perf_event_attr attr; struct perf_file_section ids; }; void perf_header__set_feat(struct perf_header *header, int feat) { __set_bit(feat, header->adds_features); } void perf_header__clear_feat(struct perf_header *header, int feat) { __clear_bit(feat, header->adds_features); } bool perf_header__has_feat(const struct perf_header *header, int feat) { return test_bit(feat, header->adds_features); } static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) { ssize_t ret = writen(ff->fd, buf, size); if (ret != (ssize_t)size) return ret < 0 ? (int)ret : -1; return 0; } static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) { /* struct perf_event_header::size is u16 */ const size_t max_size = 0xffff - sizeof(struct perf_event_header); size_t new_size = ff->size; void *addr; if (size + ff->offset > max_size) return -E2BIG; while (size > (new_size - ff->offset)) new_size <<= 1; new_size = min(max_size, new_size); if (ff->size < new_size) { addr = realloc(ff->buf, new_size); if (!addr) return -ENOMEM; ff->buf = addr; ff->size = new_size; } memcpy(ff->buf + ff->offset, buf, size); ff->offset += size; return 0; } /* Return: 0 if succeeded, -ERR if failed. */ int do_write(struct feat_fd *ff, const void *buf, size_t size) { if (!ff->buf) return __do_write_fd(ff, buf, size); return __do_write_buf(ff, buf, size); } /* Return: 0 if succeeded, -ERR if failed. */ static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) { u64 *p = (u64 *) set; int i, ret; ret = do_write(ff, &size, sizeof(size)); if (ret < 0) return ret; for (i = 0; (u64) i < BITS_TO_U64(size); i++) { ret = do_write(ff, p + i, sizeof(*p)); if (ret < 0) return ret; } return 0; } /* Return: 0 if succeeded, -ERR if failed. */ int write_padded(struct feat_fd *ff, const void *bf, size_t count, size_t count_aligned) { static const char zero_buf[NAME_ALIGN]; int err = do_write(ff, bf, count); if (!err) err = do_write(ff, zero_buf, count_aligned - count); return err; } #define string_size(str) \ (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) /* Return: 0 if succeeded, -ERR if failed. */ static int do_write_string(struct feat_fd *ff, const char *str) { u32 len, olen; int ret; olen = strlen(str) + 1; len = PERF_ALIGN(olen, NAME_ALIGN); /* write len, incl. \0 */ ret = do_write(ff, &len, sizeof(len)); if (ret < 0) return ret; return write_padded(ff, str, olen, len); } static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) { ssize_t ret = readn(ff->fd, addr, size); if (ret != size) return ret < 0 ? (int)ret : -1; return 0; } static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) { if (size > (ssize_t)ff->size - ff->offset) return -1; memcpy(addr, ff->buf + ff->offset, size); ff->offset += size; return 0; } static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) { if (!ff->buf) return __do_read_fd(ff, addr, size); return __do_read_buf(ff, addr, size); } static int do_read_u32(struct feat_fd *ff, u32 *addr) { int ret; ret = __do_read(ff, addr, sizeof(*addr)); if (ret) return ret; if (ff->ph->needs_swap) *addr = bswap_32(*addr); return 0; } static int do_read_u64(struct feat_fd *ff, u64 *addr) { int ret; ret = __do_read(ff, addr, sizeof(*addr)); if (ret) return ret; if (ff->ph->needs_swap) *addr = bswap_64(*addr); return 0; } static char *do_read_string(struct feat_fd *ff) { u32 len; char *buf; if (do_read_u32(ff, &len)) return NULL; buf = malloc(len); if (!buf) return NULL; if (!__do_read(ff, buf, len)) { /* * strings are padded by zeroes * thus the actual strlen of buf * may be less than len */ return buf; } free(buf); return NULL; } /* Return: 0 if succeeded, -ERR if failed. */ static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) { unsigned long *set; u64 size, *p; int i, ret; ret = do_read_u64(ff, &size); if (ret) return ret; set = bitmap_zalloc(size); if (!set) return -ENOMEM; p = (u64 *) set; for (i = 0; (u64) i < BITS_TO_U64(size); i++) { ret = do_read_u64(ff, p + i); if (ret < 0) { free(set); return ret; } } *pset = set; *psize = size; return 0; } #ifdef HAVE_LIBTRACEEVENT static int write_tracing_data(struct feat_fd *ff, struct evlist *evlist) { if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) return -1; return read_tracing_data(ff->fd, &evlist->core.entries); } #endif static int write_build_id(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { struct perf_session *session; int err; session = container_of(ff->ph, struct perf_session, header); if (!perf_session__read_build_ids(session, true)) return -1; if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) return -1; err = perf_session__write_buildid_table(session, ff); if (err < 0) { pr_debug("failed to write buildid table\n"); return err; } perf_session__cache_build_ids(session); return 0; } static int write_hostname(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { struct utsname uts; int ret; ret = uname(&uts); if (ret < 0) return -1; return do_write_string(ff, uts.nodename); } static int write_osrelease(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { struct utsname uts; int ret; ret = uname(&uts); if (ret < 0) return -1; return do_write_string(ff, uts.release); } static int write_arch(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { struct utsname uts; int ret; ret = uname(&uts); if (ret < 0) return -1; return do_write_string(ff, uts.machine); } static int write_version(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { return do_write_string(ff, perf_version_string); } static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) { FILE *file; char *buf = NULL; char *s, *p; const char *search = cpuinfo_proc; size_t len = 0; int ret = -1; if (!search) return -1; file = fopen("/proc/cpuinfo", "r"); if (!file) return -1; while (getline(&buf, &len, file) > 0) { ret = strncmp(buf, search, strlen(search)); if (!ret) break; } if (ret) { ret = -1; goto done; } s = buf; p = strchr(buf, ':'); if (p && *(p+1) == ' ' && *(p+2)) s = p + 2; p = strchr(s, '\n'); if (p) *p = '\0'; /* squash extra space characters (branding string) */ p = s; while (*p) { if (isspace(*p)) { char *r = p + 1; char *q = skip_spaces(r); *p = ' '; if (q != (p+1)) while ((*r++ = *q++)); } p++; } ret = do_write_string(ff, s); done: free(buf); fclose(file); return ret; } static int write_cpudesc(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) #define CPUINFO_PROC { "cpu", } #elif defined(__s390__) #define CPUINFO_PROC { "vendor_id", } #elif defined(__sh__) #define CPUINFO_PROC { "cpu type", } #elif defined(__alpha__) || defined(__mips__) #define CPUINFO_PROC { "cpu model", } #elif defined(__arm__) #define CPUINFO_PROC { "model name", "Processor", } #elif defined(__arc__) #define CPUINFO_PROC { "Processor", } #elif defined(__xtensa__) #define CPUINFO_PROC { "core ID", } #elif defined(__loongarch__) #define CPUINFO_PROC { "Model Name", } #else #define CPUINFO_PROC { "model name", } #endif const char *cpuinfo_procs[] = CPUINFO_PROC; #undef CPUINFO_PROC unsigned int i; for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { int ret; ret = __write_cpudesc(ff, cpuinfo_procs[i]); if (ret >= 0) return ret; } return -1; } static int write_nrcpus(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { long nr; u32 nrc, nra; int ret; nrc = cpu__max_present_cpu().cpu; nr = sysconf(_SC_NPROCESSORS_ONLN); if (nr < 0) return -1; nra = (u32)(nr & UINT_MAX); ret = do_write(ff, &nrc, sizeof(nrc)); if (ret < 0) return ret; return do_write(ff, &nra, sizeof(nra)); } static int write_event_desc(struct feat_fd *ff, struct evlist *evlist) { struct evsel *evsel; u32 nre, nri, sz; int ret; nre = evlist->core.nr_entries; /* * write number of events */ ret = do_write(ff, &nre, sizeof(nre)); if (ret < 0) return ret; /* * size of perf_event_attr struct */ sz = (u32)sizeof(evsel->core.attr); ret = do_write(ff, &sz, sizeof(sz)); if (ret < 0) return ret; evlist__for_each_entry(evlist, evsel) { ret = do_write(ff, &evsel->core.attr, sz); if (ret < 0) return ret; /* * write number of unique id per event * there is one id per instance of an event * * copy into an nri to be independent of the * type of ids, */ nri = evsel->core.ids; ret = do_write(ff, &nri, sizeof(nri)); if (ret < 0) return ret; /* * write event string as passed on cmdline */ ret = do_write_string(ff, evsel__name(evsel)); if (ret < 0) return ret; /* * write unique ids for this event */ ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); if (ret < 0) return ret; } return 0; } static int write_cmdline(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { char pbuf[MAXPATHLEN], *buf; int i, ret, n; /* actual path to perf binary */ buf = perf_exe(pbuf, MAXPATHLEN); /* account for binary path */ n = perf_env.nr_cmdline + 1; ret = do_write(ff, &n, sizeof(n)); if (ret < 0) return ret; ret = do_write_string(ff, buf); if (ret < 0) return ret; for (i = 0 ; i < perf_env.nr_cmdline; i++) { ret = do_write_string(ff, perf_env.cmdline_argv[i]); if (ret < 0) return ret; } return 0; } static int write_cpu_topology(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { struct cpu_topology *tp; u32 i; int ret, j; tp = cpu_topology__new(); if (!tp) return -1; ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists)); if (ret < 0) goto done; for (i = 0; i < tp->package_cpus_lists; i++) { ret = do_write_string(ff, tp->package_cpus_list[i]); if (ret < 0) goto done; } ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists)); if (ret < 0) goto done; for (i = 0; i < tp->core_cpus_lists; i++) { ret = do_write_string(ff, tp->core_cpus_list[i]); if (ret < 0) break; } ret = perf_env__read_cpu_topology_map(&perf_env); if (ret < 0) goto done; for (j = 0; j < perf_env.nr_cpus_avail; j++) { ret = do_write(ff, &perf_env.cpu[j].core_id, sizeof(perf_env.cpu[j].core_id)); if (ret < 0) return ret; ret = do_write(ff, &perf_env.cpu[j].socket_id, sizeof(perf_env.cpu[j].socket_id)); if (ret < 0) return ret; } if (!tp->die_cpus_lists) goto done; ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists)); if (ret < 0) goto done; for (i = 0; i < tp->die_cpus_lists; i++) { ret = do_write_string(ff, tp->die_cpus_list[i]); if (ret < 0) goto done; } for (j = 0; j < perf_env.nr_cpus_avail; j++) { ret = do_write(ff, &perf_env.cpu[j].die_id, sizeof(perf_env.cpu[j].die_id)); if (ret < 0) return ret; } done: cpu_topology__delete(tp); return ret; } static int write_total_mem(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { char *buf = NULL; FILE *fp; size_t len = 0; int ret = -1, n; uint64_t mem; fp = fopen("/proc/meminfo", "r"); if (!fp) return -1; while (getline(&buf, &len, fp) > 0) { ret = strncmp(buf, "MemTotal:", 9); if (!ret) break; } if (!ret) { n = sscanf(buf, "%*s %"PRIu64, &mem); if (n == 1) ret = do_write(ff, &mem, sizeof(mem)); } else ret = -1; free(buf); fclose(fp); return ret; } static int write_numa_topology(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { struct numa_topology *tp; int ret = -1; u32 i; tp = numa_topology__new(); if (!tp) return -ENOMEM; ret = do_write(ff, &tp->nr, sizeof(u32)); if (ret < 0) goto err; for (i = 0; i < tp->nr; i++) { struct numa_topology_node *n = &tp->nodes[i]; ret = do_write(ff, &n->node, sizeof(u32)); if (ret < 0) goto err; ret = do_write(ff, &n->mem_total, sizeof(u64)); if (ret) goto err; ret = do_write(ff, &n->mem_free, sizeof(u64)); if (ret) goto err; ret = do_write_string(ff, n->cpus); if (ret < 0) goto err; } ret = 0; err: numa_topology__delete(tp); return ret; } /* * File format: * * struct pmu_mappings { * u32 pmu_num; * struct pmu_map { * u32 type; * char name[]; * }[pmu_num]; * }; */ static int write_pmu_mappings(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { struct perf_pmu *pmu = NULL; u32 pmu_num = 0; int ret; /* * Do a first pass to count number of pmu to avoid lseek so this * works in pipe mode as well. */ while ((pmu = perf_pmus__scan(pmu))) pmu_num++; ret = do_write(ff, &pmu_num, sizeof(pmu_num)); if (ret < 0) return ret; while ((pmu = perf_pmus__scan(pmu))) { ret = do_write(ff, &pmu->type, sizeof(pmu->type)); if (ret < 0) return ret; ret = do_write_string(ff, pmu->name); if (ret < 0) return ret; } return 0; } /* * File format: * * struct group_descs { * u32 nr_groups; * struct group_desc { * char name[]; * u32 leader_idx; * u32 nr_members; * }[nr_groups]; * }; */ static int write_group_desc(struct feat_fd *ff, struct evlist *evlist) { u32 nr_groups = evlist__nr_groups(evlist); struct evsel *evsel; int ret; ret = do_write(ff, &nr_groups, sizeof(nr_groups)); if (ret < 0) return ret; evlist__for_each_entry(evlist, evsel) { if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { const char *name = evsel->group_name ?: "{anon_group}"; u32 leader_idx = evsel->core.idx; u32 nr_members = evsel->core.nr_members; ret = do_write_string(ff, name); if (ret < 0) return ret; ret = do_write(ff, &leader_idx, sizeof(leader_idx)); if (ret < 0) return ret; ret = do_write(ff, &nr_members, sizeof(nr_members)); if (ret < 0) return ret; } } return 0; } /* * Return the CPU id as a raw string. * * Each architecture should provide a more precise id string that * can be use to match the architecture's "mapfile". */ char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) { return NULL; } /* Return zero when the cpuid from the mapfile.csv matches the * cpuid string generated on this platform. * Otherwise return non-zero. */ int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) { regex_t re; regmatch_t pmatch[1]; int match; if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { /* Warn unable to generate match particular string. */ pr_info("Invalid regular expression %s\n", mapcpuid); return 1; } match = !regexec(&re, cpuid, 1, pmatch, 0); regfree(&re); if (match) { size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); /* Verify the entire string matched. */ if (match_len == strlen(cpuid)) return 0; } return 1; } /* * default get_cpuid(): nothing gets recorded * actual implementation must be in arch/$(SRCARCH)/util/header.c */ int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) { return ENOSYS; /* Not implemented */ } static int write_cpuid(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { char buffer[64]; int ret; ret = get_cpuid(buffer, sizeof(buffer)); if (ret) return -1; return do_write_string(ff, buffer); } static int write_branch_stack(struct feat_fd *ff __maybe_unused, struct evlist *evlist __maybe_unused) { return 0; } static int write_auxtrace(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { struct perf_session *session; int err; if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) return -1; session = container_of(ff->ph, struct perf_session, header); err = auxtrace_index__write(ff->fd, &session->auxtrace_index); if (err < 0) pr_err("Failed to write auxtrace index\n"); return err; } static int write_clockid(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { return do_write(ff, &ff->ph->env.clock.clockid_res_ns, sizeof(ff->ph->env.clock.clockid_res_ns)); } static int write_clock_data(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { u64 *data64; u32 data32; int ret; /* version */ data32 = 1; ret = do_write(ff, &data32, sizeof(data32)); if (ret < 0) return ret; /* clockid */ data32 = ff->ph->env.clock.clockid; ret = do_write(ff, &data32, sizeof(data32)); if (ret < 0) return ret; /* TOD ref time */ data64 = &ff->ph->env.clock.tod_ns; ret = do_write(ff, data64, sizeof(*data64)); if (ret < 0) return ret; /* clockid ref time */ data64 = &ff->ph->env.clock.clockid_ns; return do_write(ff, data64, sizeof(*data64)); } static int write_hybrid_topology(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { struct hybrid_topology *tp; int ret; u32 i; tp = hybrid_topology__new(); if (!tp) return -ENOENT; ret = do_write(ff, &tp->nr, sizeof(u32)); if (ret < 0) goto err; for (i = 0; i < tp->nr; i++) { struct hybrid_topology_node *n = &tp->nodes[i]; ret = do_write_string(ff, n->pmu_name); if (ret < 0) goto err; ret = do_write_string(ff, n->cpus); if (ret < 0) goto err; } ret = 0; err: hybrid_topology__delete(tp); return ret; } static int write_dir_format(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { struct perf_session *session; struct perf_data *data; session = container_of(ff->ph, struct perf_session, header); data = session->data; if (WARN_ON(!perf_data__is_dir(data))) return -1; return do_write(ff, &data->dir.version, sizeof(data->dir.version)); } /* * Check whether a CPU is online * * Returns: * 1 -> if CPU is online * 0 -> if CPU is offline * -1 -> error case */ int is_cpu_online(unsigned int cpu) { char *str; size_t strlen; char buf[256]; int status = -1; struct stat statbuf; snprintf(buf, sizeof(buf), "/sys/devices/system/cpu/cpu%d", cpu); if (stat(buf, &statbuf) != 0) return 0; /* * Check if /sys/devices/system/cpu/cpux/online file * exists. Some cases cpu0 won't have online file since * it is not expected to be turned off generally. * In kernels without CONFIG_HOTPLUG_CPU, this * file won't exist */ snprintf(buf, sizeof(buf), "/sys/devices/system/cpu/cpu%d/online", cpu); if (stat(buf, &statbuf) != 0) return 1; /* * Read online file using sysfs__read_str. * If read or open fails, return -1. * If read succeeds, return value from file * which gets stored in "str" */ snprintf(buf, sizeof(buf), "devices/system/cpu/cpu%d/online", cpu); if (sysfs__read_str(buf, &str, &strlen) < 0) return status; status = atoi(str); free(str); return status; } #ifdef HAVE_LIBBPF_SUPPORT static int write_bpf_prog_info(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { struct perf_env *env = &ff->ph->env; struct rb_root *root; struct rb_node *next; int ret; down_read(&env->bpf_progs.lock); ret = do_write(ff, &env->bpf_progs.infos_cnt, sizeof(env->bpf_progs.infos_cnt)); if (ret < 0) goto out; root = &env->bpf_progs.infos; next = rb_first(root); while (next) { struct bpf_prog_info_node *node; size_t len; node = rb_entry(next, struct bpf_prog_info_node, rb_node); next = rb_next(&node->rb_node); len = sizeof(struct perf_bpil) + node->info_linear->data_len; /* before writing to file, translate address to offset */ bpil_addr_to_offs(node->info_linear); ret = do_write(ff, node->info_linear, len); /* * translate back to address even when do_write() fails, * so that this function never changes the data. */ bpil_offs_to_addr(node->info_linear); if (ret < 0) goto out; } out: up_read(&env->bpf_progs.lock); return ret; } static int write_bpf_btf(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { struct perf_env *env = &ff->ph->env; struct rb_root *root; struct rb_node *next; int ret; down_read(&env->bpf_progs.lock); ret = do_write(ff, &env->bpf_progs.btfs_cnt, sizeof(env->bpf_progs.btfs_cnt)); if (ret < 0) goto out; root = &env->bpf_progs.btfs; next = rb_first(root); while (next) { struct btf_node *node; node = rb_entry(next, struct btf_node, rb_node); next = rb_next(&node->rb_node); ret = do_write(ff, &node->id, sizeof(u32) * 2 + node->data_size); if (ret < 0) goto out; } out: up_read(&env->bpf_progs.lock); return ret; } #endif // HAVE_LIBBPF_SUPPORT static int cpu_cache_level__sort(const void *a, const void *b) { struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; return cache_a->level - cache_b->level; } static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) { if (a->level != b->level) return false; if (a->line_size != b->line_size) return false; if (a->sets != b->sets) return false; if (a->ways != b->ways) return false; if (strcmp(a->type, b->type)) return false; if (strcmp(a->size, b->size)) return false; if (strcmp(a->map, b->map)) return false; return true; } static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) { char path[PATH_MAX], file[PATH_MAX]; struct stat st; size_t len; scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); if (stat(file, &st)) return 1; scnprintf(file, PATH_MAX, "%s/level", path); if (sysfs__read_int(file, (int *) &cache->level)) return -1; scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); if (sysfs__read_int(file, (int *) &cache->line_size)) return -1; scnprintf(file, PATH_MAX, "%s/number_of_sets", path); if (sysfs__read_int(file, (int *) &cache->sets)) return -1; scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); if (sysfs__read_int(file, (int *) &cache->ways)) return -1; scnprintf(file, PATH_MAX, "%s/type", path); if (sysfs__read_str(file, &cache->type, &len)) return -1; cache->type[len] = 0; cache->type = strim(cache->type); scnprintf(file, PATH_MAX, "%s/size", path); if (sysfs__read_str(file, &cache->size, &len)) { zfree(&cache->type); return -1; } cache->size[len] = 0; cache->size = strim(cache->size); scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); if (sysfs__read_str(file, &cache->map, &len)) { zfree(&cache->size); zfree(&cache->type); return -1; } cache->map[len] = 0; cache->map = strim(cache->map); return 0; } static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) { fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); } /* * Build caches levels for a particular CPU from the data in * /sys/devices/system/cpu/cpu/cache/ * The cache level data is stored in caches[] from index at * *cntp. */ int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp) { u16 level; for (level = 0; level < MAX_CACHE_LVL; level++) { struct cpu_cache_level c; int err; u32 i; err = cpu_cache_level__read(&c, cpu, level); if (err < 0) return err; if (err == 1) break; for (i = 0; i < *cntp; i++) { if (cpu_cache_level__cmp(&c, &caches[i])) break; } if (i == *cntp) { caches[*cntp] = c; *cntp = *cntp + 1; } else cpu_cache_level__free(&c); } return 0; } static int build_caches(struct cpu_cache_level caches[], u32 *cntp) { u32 nr, cpu, cnt = 0; nr = cpu__max_cpu().cpu; for (cpu = 0; cpu < nr; cpu++) { int ret = build_caches_for_cpu(cpu, caches, &cnt); if (ret) return ret; } *cntp = cnt; return 0; } static int write_cache(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL; struct cpu_cache_level caches[max_caches]; u32 cnt = 0, i, version = 1; int ret; ret = build_caches(caches, &cnt); if (ret) goto out; qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); ret = do_write(ff, &version, sizeof(u32)); if (ret < 0) goto out; ret = do_write(ff, &cnt, sizeof(u32)); if (ret < 0) goto out; for (i = 0; i < cnt; i++) { struct cpu_cache_level *c = &caches[i]; #define _W(v) \ ret = do_write(ff, &c->v, sizeof(u32)); \ if (ret < 0) \ goto out; _W(level) _W(line_size) _W(sets) _W(ways) #undef _W #define _W(v) \ ret = do_write_string(ff, (const char *) c->v); \ if (ret < 0) \ goto out; _W(type) _W(size) _W(map) #undef _W } out: for (i = 0; i < cnt; i++) cpu_cache_level__free(&caches[i]); return ret; } static int write_stat(struct feat_fd *ff __maybe_unused, struct evlist *evlist __maybe_unused) { return 0; } static int write_sample_time(struct feat_fd *ff, struct evlist *evlist) { int ret; ret = do_write(ff, &evlist->first_sample_time, sizeof(evlist->first_sample_time)); if (ret < 0) return ret; return do_write(ff, &evlist->last_sample_time, sizeof(evlist->last_sample_time)); } static int memory_node__read(struct memory_node *n, unsigned long idx) { unsigned int phys, size = 0; char path[PATH_MAX]; struct dirent *ent; DIR *dir; #define for_each_memory(mem, dir) \ while ((ent = readdir(dir))) \ if (strcmp(ent->d_name, ".") && \ strcmp(ent->d_name, "..") && \ sscanf(ent->d_name, "memory%u", &mem) == 1) scnprintf(path, PATH_MAX, "%s/devices/system/node/node%lu", sysfs__mountpoint(), idx); dir = opendir(path); if (!dir) { pr_warning("failed: can't open memory sysfs data\n"); return -1; } for_each_memory(phys, dir) { size = max(phys, size); } size++; n->set = bitmap_zalloc(size); if (!n->set) { closedir(dir); return -ENOMEM; } n->node = idx; n->size = size; rewinddir(dir); for_each_memory(phys, dir) { __set_bit(phys, n->set); } closedir(dir); return 0; } static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt) { for (u64 i = 0; i < cnt; i++) bitmap_free(nodesp[i].set); free(nodesp); } static int memory_node__sort(const void *a, const void *b) { const struct memory_node *na = a; const struct memory_node *nb = b; return na->node - nb->node; } static int build_mem_topology(struct memory_node **nodesp, u64 *cntp) { char path[PATH_MAX]; struct dirent *ent; DIR *dir; int ret = 0; size_t cnt = 0, size = 0; struct memory_node *nodes = NULL; scnprintf(path, PATH_MAX, "%s/devices/system/node/", sysfs__mountpoint()); dir = opendir(path); if (!dir) { pr_debug2("%s: couldn't read %s, does this arch have topology information?\n", __func__, path); return -1; } while (!ret && (ent = readdir(dir))) { unsigned int idx; int r; if (!strcmp(ent->d_name, ".") || !strcmp(ent->d_name, "..")) continue; r = sscanf(ent->d_name, "node%u", &idx); if (r != 1) continue; if (cnt >= size) { struct memory_node *new_nodes = reallocarray(nodes, cnt + 4, sizeof(*nodes)); if (!new_nodes) { pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size); ret = -ENOMEM; goto out; } nodes = new_nodes; size += 4; } ret = memory_node__read(&nodes[cnt++], idx); } out: closedir(dir); if (!ret) { *cntp = cnt; *nodesp = nodes; qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); } else memory_node__delete_nodes(nodes, cnt); return ret; } /* * The MEM_TOPOLOGY holds physical memory map for every * node in system. The format of data is as follows: * * 0 - version | for future changes * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes * 16 - count | number of nodes * * For each node we store map of physical indexes for * each node: * * 32 - node id | node index * 40 - size | size of bitmap * 48 - bitmap | bitmap of memory indexes that belongs to node */ static int write_mem_topology(struct feat_fd *ff __maybe_unused, struct evlist *evlist __maybe_unused) { struct memory_node *nodes = NULL; u64 bsize, version = 1, i, nr = 0; int ret; ret = sysfs__read_xll("devices/system/memory/block_size_bytes", (unsigned long long *) &bsize); if (ret) return ret; ret = build_mem_topology(&nodes, &nr); if (ret) return ret; ret = do_write(ff, &version, sizeof(version)); if (ret < 0) goto out; ret = do_write(ff, &bsize, sizeof(bsize)); if (ret < 0) goto out; ret = do_write(ff, &nr, sizeof(nr)); if (ret < 0) goto out; for (i = 0; i < nr; i++) { struct memory_node *n = &nodes[i]; #define _W(v) \ ret = do_write(ff, &n->v, sizeof(n->v)); \ if (ret < 0) \ goto out; _W(node) _W(size) #undef _W ret = do_write_bitmap(ff, n->set, n->size); if (ret < 0) goto out; } out: memory_node__delete_nodes(nodes, nr); return ret; } static int write_compressed(struct feat_fd *ff __maybe_unused, struct evlist *evlist __maybe_unused) { int ret; ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); if (ret) return ret; ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); if (ret) return ret; ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); if (ret) return ret; ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); if (ret) return ret; return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); } static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu, bool write_pmu) { struct perf_pmu_caps *caps = NULL; int ret; ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps)); if (ret < 0) return ret; list_for_each_entry(caps, &pmu->caps, list) { ret = do_write_string(ff, caps->name); if (ret < 0) return ret; ret = do_write_string(ff, caps->value); if (ret < 0) return ret; } if (write_pmu) { ret = do_write_string(ff, pmu->name); if (ret < 0) return ret; } return ret; } static int write_cpu_pmu_caps(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { struct perf_pmu *cpu_pmu = perf_pmus__find("cpu"); int ret; if (!cpu_pmu) return -ENOENT; ret = perf_pmu__caps_parse(cpu_pmu); if (ret < 0) return ret; return __write_pmu_caps(ff, cpu_pmu, false); } static int write_pmu_caps(struct feat_fd *ff, struct evlist *evlist __maybe_unused) { struct perf_pmu *pmu = NULL; int nr_pmu = 0; int ret; while ((pmu = perf_pmus__scan(pmu))) { if (!strcmp(pmu->name, "cpu")) { /* * The "cpu" PMU is special and covered by * HEADER_CPU_PMU_CAPS. Note, core PMUs are * counted/written here for ARM, s390 and Intel hybrid. */ continue; } if (perf_pmu__caps_parse(pmu) <= 0) continue; nr_pmu++; } ret = do_write(ff, &nr_pmu, sizeof(nr_pmu)); if (ret < 0) return ret; if (!nr_pmu) return 0; /* * Note older perf tools assume core PMUs come first, this is a property * of perf_pmus__scan. */ pmu = NULL; while ((pmu = perf_pmus__scan(pmu))) { if (!strcmp(pmu->name, "cpu")) { /* Skip as above. */ continue; } if (perf_pmu__caps_parse(pmu) <= 0) continue; ret = __write_pmu_caps(ff, pmu, true); if (ret < 0) return ret; } return 0; } static void print_hostname(struct feat_fd *ff, FILE *fp) { fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); } static void print_osrelease(struct feat_fd *ff, FILE *fp) { fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); } static void print_arch(struct feat_fd *ff, FILE *fp) { fprintf(fp, "# arch : %s\n", ff->ph->env.arch); } static void print_cpudesc(struct feat_fd *ff, FILE *fp) { fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); } static void print_nrcpus(struct feat_fd *ff, FILE *fp) { fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); } static void print_version(struct feat_fd *ff, FILE *fp) { fprintf(fp, "# perf version : %s\n", ff->ph->env.version); } static void print_cmdline(struct feat_fd *ff, FILE *fp) { int nr, i; nr = ff->ph->env.nr_cmdline; fprintf(fp, "# cmdline : "); for (i = 0; i < nr; i++) { char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); if (!argv_i) { fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); } else { char *mem = argv_i; do { char *quote = strchr(argv_i, '\''); if (!quote) break; *quote++ = '\0'; fprintf(fp, "%s\\\'", argv_i); argv_i = quote; } while (1); fprintf(fp, "%s ", argv_i); free(mem); } } fputc('\n', fp); } static void print_cpu_topology(struct feat_fd *ff, FILE *fp) { struct perf_header *ph = ff->ph; int cpu_nr = ph->env.nr_cpus_avail; int nr, i; char *str; nr = ph->env.nr_sibling_cores; str = ph->env.sibling_cores; for (i = 0; i < nr; i++) { fprintf(fp, "# sibling sockets : %s\n", str); str += strlen(str) + 1; } if (ph->env.nr_sibling_dies) { nr = ph->env.nr_sibling_dies; str = ph->env.sibling_dies; for (i = 0; i < nr; i++) { fprintf(fp, "# sibling dies : %s\n", str); str += strlen(str) + 1; } } nr = ph->env.nr_sibling_threads; str = ph->env.sibling_threads; for (i = 0; i < nr; i++) { fprintf(fp, "# sibling threads : %s\n", str); str += strlen(str) + 1; } if (ph->env.nr_sibling_dies) { if (ph->env.cpu != NULL) { for (i = 0; i < cpu_nr; i++) fprintf(fp, "# CPU %d: Core ID %d, " "Die ID %d, Socket ID %d\n", i, ph->env.cpu[i].core_id, ph->env.cpu[i].die_id, ph->env.cpu[i].socket_id); } else fprintf(fp, "# Core ID, Die ID and Socket ID " "information is not available\n"); } else { if (ph->env.cpu != NULL) { for (i = 0; i < cpu_nr; i++) fprintf(fp, "# CPU %d: Core ID %d, " "Socket ID %d\n", i, ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id); } else fprintf(fp, "# Core ID and Socket ID " "information is not available\n"); } } static void print_clockid(struct feat_fd *ff, FILE *fp) { fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", ff->ph->env.clock.clockid_res_ns * 1000); } static void print_clock_data(struct feat_fd *ff, FILE *fp) { struct timespec clockid_ns; char tstr[64], date[64]; struct timeval tod_ns; clockid_t clockid; struct tm ltime; u64 ref; if (!ff->ph->env.clock.enabled) { fprintf(fp, "# reference time disabled\n"); return; } /* Compute TOD time. */ ref = ff->ph->env.clock.tod_ns; tod_ns.tv_sec = ref / NSEC_PER_SEC; ref -= tod_ns.tv_sec * NSEC_PER_SEC; tod_ns.tv_usec = ref / NSEC_PER_USEC; /* Compute clockid time. */ ref = ff->ph->env.clock.clockid_ns; clockid_ns.tv_sec = ref / NSEC_PER_SEC; ref -= clockid_ns.tv_sec * NSEC_PER_SEC; clockid_ns.tv_nsec = ref; clockid = ff->ph->env.clock.clockid; if (localtime_r(&tod_ns.tv_sec, <ime) == NULL) snprintf(tstr, sizeof(tstr), ""); else { strftime(date, sizeof(date), "%F %T", <ime); scnprintf(tstr, sizeof(tstr), "%s.%06d", date, (int) tod_ns.tv_usec); } fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid); fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n", tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec, (long) clockid_ns.tv_sec, clockid_ns.tv_nsec, clockid_name(clockid)); } static void print_hybrid_topology(struct feat_fd *ff, FILE *fp) { int i; struct hybrid_node *n; fprintf(fp, "# hybrid cpu system:\n"); for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) { n = &ff->ph->env.hybrid_nodes[i]; fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus); } } static void print_dir_format(struct feat_fd *ff, FILE *fp) { struct perf_session *session; struct perf_data *data; session = container_of(ff->ph, struct perf_session, header); data = session->data; fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); } #ifdef HAVE_LIBBPF_SUPPORT static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) { struct perf_env *env = &ff->ph->env; struct rb_root *root; struct rb_node *next; down_read(&env->bpf_progs.lock); root = &env->bpf_progs.infos; next = rb_first(root); while (next) { struct bpf_prog_info_node *node; node = rb_entry(next, struct bpf_prog_info_node, rb_node); next = rb_next(&node->rb_node); bpf_event__print_bpf_prog_info(&node->info_linear->info, env, fp); } up_read(&env->bpf_progs.lock); } static void print_bpf_btf(struct feat_fd *ff, FILE *fp) { struct perf_env *env = &ff->ph->env; struct rb_root *root; struct rb_node *next; down_read(&env->bpf_progs.lock); root = &env->bpf_progs.btfs; next = rb_first(root); while (next) { struct btf_node *node; node = rb_entry(next, struct btf_node, rb_node); next = rb_next(&node->rb_node); fprintf(fp, "# btf info of id %u\n", node->id); } up_read(&env->bpf_progs.lock); } #endif // HAVE_LIBBPF_SUPPORT static void free_event_desc(struct evsel *events) { struct evsel *evsel; if (!events) return; for (evsel = events; evsel->core.attr.size; evsel++) { zfree(&evsel->name); zfree(&evsel->core.id); } free(events); } static bool perf_attr_check(struct perf_event_attr *attr) { if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) { pr_warning("Reserved bits are set unexpectedly. " "Please update perf tool.\n"); return false; } if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) { pr_warning("Unknown sample type (0x%llx) is detected. " "Please update perf tool.\n", attr->sample_type); return false; } if (attr->read_format & ~(PERF_FORMAT_MAX-1)) { pr_warning("Unknown read format (0x%llx) is detected. " "Please update perf tool.\n", attr->read_format); return false; } if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) && (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) { pr_warning("Unknown branch sample type (0x%llx) is detected. " "Please update perf tool.\n", attr->branch_sample_type); return false; } return true; } static struct evsel *read_event_desc(struct feat_fd *ff) { struct evsel *evsel, *events = NULL; u64 *id; void *buf = NULL; u32 nre, sz, nr, i, j; size_t msz; /* number of events */ if (do_read_u32(ff, &nre)) goto error; if (do_read_u32(ff, &sz)) goto error; /* buffer to hold on file attr struct */ buf = malloc(sz); if (!buf) goto error; /* the last event terminates with evsel->core.attr.size == 0: */ events = calloc(nre + 1, sizeof(*events)); if (!events) goto error; msz = sizeof(evsel->core.attr); if (sz < msz) msz = sz; for (i = 0, evsel = events; i < nre; evsel++, i++) { evsel->core.idx = i; /* * must read entire on-file attr struct to * sync up with layout. */ if (__do_read(ff, buf, sz)) goto error; if (ff->ph->needs_swap) perf_event__attr_swap(buf); memcpy(&evsel->core.attr, buf, msz); if (!perf_attr_check(&evsel->core.attr)) goto error; if (do_read_u32(ff, &nr)) goto error; if (ff->ph->needs_swap) evsel->needs_swap = true; evsel->name = do_read_string(ff); if (!evsel->name) goto error; if (!nr) continue; id = calloc(nr, sizeof(*id)); if (!id) goto error; evsel->core.ids = nr; evsel->core.id = id; for (j = 0 ; j < nr; j++) { if (do_read_u64(ff, id)) goto error; id++; } } out: free(buf); return events; error: free_event_desc(events); events = NULL; goto out; } static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv __maybe_unused) { return fprintf(fp, ", %s = %s", name, val); } static void print_event_desc(struct feat_fd *ff, FILE *fp) { struct evsel *evsel, *events; u32 j; u64 *id; if (ff->events) events = ff->events; else events = read_event_desc(ff); if (!events) { fprintf(fp, "# event desc: not available or unable to read\n"); return; } for (evsel = events; evsel->core.attr.size; evsel++) { fprintf(fp, "# event : name = %s, ", evsel->name); if (evsel->core.ids) { fprintf(fp, ", id = {"); for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { if (j) fputc(',', fp); fprintf(fp, " %"PRIu64, *id); } fprintf(fp, " }"); } perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); fputc('\n', fp); } free_event_desc(events); ff->events = NULL; } static void print_total_mem(struct feat_fd *ff, FILE *fp) { fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); } static void print_numa_topology(struct feat_fd *ff, FILE *fp) { int i; struct numa_node *n; for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { n = &ff->ph->env.numa_nodes[i]; fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," " free = %"PRIu64" kB\n", n->node, n->mem_total, n->mem_free); fprintf(fp, "# node%u cpu list : ", n->node); cpu_map__fprintf(n->map, fp); } } static void print_cpuid(struct feat_fd *ff, FILE *fp) { fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); } static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) { fprintf(fp, "# contains samples with branch stack\n"); } static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) { fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); } static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) { fprintf(fp, "# contains stat data\n"); } static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) { int i; fprintf(fp, "# CPU cache info:\n"); for (i = 0; i < ff->ph->env.caches_cnt; i++) { fprintf(fp, "# "); cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); } } static void print_compressed(struct feat_fd *ff, FILE *fp) { fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", ff->ph->env.comp_level, ff->ph->env.comp_ratio); } static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name) { const char *delimiter = ""; int i; if (!nr_caps) { fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name); return; } fprintf(fp, "# %s pmu capabilities: ", pmu_name); for (i = 0; i < nr_caps; i++) { fprintf(fp, "%s%s", delimiter, caps[i]); delimiter = ", "; } fprintf(fp, "\n"); } static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp) { __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps, ff->ph->env.cpu_pmu_caps, (char *)"cpu"); } static void print_pmu_caps(struct feat_fd *ff, FILE *fp) { struct pmu_caps *pmu_caps; for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) { pmu_caps = &ff->ph->env.pmu_caps[i]; __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps, pmu_caps->pmu_name); } } static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) { const char *delimiter = "# pmu mappings: "; char *str, *tmp; u32 pmu_num; u32 type; pmu_num = ff->ph->env.nr_pmu_mappings; if (!pmu_num) { fprintf(fp, "# pmu mappings: not available\n"); return; } str = ff->ph->env.pmu_mappings; while (pmu_num) { type = strtoul(str, &tmp, 0); if (*tmp != ':') goto error; str = tmp + 1; fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); delimiter = ", "; str += strlen(str) + 1; pmu_num--; } fprintf(fp, "\n"); if (!pmu_num) return; error: fprintf(fp, "# pmu mappings: unable to read\n"); } static void print_group_desc(struct feat_fd *ff, FILE *fp) { struct perf_session *session; struct evsel *evsel; u32 nr = 0; session = container_of(ff->ph, struct perf_session, header); evlist__for_each_entry(session->evlist, evsel) { if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) { fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel)); nr = evsel->core.nr_members - 1; } else if (nr) { fprintf(fp, ",%s", evsel__name(evsel)); if (--nr == 0) fprintf(fp, "}\n"); } } } static void print_sample_time(struct feat_fd *ff, FILE *fp) { struct perf_session *session; char time_buf[32]; double d; session = container_of(ff->ph, struct perf_session, header); timestamp__scnprintf_usec(session->evlist->first_sample_time, time_buf, sizeof(time_buf)); fprintf(fp, "# time of first sample : %s\n", time_buf); timestamp__scnprintf_usec(session->evlist->last_sample_time, time_buf, sizeof(time_buf)); fprintf(fp, "# time of last sample : %s\n", time_buf); d = (double)(session->evlist->last_sample_time - session->evlist->first_sample_time) / NSEC_PER_MSEC; fprintf(fp, "# sample duration : %10.3f ms\n", d); } static void memory_node__fprintf(struct memory_node *n, unsigned long long bsize, FILE *fp) { char buf_map[100], buf_size[50]; unsigned long long size; size = bsize * bitmap_weight(n->set, n->size); unit_number__scnprintf(buf_size, 50, size); bitmap_scnprintf(n->set, n->size, buf_map, 100); fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); } static void print_mem_topology(struct feat_fd *ff, FILE *fp) { struct memory_node *nodes; int i, nr; nodes = ff->ph->env.memory_nodes; nr = ff->ph->env.nr_memory_nodes; fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", nr, ff->ph->env.memory_bsize); for (i = 0; i < nr; i++) { memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); } } static int __event_process_build_id(struct perf_record_header_build_id *bev, char *filename, struct perf_session *session) { int err = -1; struct machine *machine; u16 cpumode; struct dso *dso; enum dso_space_type dso_space; machine = perf_session__findnew_machine(session, bev->pid); if (!machine) goto out; cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; switch (cpumode) { case PERF_RECORD_MISC_KERNEL: dso_space = DSO_SPACE__KERNEL; break; case PERF_RECORD_MISC_GUEST_KERNEL: dso_space = DSO_SPACE__KERNEL_GUEST; break; case PERF_RECORD_MISC_USER: case PERF_RECORD_MISC_GUEST_USER: dso_space = DSO_SPACE__USER; break; default: goto out; } dso = machine__findnew_dso(machine, filename); if (dso != NULL) { char sbuild_id[SBUILD_ID_SIZE]; struct build_id bid; size_t size = BUILD_ID_SIZE; if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE) size = bev->size; build_id__init(&bid, bev->data, size); dso__set_build_id(dso, &bid); dso->header_build_id = 1; if (dso_space != DSO_SPACE__USER) { struct kmod_path m = { .name = NULL, }; if (!kmod_path__parse_name(&m, filename) && m.kmod) dso__set_module_info(dso, &m, machine); dso->kernel = dso_space; free(m.name); } build_id__sprintf(&dso->bid, sbuild_id); pr_debug("build id event received for %s: %s [%zu]\n", dso->long_name, sbuild_id, size); dso__put(dso); } err = 0; out: return err; } static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, int input, u64 offset, u64 size) { struct perf_session *session = container_of(header, struct perf_session, header); struct { struct perf_event_header header; u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; char filename[0]; } old_bev; struct perf_record_header_build_id bev; char filename[PATH_MAX]; u64 limit = offset + size; while (offset < limit) { ssize_t len; if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) return -1; if (header->needs_swap) perf_event_header__bswap(&old_bev.header); len = old_bev.header.size - sizeof(old_bev); if (readn(input, filename, len) != len) return -1; bev.header = old_bev.header; /* * As the pid is the missing value, we need to fill * it properly. The header.misc value give us nice hint. */ bev.pid = HOST_KERNEL_ID; if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) bev.pid = DEFAULT_GUEST_KERNEL_ID; memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); __event_process_build_id(&bev, filename, session); offset += bev.header.size; } return 0; } static int perf_header__read_build_ids(struct perf_header *header, int input, u64 offset, u64 size) { struct perf_session *session = container_of(header, struct perf_session, header); struct perf_record_header_build_id bev; char filename[PATH_MAX]; u64 limit = offset + size, orig_offset = offset; int err = -1; while (offset < limit) { ssize_t len; if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) goto out; if (header->needs_swap) perf_event_header__bswap(&bev.header); len = bev.header.size - sizeof(bev); if (readn(input, filename, len) != len) goto out; /* * The a1645ce1 changeset: * * "perf: 'perf kvm' tool for monitoring guest performance from host" * * Added a field to struct perf_record_header_build_id that broke the file * format. * * Since the kernel build-id is the first entry, process the * table using the old format if the well known * '[kernel.kallsyms]' string for the kernel build-id has the * first 4 characters chopped off (where the pid_t sits). */ if (memcmp(filename, "nel.kallsyms]", 13) == 0) { if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) return -1; return perf_header__read_build_ids_abi_quirk(header, input, offset, size); } __event_process_build_id(&bev, filename, session); offset += bev.header.size; } err = 0; out: return err; } /* Macro for features that simply need to read and store a string. */ #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ {\ free(ff->ph->env.__feat_env); \ ff->ph->env.__feat_env = do_read_string(ff); \ return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ } FEAT_PROCESS_STR_FUN(hostname, hostname); FEAT_PROCESS_STR_FUN(osrelease, os_release); FEAT_PROCESS_STR_FUN(version, version); FEAT_PROCESS_STR_FUN(arch, arch); FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); FEAT_PROCESS_STR_FUN(cpuid, cpuid); #ifdef HAVE_LIBTRACEEVENT static int process_tracing_data(struct feat_fd *ff, void *data) { ssize_t ret = trace_report(ff->fd, data, false); return ret < 0 ? -1 : 0; } #endif static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) { if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) pr_debug("Failed to read buildids, continuing...\n"); return 0; } static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) { int ret; u32 nr_cpus_avail, nr_cpus_online; ret = do_read_u32(ff, &nr_cpus_avail); if (ret) return ret; ret = do_read_u32(ff, &nr_cpus_online); if (ret) return ret; ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; ff->ph->env.nr_cpus_online = (int)nr_cpus_online; return 0; } static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) { u64 total_mem; int ret; ret = do_read_u64(ff, &total_mem); if (ret) return -1; ff->ph->env.total_mem = (unsigned long long)total_mem; return 0; } static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) { if (evsel->core.idx == idx) return evsel; } return NULL; } static void evlist__set_event_name(struct evlist *evlist, struct evsel *event) { struct evsel *evsel; if (!event->name) return; evsel = evlist__find_by_index(evlist, event->core.idx); if (!evsel) return; if (evsel->name) return; evsel->name = strdup(event->name); } static int process_event_desc(struct feat_fd *ff, void *data __maybe_unused) { struct perf_session *session; struct evsel *evsel, *events = read_event_desc(ff); if (!events) return 0; session = container_of(ff->ph, struct perf_session, header); if (session->data->is_pipe) { /* Save events for reading later by print_event_desc, * since they can't be read again in pipe mode. */ ff->events = events; } for (evsel = events; evsel->core.attr.size; evsel++) evlist__set_event_name(session->evlist, evsel); if (!session->data->is_pipe) free_event_desc(events); return 0; } static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) { char *str, *cmdline = NULL, **argv = NULL; u32 nr, i, len = 0; if (do_read_u32(ff, &nr)) return -1; ff->ph->env.nr_cmdline = nr; cmdline = zalloc(ff->size + nr + 1); if (!cmdline) return -1; argv = zalloc(sizeof(char *) * (nr + 1)); if (!argv) goto error; for (i = 0; i < nr; i++) { str = do_read_string(ff); if (!str) goto error; argv[i] = cmdline + len; memcpy(argv[i], str, strlen(str) + 1); len += strlen(str) + 1; free(str); } ff->ph->env.cmdline = cmdline; ff->ph->env.cmdline_argv = (const char **) argv; return 0; error: free(argv); free(cmdline); return -1; } static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) { u32 nr, i; char *str; struct strbuf sb; int cpu_nr = ff->ph->env.nr_cpus_avail; u64 size = 0; struct perf_header *ph = ff->ph; bool do_core_id_test = true; ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); if (!ph->env.cpu) return -1; if (do_read_u32(ff, &nr)) goto free_cpu; ph->env.nr_sibling_cores = nr; size += sizeof(u32); if (strbuf_init(&sb, 128) < 0) goto free_cpu; for (i = 0; i < nr; i++) { str = do_read_string(ff); if (!str) goto error; /* include a NULL character at the end */ if (strbuf_add(&sb, str, strlen(str) + 1) < 0) goto error; size += string_size(str); free(str); } ph->env.sibling_cores = strbuf_detach(&sb, NULL); if (do_read_u32(ff, &nr)) return -1; ph->env.nr_sibling_threads = nr; size += sizeof(u32); for (i = 0; i < nr; i++) { str = do_read_string(ff); if (!str) goto error; /* include a NULL character at the end */ if (strbuf_add(&sb, str, strlen(str) + 1) < 0) goto error; size += string_size(str); free(str); } ph->env.sibling_threads = strbuf_detach(&sb, NULL); /* * The header may be from old perf, * which doesn't include core id and socket id information. */ if (ff->size <= size) { zfree(&ph->env.cpu); return 0; } /* On s390 the socket_id number is not related to the numbers of cpus. * The socket_id number might be higher than the numbers of cpus. * This depends on the configuration. * AArch64 is the same. */ if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4) || !strncmp(ph->env.arch, "aarch64", 7))) do_core_id_test = false; for (i = 0; i < (u32)cpu_nr; i++) { if (do_read_u32(ff, &nr)) goto free_cpu; ph->env.cpu[i].core_id = nr; size += sizeof(u32); if (do_read_u32(ff, &nr)) goto free_cpu; if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { pr_debug("socket_id number is too big." "You may need to upgrade the perf tool.\n"); goto free_cpu; } ph->env.cpu[i].socket_id = nr; size += sizeof(u32); } /* * The header may be from old perf, * which doesn't include die information. */ if (ff->size <= size) return 0; if (do_read_u32(ff, &nr)) return -1; ph->env.nr_sibling_dies = nr; size += sizeof(u32); for (i = 0; i < nr; i++) { str = do_read_string(ff); if (!str) goto error; /* include a NULL character at the end */ if (strbuf_add(&sb, str, strlen(str) + 1) < 0) goto error; size += string_size(str); free(str); } ph->env.sibling_dies = strbuf_detach(&sb, NULL); for (i = 0; i < (u32)cpu_nr; i++) { if (do_read_u32(ff, &nr)) goto free_cpu; ph->env.cpu[i].die_id = nr; } return 0; error: strbuf_release(&sb); free_cpu: zfree(&ph->env.cpu); return -1; } static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) { struct numa_node *nodes, *n; u32 nr, i; char *str; /* nr nodes */ if (do_read_u32(ff, &nr)) return -1; nodes = zalloc(sizeof(*nodes) * nr); if (!nodes) return -ENOMEM; for (i = 0; i < nr; i++) { n = &nodes[i]; /* node number */ if (do_read_u32(ff, &n->node)) goto error; if (do_read_u64(ff, &n->mem_total)) goto error; if (do_read_u64(ff, &n->mem_free)) goto error; str = do_read_string(ff); if (!str) goto error; n->map = perf_cpu_map__new(str); if (!n->map) goto error; free(str); } ff->ph->env.nr_numa_nodes = nr; ff->ph->env.numa_nodes = nodes; return 0; error: free(nodes); return -1; } static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) { char *name; u32 pmu_num; u32 type; struct strbuf sb; if (do_read_u32(ff, &pmu_num)) return -1; if (!pmu_num) { pr_debug("pmu mappings not available\n"); return 0; } ff->ph->env.nr_pmu_mappings = pmu_num; if (strbuf_init(&sb, 128) < 0) return -1; while (pmu_num) { if (do_read_u32(ff, &type)) goto error; name = do_read_string(ff); if (!name) goto error; if (strbuf_addf(&sb, "%u:%s", type, name) < 0) goto error; /* include a NULL character at the end */ if (strbuf_add(&sb, "", 1) < 0) goto error; if (!strcmp(name, "msr")) ff->ph->env.msr_pmu_type = type; free(name); pmu_num--; } ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); return 0; error: strbuf_release(&sb); return -1; } static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) { size_t ret = -1; u32 i, nr, nr_groups; struct perf_session *session; struct evsel *evsel, *leader = NULL; struct group_desc { char *name; u32 leader_idx; u32 nr_members; } *desc; if (do_read_u32(ff, &nr_groups)) return -1; ff->ph->env.nr_groups = nr_groups; if (!nr_groups) { pr_debug("group desc not available\n"); return 0; } desc = calloc(nr_groups, sizeof(*desc)); if (!desc) return -1; for (i = 0; i < nr_groups; i++) { desc[i].name = do_read_string(ff); if (!desc[i].name) goto out_free; if (do_read_u32(ff, &desc[i].leader_idx)) goto out_free; if (do_read_u32(ff, &desc[i].nr_members)) goto out_free; } /* * Rebuild group relationship based on the group_desc */ session = container_of(ff->ph, struct perf_session, header); i = nr = 0; evlist__for_each_entry(session->evlist, evsel) { if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) { evsel__set_leader(evsel, evsel); /* {anon_group} is a dummy name */ if (strcmp(desc[i].name, "{anon_group}")) { evsel->group_name = desc[i].name; desc[i].name = NULL; } evsel->core.nr_members = desc[i].nr_members; if (i >= nr_groups || nr > 0) { pr_debug("invalid group desc\n"); goto out_free; } leader = evsel; nr = evsel->core.nr_members - 1; i++; } else if (nr) { /* This is a group member */ evsel__set_leader(evsel, leader); nr--; } } if (i != nr_groups || nr != 0) { pr_debug("invalid group desc\n"); goto out_free; } ret = 0; out_free: for (i = 0; i < nr_groups; i++) zfree(&desc[i].name); free(desc); return ret; } static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) { struct perf_session *session; int err; session = container_of(ff->ph, struct perf_session, header); err = auxtrace_index__process(ff->fd, ff->size, session, ff->ph->needs_swap); if (err < 0) pr_err("Failed to process auxtrace index\n"); return err; } static int process_cache(struct feat_fd *ff, void *data __maybe_unused) { struct cpu_cache_level *caches; u32 cnt, i, version; if (do_read_u32(ff, &version)) return -1; if (version != 1) return -1; if (do_read_u32(ff, &cnt)) return -1; caches = zalloc(sizeof(*caches) * cnt); if (!caches) return -1; for (i = 0; i < cnt; i++) { struct cpu_cache_level c; #define _R(v) \ if (do_read_u32(ff, &c.v))\ goto out_free_caches; \ _R(level) _R(line_size) _R(sets) _R(ways) #undef _R #define _R(v) \ c.v = do_read_string(ff); \ if (!c.v) \ goto out_free_caches; _R(type) _R(size) _R(map) #undef _R caches[i] = c; } ff->ph->env.caches = caches; ff->ph->env.caches_cnt = cnt; return 0; out_free_caches: free(caches); return -1; } static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) { struct perf_session *session; u64 first_sample_time, last_sample_time; int ret; session = container_of(ff->ph, struct perf_session, header); ret = do_read_u64(ff, &first_sample_time); if (ret) return -1; ret = do_read_u64(ff, &last_sample_time); if (ret) return -1; session->evlist->first_sample_time = first_sample_time; session->evlist->last_sample_time = last_sample_time; return 0; } static int process_mem_topology(struct feat_fd *ff, void *data __maybe_unused) { struct memory_node *nodes; u64 version, i, nr, bsize; int ret = -1; if (do_read_u64(ff, &version)) return -1; if (version != 1) return -1; if (do_read_u64(ff, &bsize)) return -1; if (do_read_u64(ff, &nr)) return -1; nodes = zalloc(sizeof(*nodes) * nr); if (!nodes) return -1; for (i = 0; i < nr; i++) { struct memory_node n; #define _R(v) \ if (do_read_u64(ff, &n.v)) \ goto out; \ _R(node) _R(size) #undef _R if (do_read_bitmap(ff, &n.set, &n.size)) goto out; nodes[i] = n; } ff->ph->env.memory_bsize = bsize; ff->ph->env.memory_nodes = nodes; ff->ph->env.nr_memory_nodes = nr; ret = 0; out: if (ret) free(nodes); return ret; } static int process_clockid(struct feat_fd *ff, void *data __maybe_unused) { if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns)) return -1; return 0; } static int process_clock_data(struct feat_fd *ff, void *_data __maybe_unused) { u32 data32; u64 data64; /* version */ if (do_read_u32(ff, &data32)) return -1; if (data32 != 1) return -1; /* clockid */ if (do_read_u32(ff, &data32)) return -1; ff->ph->env.clock.clockid = data32; /* TOD ref time */ if (do_read_u64(ff, &data64)) return -1; ff->ph->env.clock.tod_ns = data64; /* clockid ref time */ if (do_read_u64(ff, &data64)) return -1; ff->ph->env.clock.clockid_ns = data64; ff->ph->env.clock.enabled = true; return 0; } static int process_hybrid_topology(struct feat_fd *ff, void *data __maybe_unused) { struct hybrid_node *nodes, *n; u32 nr, i; /* nr nodes */ if (do_read_u32(ff, &nr)) return -1; nodes = zalloc(sizeof(*nodes) * nr); if (!nodes) return -ENOMEM; for (i = 0; i < nr; i++) { n = &nodes[i]; n->pmu_name = do_read_string(ff); if (!n->pmu_name) goto error; n->cpus = do_read_string(ff); if (!n->cpus) goto error; } ff->ph->env.nr_hybrid_nodes = nr; ff->ph->env.hybrid_nodes = nodes; return 0; error: for (i = 0; i < nr; i++) { free(nodes[i].pmu_name); free(nodes[i].cpus); } free(nodes); return -1; } static int process_dir_format(struct feat_fd *ff, void *_data __maybe_unused) { struct perf_session *session; struct perf_data *data; session = container_of(ff->ph, struct perf_session, header); data = session->data; if (WARN_ON(!perf_data__is_dir(data))) return -1; return do_read_u64(ff, &data->dir.version); } #ifdef HAVE_LIBBPF_SUPPORT static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) { struct bpf_prog_info_node *info_node; struct perf_env *env = &ff->ph->env; struct perf_bpil *info_linear; u32 count, i; int err = -1; if (ff->ph->needs_swap) { pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n"); return 0; } if (do_read_u32(ff, &count)) return -1; down_write(&env->bpf_progs.lock); for (i = 0; i < count; ++i) { u32 info_len, data_len; info_linear = NULL; info_node = NULL; if (do_read_u32(ff, &info_len)) goto out; if (do_read_u32(ff, &data_len)) goto out; if (info_len > sizeof(struct bpf_prog_info)) { pr_warning("detected invalid bpf_prog_info\n"); goto out; } info_linear = malloc(sizeof(struct perf_bpil) + data_len); if (!info_linear) goto out; info_linear->info_len = sizeof(struct bpf_prog_info); info_linear->data_len = data_len; if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) goto out; if (__do_read(ff, &info_linear->info, info_len)) goto out; if (info_len < sizeof(struct bpf_prog_info)) memset(((void *)(&info_linear->info)) + info_len, 0, sizeof(struct bpf_prog_info) - info_len); if (__do_read(ff, info_linear->data, data_len)) goto out; info_node = malloc(sizeof(struct bpf_prog_info_node)); if (!info_node) goto out; /* after reading from file, translate offset to address */ bpil_offs_to_addr(info_linear); info_node->info_linear = info_linear; perf_env__insert_bpf_prog_info(env, info_node); } up_write(&env->bpf_progs.lock); return 0; out: free(info_linear); free(info_node); up_write(&env->bpf_progs.lock); return err; } static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) { struct perf_env *env = &ff->ph->env; struct btf_node *node = NULL; u32 count, i; int err = -1; if (ff->ph->needs_swap) { pr_warning("interpreting btf from systems with endianness is not yet supported\n"); return 0; } if (do_read_u32(ff, &count)) return -1; down_write(&env->bpf_progs.lock); for (i = 0; i < count; ++i) { u32 id, data_size; if (do_read_u32(ff, &id)) goto out; if (do_read_u32(ff, &data_size)) goto out; node = malloc(sizeof(struct btf_node) + data_size); if (!node) goto out; node->id = id; node->data_size = data_size; if (__do_read(ff, node->data, data_size)) goto out; perf_env__insert_btf(env, node); node = NULL; } err = 0; out: up_write(&env->bpf_progs.lock); free(node); return err; } #endif // HAVE_LIBBPF_SUPPORT static int process_compressed(struct feat_fd *ff, void *data __maybe_unused) { if (do_read_u32(ff, &(ff->ph->env.comp_ver))) return -1; if (do_read_u32(ff, &(ff->ph->env.comp_type))) return -1; if (do_read_u32(ff, &(ff->ph->env.comp_level))) return -1; if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) return -1; if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) return -1; return 0; } static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps, char ***caps, unsigned int *max_branches) { char *name, *value, *ptr; u32 nr_pmu_caps, i; *nr_caps = 0; *caps = NULL; if (do_read_u32(ff, &nr_pmu_caps)) return -1; if (!nr_pmu_caps) return 0; *caps = zalloc(sizeof(char *) * nr_pmu_caps); if (!*caps) return -1; for (i = 0; i < nr_pmu_caps; i++) { name = do_read_string(ff); if (!name) goto error; value = do_read_string(ff); if (!value) goto free_name; if (asprintf(&ptr, "%s=%s", name, value) < 0) goto free_value; (*caps)[i] = ptr; if (!strcmp(name, "branches")) *max_branches = atoi(value); free(value); free(name); } *nr_caps = nr_pmu_caps; return 0; free_value: free(value); free_name: free(name); error: for (; i > 0; i--) free((*caps)[i - 1]); free(*caps); *caps = NULL; *nr_caps = 0; return -1; } static int process_cpu_pmu_caps(struct feat_fd *ff, void *data __maybe_unused) { int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps, &ff->ph->env.cpu_pmu_caps, &ff->ph->env.max_branches); if (!ret && !ff->ph->env.cpu_pmu_caps) pr_debug("cpu pmu capabilities not available\n"); return ret; } static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused) { struct pmu_caps *pmu_caps; u32 nr_pmu, i; int ret; int j; if (do_read_u32(ff, &nr_pmu)) return -1; if (!nr_pmu) { pr_debug("pmu capabilities not available\n"); return 0; } pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu); if (!pmu_caps) return -ENOMEM; for (i = 0; i < nr_pmu; i++) { ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps, &pmu_caps[i].caps, &pmu_caps[i].max_branches); if (ret) goto err; pmu_caps[i].pmu_name = do_read_string(ff); if (!pmu_caps[i].pmu_name) { ret = -1; goto err; } if (!pmu_caps[i].nr_caps) { pr_debug("%s pmu capabilities not available\n", pmu_caps[i].pmu_name); } } ff->ph->env.nr_pmus_with_caps = nr_pmu; ff->ph->env.pmu_caps = pmu_caps; return 0; err: for (i = 0; i < nr_pmu; i++) { for (j = 0; j < pmu_caps[i].nr_caps; j++) free(pmu_caps[i].caps[j]); free(pmu_caps[i].caps); free(pmu_caps[i].pmu_name); } free(pmu_caps); return ret; } #define FEAT_OPR(n, func, __full_only) \ [HEADER_##n] = { \ .name = __stringify(n), \ .write = write_##func, \ .print = print_##func, \ .full_only = __full_only, \ .process = process_##func, \ .synthesize = true \ } #define FEAT_OPN(n, func, __full_only) \ [HEADER_##n] = { \ .name = __stringify(n), \ .write = write_##func, \ .print = print_##func, \ .full_only = __full_only, \ .process = process_##func \ } /* feature_ops not implemented: */ #define print_tracing_data NULL #define print_build_id NULL #define process_branch_stack NULL #define process_stat NULL // Only used in util/synthetic-events.c const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { #ifdef HAVE_LIBTRACEEVENT FEAT_OPN(TRACING_DATA, tracing_data, false), #endif FEAT_OPN(BUILD_ID, build_id, false), FEAT_OPR(HOSTNAME, hostname, false), FEAT_OPR(OSRELEASE, osrelease, false), FEAT_OPR(VERSION, version, false), FEAT_OPR(ARCH, arch, false), FEAT_OPR(NRCPUS, nrcpus, false), FEAT_OPR(CPUDESC, cpudesc, false), FEAT_OPR(CPUID, cpuid, false), FEAT_OPR(TOTAL_MEM, total_mem, false), FEAT_OPR(EVENT_DESC, event_desc, false), FEAT_OPR(CMDLINE, cmdline, false), FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), FEAT_OPN(BRANCH_STACK, branch_stack, false), FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), FEAT_OPR(GROUP_DESC, group_desc, false), FEAT_OPN(AUXTRACE, auxtrace, false), FEAT_OPN(STAT, stat, false), FEAT_OPN(CACHE, cache, true), FEAT_OPR(SAMPLE_TIME, sample_time, false), FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), FEAT_OPR(CLOCKID, clockid, false), FEAT_OPN(DIR_FORMAT, dir_format, false), #ifdef HAVE_LIBBPF_SUPPORT FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), FEAT_OPR(BPF_BTF, bpf_btf, false), #endif FEAT_OPR(COMPRESSED, compressed, false), FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false), FEAT_OPR(CLOCK_DATA, clock_data, false), FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true), FEAT_OPR(PMU_CAPS, pmu_caps, false), }; struct header_print_data { FILE *fp; bool full; /* extended list of headers */ }; static int perf_file_section__fprintf_info(struct perf_file_section *section, struct perf_header *ph, int feat, int fd, void *data) { struct header_print_data *hd = data; struct feat_fd ff; if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { pr_debug("Failed to lseek to %" PRIu64 " offset for feature " "%d, continuing...\n", section->offset, feat); return 0; } if (feat >= HEADER_LAST_FEATURE) { pr_warning("unknown feature %d\n", feat); return 0; } if (!feat_ops[feat].print) return 0; ff = (struct feat_fd) { .fd = fd, .ph = ph, }; if (!feat_ops[feat].full_only || hd->full) feat_ops[feat].print(&ff, hd->fp); else fprintf(hd->fp, "# %s info available, use -I to display\n", feat_ops[feat].name); return 0; } int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) { struct header_print_data hd; struct perf_header *header = &session->header; int fd = perf_data__fd(session->data); struct stat st; time_t stctime; int ret, bit; hd.fp = fp; hd.full = full; ret = fstat(fd, &st); if (ret == -1) return -1; stctime = st.st_mtime; fprintf(fp, "# captured on : %s", ctime(&stctime)); fprintf(fp, "# header version : %u\n", header->version); fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); perf_header__process_sections(header, fd, &hd, perf_file_section__fprintf_info); if (session->data->is_pipe) return 0; fprintf(fp, "# missing features: "); for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { if (bit) fprintf(fp, "%s ", feat_ops[bit].name); } fprintf(fp, "\n"); return 0; } struct header_fw { struct feat_writer fw; struct feat_fd *ff; }; static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz) { struct header_fw *h = container_of(fw, struct header_fw, fw); return do_write(h->ff, buf, sz); } static int do_write_feat(struct feat_fd *ff, int type, struct perf_file_section **p, struct evlist *evlist, struct feat_copier *fc) { int err; int ret = 0; if (perf_header__has_feat(ff->ph, type)) { if (!feat_ops[type].write) return -1; if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) return -1; (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); /* * Hook to let perf inject copy features sections from the input * file. */ if (fc && fc->copy) { struct header_fw h = { .fw.write = feat_writer_cb, .ff = ff, }; /* ->copy() returns 0 if the feature was not copied */ err = fc->copy(fc, type, &h.fw); } else { err = 0; } if (!err) err = feat_ops[type].write(ff, evlist); if (err < 0) { pr_debug("failed to write feature %s\n", feat_ops[type].name); /* undo anything written */ lseek(ff->fd, (*p)->offset, SEEK_SET); return -1; } (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; (*p)++; } return ret; } static int perf_header__adds_write(struct perf_header *header, struct evlist *evlist, int fd, struct feat_copier *fc) { int nr_sections; struct feat_fd ff; struct perf_file_section *feat_sec, *p; int sec_size; u64 sec_start; int feat; int err; ff = (struct feat_fd){ .fd = fd, .ph = header, }; nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); if (!nr_sections) return 0; feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); if (feat_sec == NULL) return -ENOMEM; sec_size = sizeof(*feat_sec) * nr_sections; sec_start = header->feat_offset; lseek(fd, sec_start + sec_size, SEEK_SET); for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { if (do_write_feat(&ff, feat, &p, evlist, fc)) perf_header__clear_feat(header, feat); } lseek(fd, sec_start, SEEK_SET); /* * may write more than needed due to dropped feature, but * this is okay, reader will skip the missing entries */ err = do_write(&ff, feat_sec, sec_size); if (err < 0) pr_debug("failed to write feature section\n"); free(feat_sec); return err; } int perf_header__write_pipe(int fd) { struct perf_pipe_file_header f_header; struct feat_fd ff; int err; ff = (struct feat_fd){ .fd = fd }; f_header = (struct perf_pipe_file_header){ .magic = PERF_MAGIC, .size = sizeof(f_header), }; err = do_write(&ff, &f_header, sizeof(f_header)); if (err < 0) { pr_debug("failed to write perf pipe header\n"); return err; } return 0; } static int perf_session__do_write_header(struct perf_session *session, struct evlist *evlist, int fd, bool at_exit, struct feat_copier *fc) { struct perf_file_header f_header; struct perf_file_attr f_attr; struct perf_header *header = &session->header; struct evsel *evsel; struct feat_fd ff; u64 attr_offset; int err; ff = (struct feat_fd){ .fd = fd}; lseek(fd, sizeof(f_header), SEEK_SET); evlist__for_each_entry(session->evlist, evsel) { evsel->id_offset = lseek(fd, 0, SEEK_CUR); err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); if (err < 0) { pr_debug("failed to write perf header\n"); return err; } } attr_offset = lseek(ff.fd, 0, SEEK_CUR); evlist__for_each_entry(evlist, evsel) { if (evsel->core.attr.size < sizeof(evsel->core.attr)) { /* * We are likely in "perf inject" and have read * from an older file. Update attr size so that * reader gets the right offset to the ids. */ evsel->core.attr.size = sizeof(evsel->core.attr); } f_attr = (struct perf_file_attr){ .attr = evsel->core.attr, .ids = { .offset = evsel->id_offset, .size = evsel->core.ids * sizeof(u64), } }; err = do_write(&ff, &f_attr, sizeof(f_attr)); if (err < 0) { pr_debug("failed to write perf header attribute\n"); return err; } } if (!header->data_offset) header->data_offset = lseek(fd, 0, SEEK_CUR); header->feat_offset = header->data_offset + header->data_size; if (at_exit) { err = perf_header__adds_write(header, evlist, fd, fc); if (err < 0) return err; } f_header = (struct perf_file_header){ .magic = PERF_MAGIC, .size = sizeof(f_header), .attr_size = sizeof(f_attr), .attrs = { .offset = attr_offset, .size = evlist->core.nr_entries * sizeof(f_attr), }, .data = { .offset = header->data_offset, .size = header->data_size, }, /* event_types is ignored, store zeros */ }; memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); lseek(fd, 0, SEEK_SET); err = do_write(&ff, &f_header, sizeof(f_header)); if (err < 0) { pr_debug("failed to write perf header\n"); return err; } lseek(fd, header->data_offset + header->data_size, SEEK_SET); return 0; } int perf_session__write_header(struct perf_session *session, struct evlist *evlist, int fd, bool at_exit) { return perf_session__do_write_header(session, evlist, fd, at_exit, NULL); } size_t perf_session__data_offset(const struct evlist *evlist) { struct evsel *evsel; size_t data_offset; data_offset = sizeof(struct perf_file_header); evlist__for_each_entry(evlist, evsel) { data_offset += evsel->core.ids * sizeof(u64); } data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr); return data_offset; } int perf_session__inject_header(struct perf_session *session, struct evlist *evlist, int fd, struct feat_copier *fc) { return perf_session__do_write_header(session, evlist, fd, true, fc); } static int perf_header__getbuffer64(struct perf_header *header, int fd, void *buf, size_t size) { if (readn(fd, buf, size) <= 0) return -1; if (header->needs_swap) mem_bswap_64(buf, size); return 0; } int perf_header__process_sections(struct perf_header *header, int fd, void *data, int (*process)(struct perf_file_section *section, struct perf_header *ph, int feat, int fd, void *data)) { struct perf_file_section *feat_sec, *sec; int nr_sections; int sec_size; int feat; int err; nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); if (!nr_sections) return 0; feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); if (!feat_sec) return -1; sec_size = sizeof(*feat_sec) * nr_sections; lseek(fd, header->feat_offset, SEEK_SET); err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); if (err < 0) goto out_free; for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { err = process(sec++, header, feat, fd, data); if (err < 0) goto out_free; } err = 0; out_free: free(feat_sec); return err; } static const int attr_file_abi_sizes[] = { [0] = PERF_ATTR_SIZE_VER0, [1] = PERF_ATTR_SIZE_VER1, [2] = PERF_ATTR_SIZE_VER2, [3] = PERF_ATTR_SIZE_VER3, [4] = PERF_ATTR_SIZE_VER4, 0, }; /* * In the legacy file format, the magic number is not used to encode endianness. * hdr_sz was used to encode endianness. But given that hdr_sz can vary based * on ABI revisions, we need to try all combinations for all endianness to * detect the endianness. */ static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) { uint64_t ref_size, attr_size; int i; for (i = 0 ; attr_file_abi_sizes[i]; i++) { ref_size = attr_file_abi_sizes[i] + sizeof(struct perf_file_section); if (hdr_sz != ref_size) { attr_size = bswap_64(hdr_sz); if (attr_size != ref_size) continue; ph->needs_swap = true; } pr_debug("ABI%d perf.data file detected, need_swap=%d\n", i, ph->needs_swap); return 0; } /* could not determine endianness */ return -1; } #define PERF_PIPE_HDR_VER0 16 static const size_t attr_pipe_abi_sizes[] = { [0] = PERF_PIPE_HDR_VER0, 0, }; /* * In the legacy pipe format, there is an implicit assumption that endianness * between host recording the samples, and host parsing the samples is the * same. This is not always the case given that the pipe output may always be * redirected into a file and analyzed on a different machine with possibly a * different endianness and perf_event ABI revisions in the perf tool itself. */ static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) { u64 attr_size; int i; for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { if (hdr_sz != attr_pipe_abi_sizes[i]) { attr_size = bswap_64(hdr_sz); if (attr_size != hdr_sz) continue; ph->needs_swap = true; } pr_debug("Pipe ABI%d perf.data file detected\n", i); return 0; } return -1; } bool is_perf_magic(u64 magic) { if (!memcmp(&magic, __perf_magic1, sizeof(magic)) || magic == __perf_magic2 || magic == __perf_magic2_sw) return true; return false; } static int check_magic_endian(u64 magic, uint64_t hdr_sz, bool is_pipe, struct perf_header *ph) { int ret; /* check for legacy format */ ret = memcmp(&magic, __perf_magic1, sizeof(magic)); if (ret == 0) { ph->version = PERF_HEADER_VERSION_1; pr_debug("legacy perf.data format\n"); if (is_pipe) return try_all_pipe_abis(hdr_sz, ph); return try_all_file_abis(hdr_sz, ph); } /* * the new magic number serves two purposes: * - unique number to identify actual perf.data files * - encode endianness of file */ ph->version = PERF_HEADER_VERSION_2; /* check magic number with one endianness */ if (magic == __perf_magic2) return 0; /* check magic number with opposite endianness */ if (magic != __perf_magic2_sw) return -1; ph->needs_swap = true; return 0; } int perf_file_header__read(struct perf_file_header *header, struct perf_header *ph, int fd) { ssize_t ret; lseek(fd, 0, SEEK_SET); ret = readn(fd, header, sizeof(*header)); if (ret <= 0) return -1; if (check_magic_endian(header->magic, header->attr_size, false, ph) < 0) { pr_debug("magic/endian check failed\n"); return -1; } if (ph->needs_swap) { mem_bswap_64(header, offsetof(struct perf_file_header, adds_features)); } if (header->size != sizeof(*header)) { /* Support the previous format */ if (header->size == offsetof(typeof(*header), adds_features)) bitmap_zero(header->adds_features, HEADER_FEAT_BITS); else return -1; } else if (ph->needs_swap) { /* * feature bitmap is declared as an array of unsigned longs -- * not good since its size can differ between the host that * generated the data file and the host analyzing the file. * * We need to handle endianness, but we don't know the size of * the unsigned long where the file was generated. Take a best * guess at determining it: try 64-bit swap first (ie., file * created on a 64-bit host), and check if the hostname feature * bit is set (this feature bit is forced on as of fbe96f2). * If the bit is not, undo the 64-bit swap and try a 32-bit * swap. If the hostname bit is still not set (e.g., older data * file), punt and fallback to the original behavior -- * clearing all feature bits and setting buildid. */ mem_bswap_64(&header->adds_features, BITS_TO_U64(HEADER_FEAT_BITS)); if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { /* unswap as u64 */ mem_bswap_64(&header->adds_features, BITS_TO_U64(HEADER_FEAT_BITS)); /* unswap as u32 */ mem_bswap_32(&header->adds_features, BITS_TO_U32(HEADER_FEAT_BITS)); } if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { bitmap_zero(header->adds_features, HEADER_FEAT_BITS); __set_bit(HEADER_BUILD_ID, header->adds_features); } } memcpy(&ph->adds_features, &header->adds_features, sizeof(ph->adds_features)); ph->data_offset = header->data.offset; ph->data_size = header->data.size; ph->feat_offset = header->data.offset + header->data.size; return 0; } static int perf_file_section__process(struct perf_file_section *section, struct perf_header *ph, int feat, int fd, void *data) { struct feat_fd fdd = { .fd = fd, .ph = ph, .size = section->size, .offset = section->offset, }; if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { pr_debug("Failed to lseek to %" PRIu64 " offset for feature " "%d, continuing...\n", section->offset, feat); return 0; } if (feat >= HEADER_LAST_FEATURE) { pr_debug("unknown feature %d, continuing...\n", feat); return 0; } if (!feat_ops[feat].process) return 0; return feat_ops[feat].process(&fdd, data); } static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, struct perf_header *ph, struct perf_data* data, bool repipe, int repipe_fd) { struct feat_fd ff = { .fd = repipe_fd, .ph = ph, }; ssize_t ret; ret = perf_data__read(data, header, sizeof(*header)); if (ret <= 0) return -1; if (check_magic_endian(header->magic, header->size, true, ph) < 0) { pr_debug("endian/magic failed\n"); return -1; } if (ph->needs_swap) header->size = bswap_64(header->size); if (repipe && do_write(&ff, header, sizeof(*header)) < 0) return -1; return 0; } static int perf_header__read_pipe(struct perf_session *session, int repipe_fd) { struct perf_header *header = &session->header; struct perf_pipe_file_header f_header; if (perf_file_header__read_pipe(&f_header, header, session->data, session->repipe, repipe_fd) < 0) { pr_debug("incompatible file format\n"); return -EINVAL; } return f_header.size == sizeof(f_header) ? 0 : -1; } static int read_attr(int fd, struct perf_header *ph, struct perf_file_attr *f_attr) { struct perf_event_attr *attr = &f_attr->attr; size_t sz, left; size_t our_sz = sizeof(f_attr->attr); ssize_t ret; memset(f_attr, 0, sizeof(*f_attr)); /* read minimal guaranteed structure */ ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); if (ret <= 0) { pr_debug("cannot read %d bytes of header attr\n", PERF_ATTR_SIZE_VER0); return -1; } /* on file perf_event_attr size */ sz = attr->size; if (ph->needs_swap) sz = bswap_32(sz); if (sz == 0) { /* assume ABI0 */ sz = PERF_ATTR_SIZE_VER0; } else if (sz > our_sz) { pr_debug("file uses a more recent and unsupported ABI" " (%zu bytes extra)\n", sz - our_sz); return -1; } /* what we have not yet read and that we know about */ left = sz - PERF_ATTR_SIZE_VER0; if (left) { void *ptr = attr; ptr += PERF_ATTR_SIZE_VER0; ret = readn(fd, ptr, left); } /* read perf_file_section, ids are read in caller */ ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); return ret <= 0 ? -1 : 0; } #ifdef HAVE_LIBTRACEEVENT static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent) { struct tep_event *event; char bf[128]; /* already prepared */ if (evsel->tp_format) return 0; if (pevent == NULL) { pr_debug("broken or missing trace data\n"); return -1; } event = tep_find_event(pevent, evsel->core.attr.config); if (event == NULL) { pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); return -1; } if (!evsel->name) { snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); evsel->name = strdup(bf); if (evsel->name == NULL) return -1; } evsel->tp_format = event; return 0; } static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent) { struct evsel *pos; evlist__for_each_entry(evlist, pos) { if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && evsel__prepare_tracepoint_event(pos, pevent)) return -1; } return 0; } #endif int perf_session__read_header(struct perf_session *session, int repipe_fd) { struct perf_data *data = session->data; struct perf_header *header = &session->header; struct perf_file_header f_header; struct perf_file_attr f_attr; u64 f_id; int nr_attrs, nr_ids, i, j, err; int fd = perf_data__fd(data); session->evlist = evlist__new(); if (session->evlist == NULL) return -ENOMEM; session->evlist->env = &header->env; session->machines.host.env = &header->env; /* * We can read 'pipe' data event from regular file, * check for the pipe header regardless of source. */ err = perf_header__read_pipe(session, repipe_fd); if (!err || perf_data__is_pipe(data)) { data->is_pipe = true; return err; } if (perf_file_header__read(&f_header, header, fd) < 0) return -EINVAL; if (header->needs_swap && data->in_place_update) { pr_err("In-place update not supported when byte-swapping is required\n"); return -EINVAL; } /* * Sanity check that perf.data was written cleanly; data size is * initialized to 0 and updated only if the on_exit function is run. * If data size is still 0 then the file contains only partial * information. Just warn user and process it as much as it can. */ if (f_header.data.size == 0) { pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" "Was the 'perf record' command properly terminated?\n", data->file.path); } if (f_header.attr_size == 0) { pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" "Was the 'perf record' command properly terminated?\n", data->file.path); return -EINVAL; } nr_attrs = f_header.attrs.size / f_header.attr_size; lseek(fd, f_header.attrs.offset, SEEK_SET); for (i = 0; i < nr_attrs; i++) { struct evsel *evsel; off_t tmp; if (read_attr(fd, header, &f_attr) < 0) goto out_errno; if (header->needs_swap) { f_attr.ids.size = bswap_64(f_attr.ids.size); f_attr.ids.offset = bswap_64(f_attr.ids.offset); perf_event__attr_swap(&f_attr.attr); } tmp = lseek(fd, 0, SEEK_CUR); evsel = evsel__new(&f_attr.attr); if (evsel == NULL) goto out_delete_evlist; evsel->needs_swap = header->needs_swap; /* * Do it before so that if perf_evsel__alloc_id fails, this * entry gets purged too at evlist__delete(). */ evlist__add(session->evlist, evsel); nr_ids = f_attr.ids.size / sizeof(u64); /* * We don't have the cpu and thread maps on the header, so * for allocating the perf_sample_id table we fake 1 cpu and * hattr->ids threads. */ if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) goto out_delete_evlist; lseek(fd, f_attr.ids.offset, SEEK_SET); for (j = 0; j < nr_ids; j++) { if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) goto out_errno; perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); } lseek(fd, tmp, SEEK_SET); } #ifdef HAVE_LIBTRACEEVENT perf_header__process_sections(header, fd, &session->tevent, perf_file_section__process); if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent)) goto out_delete_evlist; #else perf_header__process_sections(header, fd, NULL, perf_file_section__process); #endif return 0; out_errno: return -errno; out_delete_evlist: evlist__delete(session->evlist); session->evlist = NULL; return -ENOMEM; } int perf_event__process_feature(struct perf_session *session, union perf_event *event) { struct perf_tool *tool = session->tool; struct feat_fd ff = { .fd = 0 }; struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; int type = fe->header.type; u64 feat = fe->feat_id; int ret = 0; if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { pr_warning("invalid record type %d in pipe-mode\n", type); return 0; } if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { pr_warning("invalid record type %d in pipe-mode\n", type); return -1; } if (!feat_ops[feat].process) return 0; ff.buf = (void *)fe->data; ff.size = event->header.size - sizeof(*fe); ff.ph = &session->header; if (feat_ops[feat].process(&ff, NULL)) { ret = -1; goto out; } if (!feat_ops[feat].print || !tool->show_feat_hdr) goto out; if (!feat_ops[feat].full_only || tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { feat_ops[feat].print(&ff, stdout); } else { fprintf(stdout, "# %s info available, use -I to display\n", feat_ops[feat].name); } out: free_event_desc(ff.events); return ret; } size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) { struct perf_record_event_update *ev = &event->event_update; struct perf_cpu_map *map; size_t ret; ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); switch (ev->type) { case PERF_EVENT_UPDATE__SCALE: ret += fprintf(fp, "... scale: %f\n", ev->scale.scale); break; case PERF_EVENT_UPDATE__UNIT: ret += fprintf(fp, "... unit: %s\n", ev->unit); break; case PERF_EVENT_UPDATE__NAME: ret += fprintf(fp, "... name: %s\n", ev->name); break; case PERF_EVENT_UPDATE__CPUS: ret += fprintf(fp, "... "); map = cpu_map__new_data(&ev->cpus.cpus); if (map) ret += cpu_map__fprintf(map, fp); else ret += fprintf(fp, "failed to get cpus\n"); break; default: ret += fprintf(fp, "... unknown type\n"); break; } return ret; } int perf_event__process_attr(struct perf_tool *tool __maybe_unused, union perf_event *event, struct evlist **pevlist) { u32 i, n_ids; u64 *ids; struct evsel *evsel; struct evlist *evlist = *pevlist; if (evlist == NULL) { *pevlist = evlist = evlist__new(); if (evlist == NULL) return -ENOMEM; } evsel = evsel__new(&event->attr.attr); if (evsel == NULL) return -ENOMEM; evlist__add(evlist, evsel); n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size; n_ids = n_ids / sizeof(u64); /* * We don't have the cpu and thread maps on the header, so * for allocating the perf_sample_id table we fake 1 cpu and * hattr->ids threads. */ if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) return -ENOMEM; ids = perf_record_header_attr_id(event); for (i = 0; i < n_ids; i++) { perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]); } return 0; } int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, union perf_event *event, struct evlist **pevlist) { struct perf_record_event_update *ev = &event->event_update; struct evlist *evlist; struct evsel *evsel; struct perf_cpu_map *map; if (dump_trace) perf_event__fprintf_event_update(event, stdout); if (!pevlist || *pevlist == NULL) return -EINVAL; evlist = *pevlist; evsel = evlist__id2evsel(evlist, ev->id); if (evsel == NULL) return -EINVAL; switch (ev->type) { case PERF_EVENT_UPDATE__UNIT: free((char *)evsel->unit); evsel->unit = strdup(ev->unit); break; case PERF_EVENT_UPDATE__NAME: free(evsel->name); evsel->name = strdup(ev->name); break; case PERF_EVENT_UPDATE__SCALE: evsel->scale = ev->scale.scale; break; case PERF_EVENT_UPDATE__CPUS: map = cpu_map__new_data(&ev->cpus.cpus); if (map) { perf_cpu_map__put(evsel->core.own_cpus); evsel->core.own_cpus = map; } else pr_err("failed to get event_update cpus\n"); default: break; } return 0; } #ifdef HAVE_LIBTRACEEVENT int perf_event__process_tracing_data(struct perf_session *session, union perf_event *event) { ssize_t size_read, padding, size = event->tracing_data.size; int fd = perf_data__fd(session->data); char buf[BUFSIZ]; /* * The pipe fd is already in proper place and in any case * we can't move it, and we'd screw the case where we read * 'pipe' data from regular file. The trace_report reads * data from 'fd' so we need to set it directly behind the * event, where the tracing data starts. */ if (!perf_data__is_pipe(session->data)) { off_t offset = lseek(fd, 0, SEEK_CUR); /* setup for reading amidst mmap */ lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), SEEK_SET); } size_read = trace_report(fd, &session->tevent, session->repipe); padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; if (readn(fd, buf, padding) < 0) { pr_err("%s: reading input file", __func__); return -1; } if (session->repipe) { int retw = write(STDOUT_FILENO, buf, padding); if (retw <= 0 || retw != padding) { pr_err("%s: repiping tracing data padding", __func__); return -1; } } if (size_read + padding != size) { pr_err("%s: tracing data size mismatch", __func__); return -1; } evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent); return size_read + padding; } #endif int perf_event__process_build_id(struct perf_session *session, union perf_event *event) { __event_process_build_id(&event->build_id, event->build_id.filename, session); return 0; }