// SPDX-License-Identifier: GPL-2.0 #include "util.h" #include #include "../perf.h" #include "cpumap.h" #include #include #include #include #include #include "asm/bug.h" #include "sane_ctype.h" static int max_cpu_num; static int max_present_cpu_num; static int max_node_num; static int *cpunode_map; static struct cpu_map *cpu_map__default_new(void) { struct cpu_map *cpus; int nr_cpus; nr_cpus = sysconf(_SC_NPROCESSORS_ONLN); if (nr_cpus < 0) return NULL; cpus = malloc(sizeof(*cpus) + nr_cpus * sizeof(int)); if (cpus != NULL) { int i; for (i = 0; i < nr_cpus; ++i) cpus->map[i] = i; cpus->nr = nr_cpus; refcount_set(&cpus->refcnt, 1); } return cpus; } static struct cpu_map *cpu_map__trim_new(int nr_cpus, int *tmp_cpus) { size_t payload_size = nr_cpus * sizeof(int); struct cpu_map *cpus = malloc(sizeof(*cpus) + payload_size); if (cpus != NULL) { cpus->nr = nr_cpus; memcpy(cpus->map, tmp_cpus, payload_size); refcount_set(&cpus->refcnt, 1); } return cpus; } struct cpu_map *cpu_map__read(FILE *file) { struct cpu_map *cpus = NULL; int nr_cpus = 0; int *tmp_cpus = NULL, *tmp; int max_entries = 0; int n, cpu, prev; char sep; sep = 0; prev = -1; for (;;) { n = fscanf(file, "%u%c", &cpu, &sep); if (n <= 0) break; if (prev >= 0) { int new_max = nr_cpus + cpu - prev - 1; if (new_max >= max_entries) { max_entries = new_max + MAX_NR_CPUS / 2; tmp = realloc(tmp_cpus, max_entries * sizeof(int)); if (tmp == NULL) goto out_free_tmp; tmp_cpus = tmp; } while (++prev < cpu) tmp_cpus[nr_cpus++] = prev; } if (nr_cpus == max_entries) { max_entries += MAX_NR_CPUS; tmp = realloc(tmp_cpus, max_entries * sizeof(int)); if (tmp == NULL) goto out_free_tmp; tmp_cpus = tmp; } tmp_cpus[nr_cpus++] = cpu; if (n == 2 && sep == '-') prev = cpu; else prev = -1; if (n == 1 || sep == '\n') break; } if (nr_cpus > 0) cpus = cpu_map__trim_new(nr_cpus, tmp_cpus); else cpus = cpu_map__default_new(); out_free_tmp: free(tmp_cpus); return cpus; } static struct cpu_map *cpu_map__read_all_cpu_map(void) { struct cpu_map *cpus = NULL; FILE *onlnf; onlnf = fopen("/sys/devices/system/cpu/online", "r"); if (!onlnf) return cpu_map__default_new(); cpus = cpu_map__read(onlnf); fclose(onlnf); return cpus; } struct cpu_map *cpu_map__new(const char *cpu_list) { struct cpu_map *cpus = NULL; unsigned long start_cpu, end_cpu = 0; char *p = NULL; int i, nr_cpus = 0; int *tmp_cpus = NULL, *tmp; int max_entries = 0; if (!cpu_list) return cpu_map__read_all_cpu_map(); /* * must handle the case of empty cpumap to cover * TOPOLOGY header for NUMA nodes with no CPU * ( e.g., because of CPU hotplug) */ if (!isdigit(*cpu_list) && *cpu_list != '\0') goto out; while (isdigit(*cpu_list)) { p = NULL; start_cpu = strtoul(cpu_list, &p, 0); if (start_cpu >= INT_MAX || (*p != '\0' && *p != ',' && *p != '-')) goto invalid; if (*p == '-') { cpu_list = ++p; p = NULL; end_cpu = strtoul(cpu_list, &p, 0); if (end_cpu >= INT_MAX || (*p != '\0' && *p != ',')) goto invalid; if (end_cpu < start_cpu) goto invalid; } else { end_cpu = start_cpu; } for (; start_cpu <= end_cpu; start_cpu++) { /* check for duplicates */ for (i = 0; i < nr_cpus; i++) if (tmp_cpus[i] == (int)start_cpu) goto invalid; if (nr_cpus == max_entries) { max_entries += MAX_NR_CPUS; tmp = realloc(tmp_cpus, max_entries * sizeof(int)); if (tmp == NULL) goto invalid; tmp_cpus = tmp; } tmp_cpus[nr_cpus++] = (int)start_cpu; } if (*p) ++p; cpu_list = p; } if (nr_cpus > 0) cpus = cpu_map__trim_new(nr_cpus, tmp_cpus); else if (*cpu_list != '\0') cpus = cpu_map__default_new(); else cpus = cpu_map__dummy_new(); invalid: free(tmp_cpus); out: return cpus; } static struct cpu_map *cpu_map__from_entries(struct cpu_map_entries *cpus) { struct cpu_map *map; map = cpu_map__empty_new(cpus->nr); if (map) { unsigned i; for (i = 0; i < cpus->nr; i++) { /* * Special treatment for -1, which is not real cpu number, * and we need to use (int) -1 to initialize map[i], * otherwise it would become 65535. */ if (cpus->cpu[i] == (u16) -1) map->map[i] = -1; else map->map[i] = (int) cpus->cpu[i]; } } return map; } static struct cpu_map *cpu_map__from_mask(struct cpu_map_mask *mask) { struct cpu_map *map; int nr, nbits = mask->nr * mask->long_size * BITS_PER_BYTE; nr = bitmap_weight(mask->mask, nbits); map = cpu_map__empty_new(nr); if (map) { int cpu, i = 0; for_each_set_bit(cpu, mask->mask, nbits) map->map[i++] = cpu; } return map; } struct cpu_map *cpu_map__new_data(struct cpu_map_data *data) { if (data->type == PERF_CPU_MAP__CPUS) return cpu_map__from_entries((struct cpu_map_entries *)data->data); else return cpu_map__from_mask((struct cpu_map_mask *)data->data); } size_t cpu_map__fprintf(struct cpu_map *map, FILE *fp) { #define BUFSIZE 1024 char buf[BUFSIZE]; cpu_map__snprint(map, buf, sizeof(buf)); return fprintf(fp, "%s\n", buf); #undef BUFSIZE } struct cpu_map *cpu_map__dummy_new(void) { struct cpu_map *cpus = malloc(sizeof(*cpus) + sizeof(int)); if (cpus != NULL) { cpus->nr = 1; cpus->map[0] = -1; refcount_set(&cpus->refcnt, 1); } return cpus; } struct cpu_map *cpu_map__empty_new(int nr) { struct cpu_map *cpus = malloc(sizeof(*cpus) + sizeof(int) * nr); if (cpus != NULL) { int i; cpus->nr = nr; for (i = 0; i < nr; i++) cpus->map[i] = -1; refcount_set(&cpus->refcnt, 1); } return cpus; } static void cpu_map__delete(struct cpu_map *map) { if (map) { WARN_ONCE(refcount_read(&map->refcnt) != 0, "cpu_map refcnt unbalanced\n"); free(map); } } struct cpu_map *cpu_map__get(struct cpu_map *map) { if (map) refcount_inc(&map->refcnt); return map; } void cpu_map__put(struct cpu_map *map) { if (map && refcount_dec_and_test(&map->refcnt)) cpu_map__delete(map); } static int cpu__get_topology_int(int cpu, const char *name, int *value) { char path[PATH_MAX]; snprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/topology/%s", cpu, name); return sysfs__read_int(path, value); } int cpu_map__get_socket_id(int cpu) { int value, ret = cpu__get_topology_int(cpu, "physical_package_id", &value); return ret ?: value; } int cpu_map__get_socket(struct cpu_map *map, int idx, void *data __maybe_unused) { int cpu; if (idx > map->nr) return -1; cpu = map->map[idx]; return cpu_map__get_socket_id(cpu); } static int cmp_ids(const void *a, const void *b) { return *(int *)a - *(int *)b; } int cpu_map__build_map(struct cpu_map *cpus, struct cpu_map **res, int (*f)(struct cpu_map *map, int cpu, void *data), void *data) { struct cpu_map *c; int nr = cpus->nr; int cpu, s1, s2; /* allocate as much as possible */ c = calloc(1, sizeof(*c) + nr * sizeof(int)); if (!c) return -1; for (cpu = 0; cpu < nr; cpu++) { s1 = f(cpus, cpu, data); for (s2 = 0; s2 < c->nr; s2++) { if (s1 == c->map[s2]) break; } if (s2 == c->nr) { c->map[c->nr] = s1; c->nr++; } } /* ensure we process id in increasing order */ qsort(c->map, c->nr, sizeof(int), cmp_ids); refcount_set(&c->refcnt, 1); *res = c; return 0; } int cpu_map__get_core_id(int cpu) { int value, ret = cpu__get_topology_int(cpu, "core_id", &value); return ret ?: value; } int cpu_map__get_core(struct cpu_map *map, int idx, void *data) { int cpu, s; if (idx > map->nr) return -1; cpu = map->map[idx]; cpu = cpu_map__get_core_id(cpu); s = cpu_map__get_socket(map, idx, data); if (s == -1) return -1; /* * encode socket in upper 16 bits * core_id is relative to socket, and * we need a global id. So we combine * socket+ core id */ return (s << 16) | (cpu & 0xffff); } int cpu_map__build_socket_map(struct cpu_map *cpus, struct cpu_map **sockp) { return cpu_map__build_map(cpus, sockp, cpu_map__get_socket, NULL); } int cpu_map__build_core_map(struct cpu_map *cpus, struct cpu_map **corep) { return cpu_map__build_map(cpus, corep, cpu_map__get_core, NULL); } /* setup simple routines to easily access node numbers given a cpu number */ static int get_max_num(char *path, int *max) { size_t num; char *buf; int err = 0; if (filename__read_str(path, &buf, &num)) return -1; buf[num] = '\0'; /* start on the right, to find highest node num */ while (--num) { if ((buf[num] == ',') || (buf[num] == '-')) { num++; break; } } if (sscanf(&buf[num], "%d", max) < 1) { err = -1; goto out; } /* convert from 0-based to 1-based */ (*max)++; out: free(buf); return err; } /* Determine highest possible cpu in the system for sparse allocation */ static void set_max_cpu_num(void) { const char *mnt; char path[PATH_MAX]; int ret = -1; /* set up default */ max_cpu_num = 4096; max_present_cpu_num = 4096; mnt = sysfs__mountpoint(); if (!mnt) goto out; /* get the highest possible cpu number for a sparse allocation */ ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt); if (ret == PATH_MAX) { pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); goto out; } ret = get_max_num(path, &max_cpu_num); if (ret) goto out; /* get the highest present cpu number for a sparse allocation */ ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt); if (ret == PATH_MAX) { pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); goto out; } ret = get_max_num(path, &max_present_cpu_num); out: if (ret) pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num); } /* Determine highest possible node in the system for sparse allocation */ static void set_max_node_num(void) { const char *mnt; char path[PATH_MAX]; int ret = -1; /* set up default */ max_node_num = 8; mnt = sysfs__mountpoint(); if (!mnt) goto out; /* get the highest possible cpu number for a sparse allocation */ ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt); if (ret == PATH_MAX) { pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); goto out; } ret = get_max_num(path, &max_node_num); out: if (ret) pr_err("Failed to read max nodes, using default of %d\n", max_node_num); } int cpu__max_node(void) { if (unlikely(!max_node_num)) set_max_node_num(); return max_node_num; } int cpu__max_cpu(void) { if (unlikely(!max_cpu_num)) set_max_cpu_num(); return max_cpu_num; } int cpu__max_present_cpu(void) { if (unlikely(!max_present_cpu_num)) set_max_cpu_num(); return max_present_cpu_num; } int cpu__get_node(int cpu) { if (unlikely(cpunode_map == NULL)) { pr_debug("cpu_map not initialized\n"); return -1; } return cpunode_map[cpu]; } static int init_cpunode_map(void) { int i; set_max_cpu_num(); set_max_node_num(); cpunode_map = calloc(max_cpu_num, sizeof(int)); if (!cpunode_map) { pr_err("%s: calloc failed\n", __func__); return -1; } for (i = 0; i < max_cpu_num; i++) cpunode_map[i] = -1; return 0; } int cpu__setup_cpunode_map(void) { struct dirent *dent1, *dent2; DIR *dir1, *dir2; unsigned int cpu, mem; char buf[PATH_MAX]; char path[PATH_MAX]; const char *mnt; int n; /* initialize globals */ if (init_cpunode_map()) return -1; mnt = sysfs__mountpoint(); if (!mnt) return 0; n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt); if (n == PATH_MAX) { pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); return -1; } dir1 = opendir(path); if (!dir1) return 0; /* walk tree and setup map */ while ((dent1 = readdir(dir1)) != NULL) { if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1) continue; n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name); if (n == PATH_MAX) { pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); continue; } dir2 = opendir(buf); if (!dir2) continue; while ((dent2 = readdir(dir2)) != NULL) { if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1) continue; cpunode_map[cpu] = mem; } closedir(dir2); } closedir(dir1); return 0; } bool cpu_map__has(struct cpu_map *cpus, int cpu) { return cpu_map__idx(cpus, cpu) != -1; } int cpu_map__idx(struct cpu_map *cpus, int cpu) { int i; for (i = 0; i < cpus->nr; ++i) { if (cpus->map[i] == cpu) return i; } return -1; } int cpu_map__cpu(struct cpu_map *cpus, int idx) { return cpus->map[idx]; } size_t cpu_map__snprint(struct cpu_map *map, char *buf, size_t size) { int i, cpu, start = -1; bool first = true; size_t ret = 0; #define COMMA first ? "" : "," for (i = 0; i < map->nr + 1; i++) { bool last = i == map->nr; cpu = last ? INT_MAX : map->map[i]; if (start == -1) { start = i; if (last) { ret += snprintf(buf + ret, size - ret, "%s%d", COMMA, map->map[i]); } } else if (((i - start) != (cpu - map->map[start])) || last) { int end = i - 1; if (start == end) { ret += snprintf(buf + ret, size - ret, "%s%d", COMMA, map->map[start]); } else { ret += snprintf(buf + ret, size - ret, "%s%d-%d", COMMA, map->map[start], map->map[end]); } first = false; start = i; } } #undef COMMA pr_debug("cpumask list: %s\n", buf); return ret; } static char hex_char(unsigned char val) { if (val < 10) return val + '0'; if (val < 16) return val - 10 + 'a'; return '?'; } size_t cpu_map__snprint_mask(struct cpu_map *map, char *buf, size_t size) { int i, cpu; char *ptr = buf; unsigned char *bitmap; int last_cpu = cpu_map__cpu(map, map->nr - 1); bitmap = zalloc((last_cpu + 7) / 8); if (bitmap == NULL) { buf[0] = '\0'; return 0; } for (i = 0; i < map->nr; i++) { cpu = cpu_map__cpu(map, i); bitmap[cpu / 8] |= 1 << (cpu % 8); } for (cpu = last_cpu / 4 * 4; cpu >= 0; cpu -= 4) { unsigned char bits = bitmap[cpu / 8]; if (cpu % 8) bits >>= 4; else bits &= 0xf; *ptr++ = hex_char(bits); if ((cpu % 32) == 0 && cpu > 0) *ptr++ = ','; } *ptr = '\0'; free(bitmap); buf[size - 1] = '\0'; return ptr - buf; } const struct cpu_map *cpu_map__online(void) /* thread unsafe */ { static const struct cpu_map *online = NULL; if (!online) online = cpu_map__new(NULL); /* from /sys/devices/system/cpu/online */ return online; }