// SPDX-License-Identifier: GPL-2.0-or-later /* * linux/sound/soc/codecs/tlv320aic32x4.c * * Copyright 2011 Vista Silicon S.L. * * Author: Javier Martin <javier.martin@vista-silicon.com> * * Based on sound/soc/codecs/wm8974 and TI driver for kernel 2.6.27. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/pm.h> #include <linux/gpio.h> #include <linux/of_gpio.h> #include <linux/cdev.h> #include <linux/slab.h> #include <linux/clk.h> #include <linux/of_clk.h> #include <linux/regulator/consumer.h> #include <sound/tlv320aic32x4.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-dapm.h> #include <sound/initval.h> #include <sound/tlv.h> #include "tlv320aic32x4.h" struct aic32x4_priv { struct regmap *regmap; u32 power_cfg; u32 micpga_routing; bool swapdacs; int rstn_gpio; const char *mclk_name; struct regulator *supply_ldo; struct regulator *supply_iov; struct regulator *supply_dv; struct regulator *supply_av; struct aic32x4_setup_data *setup; struct device *dev; enum aic32x4_type type; unsigned int fmt; }; static int aic32x4_reset_adc(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); u32 adc_reg; /* * Workaround: the datasheet does not mention a required programming * sequence but experiments show the ADC needs to be reset after each * capture to avoid audible artifacts. */ switch (event) { case SND_SOC_DAPM_POST_PMD: adc_reg = snd_soc_component_read(component, AIC32X4_ADCSETUP); snd_soc_component_write(component, AIC32X4_ADCSETUP, adc_reg | AIC32X4_LADC_EN | AIC32X4_RADC_EN); snd_soc_component_write(component, AIC32X4_ADCSETUP, adc_reg); break; } return 0; }; static int mic_bias_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); switch (event) { case SND_SOC_DAPM_POST_PMU: /* Change Mic Bias Registor */ snd_soc_component_update_bits(component, AIC32X4_MICBIAS, AIC32x4_MICBIAS_MASK, AIC32X4_MICBIAS_LDOIN | AIC32X4_MICBIAS_2075V); printk(KERN_DEBUG "%s: Mic Bias will be turned ON\n", __func__); break; case SND_SOC_DAPM_PRE_PMD: snd_soc_component_update_bits(component, AIC32X4_MICBIAS, AIC32x4_MICBIAS_MASK, 0); printk(KERN_DEBUG "%s: Mic Bias will be turned OFF\n", __func__); break; } return 0; } static int aic32x4_get_mfp1_gpio(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); u8 val; val = snd_soc_component_read(component, AIC32X4_DINCTL); ucontrol->value.integer.value[0] = (val & 0x01); return 0; }; static int aic32x4_set_mfp2_gpio(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); u8 val; u8 gpio_check; val = snd_soc_component_read(component, AIC32X4_DOUTCTL); gpio_check = (val & AIC32X4_MFP_GPIO_ENABLED); if (gpio_check != AIC32X4_MFP_GPIO_ENABLED) { printk(KERN_ERR "%s: MFP2 is not configure as a GPIO output\n", __func__); return -EINVAL; } if (ucontrol->value.integer.value[0] == (val & AIC32X4_MFP2_GPIO_OUT_HIGH)) return 0; if (ucontrol->value.integer.value[0]) val |= ucontrol->value.integer.value[0]; else val &= ~AIC32X4_MFP2_GPIO_OUT_HIGH; snd_soc_component_write(component, AIC32X4_DOUTCTL, val); return 0; }; static int aic32x4_get_mfp3_gpio(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); u8 val; val = snd_soc_component_read(component, AIC32X4_SCLKCTL); ucontrol->value.integer.value[0] = (val & 0x01); return 0; }; static int aic32x4_set_mfp4_gpio(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); u8 val; u8 gpio_check; val = snd_soc_component_read(component, AIC32X4_MISOCTL); gpio_check = (val & AIC32X4_MFP_GPIO_ENABLED); if (gpio_check != AIC32X4_MFP_GPIO_ENABLED) { printk(KERN_ERR "%s: MFP4 is not configure as a GPIO output\n", __func__); return -EINVAL; } if (ucontrol->value.integer.value[0] == (val & AIC32X4_MFP5_GPIO_OUT_HIGH)) return 0; if (ucontrol->value.integer.value[0]) val |= ucontrol->value.integer.value[0]; else val &= ~AIC32X4_MFP5_GPIO_OUT_HIGH; snd_soc_component_write(component, AIC32X4_MISOCTL, val); return 0; }; static int aic32x4_get_mfp5_gpio(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); u8 val; val = snd_soc_component_read(component, AIC32X4_GPIOCTL); ucontrol->value.integer.value[0] = ((val & 0x2) >> 1); return 0; }; static int aic32x4_set_mfp5_gpio(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); u8 val; u8 gpio_check; val = snd_soc_component_read(component, AIC32X4_GPIOCTL); gpio_check = (val & AIC32X4_MFP5_GPIO_OUTPUT); if (gpio_check != AIC32X4_MFP5_GPIO_OUTPUT) { printk(KERN_ERR "%s: MFP5 is not configure as a GPIO output\n", __func__); return -EINVAL; } if (ucontrol->value.integer.value[0] == (val & 0x1)) return 0; if (ucontrol->value.integer.value[0]) val |= ucontrol->value.integer.value[0]; else val &= 0xfe; snd_soc_component_write(component, AIC32X4_GPIOCTL, val); return 0; }; static const struct snd_kcontrol_new aic32x4_mfp1[] = { SOC_SINGLE_BOOL_EXT("MFP1 GPIO", 0, aic32x4_get_mfp1_gpio, NULL), }; static const struct snd_kcontrol_new aic32x4_mfp2[] = { SOC_SINGLE_BOOL_EXT("MFP2 GPIO", 0, NULL, aic32x4_set_mfp2_gpio), }; static const struct snd_kcontrol_new aic32x4_mfp3[] = { SOC_SINGLE_BOOL_EXT("MFP3 GPIO", 0, aic32x4_get_mfp3_gpio, NULL), }; static const struct snd_kcontrol_new aic32x4_mfp4[] = { SOC_SINGLE_BOOL_EXT("MFP4 GPIO", 0, NULL, aic32x4_set_mfp4_gpio), }; static const struct snd_kcontrol_new aic32x4_mfp5[] = { SOC_SINGLE_BOOL_EXT("MFP5 GPIO", 0, aic32x4_get_mfp5_gpio, aic32x4_set_mfp5_gpio), }; /* 0dB min, 0.5dB steps */ static DECLARE_TLV_DB_SCALE(tlv_step_0_5, 0, 50, 0); /* -63.5dB min, 0.5dB steps */ static DECLARE_TLV_DB_SCALE(tlv_pcm, -6350, 50, 0); /* -6dB min, 1dB steps */ static DECLARE_TLV_DB_SCALE(tlv_driver_gain, -600, 100, 0); /* -12dB min, 0.5dB steps */ static DECLARE_TLV_DB_SCALE(tlv_adc_vol, -1200, 50, 0); /* -6dB min, 1dB steps */ static DECLARE_TLV_DB_SCALE(tlv_tas_driver_gain, -5850, 50, 0); static DECLARE_TLV_DB_SCALE(tlv_amp_vol, 0, 600, 1); static const char * const lo_cm_text[] = { "Full Chip", "1.65V", }; static SOC_ENUM_SINGLE_DECL(lo_cm_enum, AIC32X4_CMMODE, 3, lo_cm_text); static const char * const ptm_text[] = { "P3", "P2", "P1", }; static SOC_ENUM_SINGLE_DECL(l_ptm_enum, AIC32X4_LPLAYBACK, 2, ptm_text); static SOC_ENUM_SINGLE_DECL(r_ptm_enum, AIC32X4_RPLAYBACK, 2, ptm_text); static const struct snd_kcontrol_new aic32x4_snd_controls[] = { SOC_DOUBLE_R_S_TLV("PCM Playback Volume", AIC32X4_LDACVOL, AIC32X4_RDACVOL, 0, -0x7f, 0x30, 7, 0, tlv_pcm), SOC_ENUM("DAC Left Playback PowerTune Switch", l_ptm_enum), SOC_ENUM("DAC Right Playback PowerTune Switch", r_ptm_enum), SOC_DOUBLE_R_S_TLV("HP Driver Gain Volume", AIC32X4_HPLGAIN, AIC32X4_HPRGAIN, 0, -0x6, 0x1d, 5, 0, tlv_driver_gain), SOC_DOUBLE_R_S_TLV("LO Driver Gain Volume", AIC32X4_LOLGAIN, AIC32X4_LORGAIN, 0, -0x6, 0x1d, 5, 0, tlv_driver_gain), SOC_DOUBLE_R("HP DAC Playback Switch", AIC32X4_HPLGAIN, AIC32X4_HPRGAIN, 6, 0x01, 1), SOC_DOUBLE_R("LO DAC Playback Switch", AIC32X4_LOLGAIN, AIC32X4_LORGAIN, 6, 0x01, 1), SOC_ENUM("LO Playback Common Mode Switch", lo_cm_enum), SOC_DOUBLE_R("Mic PGA Switch", AIC32X4_LMICPGAVOL, AIC32X4_RMICPGAVOL, 7, 0x01, 1), SOC_SINGLE("ADCFGA Left Mute Switch", AIC32X4_ADCFGA, 7, 1, 0), SOC_SINGLE("ADCFGA Right Mute Switch", AIC32X4_ADCFGA, 3, 1, 0), SOC_DOUBLE_R_S_TLV("ADC Level Volume", AIC32X4_LADCVOL, AIC32X4_RADCVOL, 0, -0x18, 0x28, 6, 0, tlv_adc_vol), SOC_DOUBLE_R_TLV("PGA Level Volume", AIC32X4_LMICPGAVOL, AIC32X4_RMICPGAVOL, 0, 0x5f, 0, tlv_step_0_5), SOC_SINGLE("Auto-mute Switch", AIC32X4_DACMUTE, 4, 7, 0), SOC_SINGLE("AGC Left Switch", AIC32X4_LAGC1, 7, 1, 0), SOC_SINGLE("AGC Right Switch", AIC32X4_RAGC1, 7, 1, 0), SOC_DOUBLE_R("AGC Target Level", AIC32X4_LAGC1, AIC32X4_RAGC1, 4, 0x07, 0), SOC_DOUBLE_R("AGC Gain Hysteresis", AIC32X4_LAGC1, AIC32X4_RAGC1, 0, 0x03, 0), SOC_DOUBLE_R("AGC Hysteresis", AIC32X4_LAGC2, AIC32X4_RAGC2, 6, 0x03, 0), SOC_DOUBLE_R("AGC Noise Threshold", AIC32X4_LAGC2, AIC32X4_RAGC2, 1, 0x1F, 0), SOC_DOUBLE_R("AGC Max PGA", AIC32X4_LAGC3, AIC32X4_RAGC3, 0, 0x7F, 0), SOC_DOUBLE_R("AGC Attack Time", AIC32X4_LAGC4, AIC32X4_RAGC4, 3, 0x1F, 0), SOC_DOUBLE_R("AGC Decay Time", AIC32X4_LAGC5, AIC32X4_RAGC5, 3, 0x1F, 0), SOC_DOUBLE_R("AGC Noise Debounce", AIC32X4_LAGC6, AIC32X4_RAGC6, 0, 0x1F, 0), SOC_DOUBLE_R("AGC Signal Debounce", AIC32X4_LAGC7, AIC32X4_RAGC7, 0, 0x0F, 0), }; static const struct snd_kcontrol_new hpl_output_mixer_controls[] = { SOC_DAPM_SINGLE("L_DAC Switch", AIC32X4_HPLROUTE, 3, 1, 0), SOC_DAPM_SINGLE("IN1_L Switch", AIC32X4_HPLROUTE, 2, 1, 0), }; static const struct snd_kcontrol_new hpr_output_mixer_controls[] = { SOC_DAPM_SINGLE("R_DAC Switch", AIC32X4_HPRROUTE, 3, 1, 0), SOC_DAPM_SINGLE("IN1_R Switch", AIC32X4_HPRROUTE, 2, 1, 0), }; static const struct snd_kcontrol_new lol_output_mixer_controls[] = { SOC_DAPM_SINGLE("L_DAC Switch", AIC32X4_LOLROUTE, 3, 1, 0), }; static const struct snd_kcontrol_new lor_output_mixer_controls[] = { SOC_DAPM_SINGLE("R_DAC Switch", AIC32X4_LORROUTE, 3, 1, 0), }; static const char * const resistor_text[] = { "Off", "10 kOhm", "20 kOhm", "40 kOhm", }; /* Left mixer pins */ static SOC_ENUM_SINGLE_DECL(in1l_lpga_p_enum, AIC32X4_LMICPGAPIN, 6, resistor_text); static SOC_ENUM_SINGLE_DECL(in2l_lpga_p_enum, AIC32X4_LMICPGAPIN, 4, resistor_text); static SOC_ENUM_SINGLE_DECL(in3l_lpga_p_enum, AIC32X4_LMICPGAPIN, 2, resistor_text); static SOC_ENUM_SINGLE_DECL(in1r_lpga_p_enum, AIC32X4_LMICPGAPIN, 0, resistor_text); static SOC_ENUM_SINGLE_DECL(cml_lpga_n_enum, AIC32X4_LMICPGANIN, 6, resistor_text); static SOC_ENUM_SINGLE_DECL(in2r_lpga_n_enum, AIC32X4_LMICPGANIN, 4, resistor_text); static SOC_ENUM_SINGLE_DECL(in3r_lpga_n_enum, AIC32X4_LMICPGANIN, 2, resistor_text); static const struct snd_kcontrol_new in1l_to_lmixer_controls[] = { SOC_DAPM_ENUM("IN1_L L+ Switch", in1l_lpga_p_enum), }; static const struct snd_kcontrol_new in2l_to_lmixer_controls[] = { SOC_DAPM_ENUM("IN2_L L+ Switch", in2l_lpga_p_enum), }; static const struct snd_kcontrol_new in3l_to_lmixer_controls[] = { SOC_DAPM_ENUM("IN3_L L+ Switch", in3l_lpga_p_enum), }; static const struct snd_kcontrol_new in1r_to_lmixer_controls[] = { SOC_DAPM_ENUM("IN1_R L+ Switch", in1r_lpga_p_enum), }; static const struct snd_kcontrol_new cml_to_lmixer_controls[] = { SOC_DAPM_ENUM("CM_L L- Switch", cml_lpga_n_enum), }; static const struct snd_kcontrol_new in2r_to_lmixer_controls[] = { SOC_DAPM_ENUM("IN2_R L- Switch", in2r_lpga_n_enum), }; static const struct snd_kcontrol_new in3r_to_lmixer_controls[] = { SOC_DAPM_ENUM("IN3_R L- Switch", in3r_lpga_n_enum), }; /* Right mixer pins */ static SOC_ENUM_SINGLE_DECL(in1r_rpga_p_enum, AIC32X4_RMICPGAPIN, 6, resistor_text); static SOC_ENUM_SINGLE_DECL(in2r_rpga_p_enum, AIC32X4_RMICPGAPIN, 4, resistor_text); static SOC_ENUM_SINGLE_DECL(in3r_rpga_p_enum, AIC32X4_RMICPGAPIN, 2, resistor_text); static SOC_ENUM_SINGLE_DECL(in2l_rpga_p_enum, AIC32X4_RMICPGAPIN, 0, resistor_text); static SOC_ENUM_SINGLE_DECL(cmr_rpga_n_enum, AIC32X4_RMICPGANIN, 6, resistor_text); static SOC_ENUM_SINGLE_DECL(in1l_rpga_n_enum, AIC32X4_RMICPGANIN, 4, resistor_text); static SOC_ENUM_SINGLE_DECL(in3l_rpga_n_enum, AIC32X4_RMICPGANIN, 2, resistor_text); static const struct snd_kcontrol_new in1r_to_rmixer_controls[] = { SOC_DAPM_ENUM("IN1_R R+ Switch", in1r_rpga_p_enum), }; static const struct snd_kcontrol_new in2r_to_rmixer_controls[] = { SOC_DAPM_ENUM("IN2_R R+ Switch", in2r_rpga_p_enum), }; static const struct snd_kcontrol_new in3r_to_rmixer_controls[] = { SOC_DAPM_ENUM("IN3_R R+ Switch", in3r_rpga_p_enum), }; static const struct snd_kcontrol_new in2l_to_rmixer_controls[] = { SOC_DAPM_ENUM("IN2_L R+ Switch", in2l_rpga_p_enum), }; static const struct snd_kcontrol_new cmr_to_rmixer_controls[] = { SOC_DAPM_ENUM("CM_R R- Switch", cmr_rpga_n_enum), }; static const struct snd_kcontrol_new in1l_to_rmixer_controls[] = { SOC_DAPM_ENUM("IN1_L R- Switch", in1l_rpga_n_enum), }; static const struct snd_kcontrol_new in3l_to_rmixer_controls[] = { SOC_DAPM_ENUM("IN3_L R- Switch", in3l_rpga_n_enum), }; static const struct snd_soc_dapm_widget aic32x4_dapm_widgets[] = { SND_SOC_DAPM_DAC("Left DAC", "Left Playback", AIC32X4_DACSETUP, 7, 0), SND_SOC_DAPM_MIXER("HPL Output Mixer", SND_SOC_NOPM, 0, 0, &hpl_output_mixer_controls[0], ARRAY_SIZE(hpl_output_mixer_controls)), SND_SOC_DAPM_PGA("HPL Power", AIC32X4_OUTPWRCTL, 5, 0, NULL, 0), SND_SOC_DAPM_MIXER("LOL Output Mixer", SND_SOC_NOPM, 0, 0, &lol_output_mixer_controls[0], ARRAY_SIZE(lol_output_mixer_controls)), SND_SOC_DAPM_PGA("LOL Power", AIC32X4_OUTPWRCTL, 3, 0, NULL, 0), SND_SOC_DAPM_DAC("Right DAC", "Right Playback", AIC32X4_DACSETUP, 6, 0), SND_SOC_DAPM_MIXER("HPR Output Mixer", SND_SOC_NOPM, 0, 0, &hpr_output_mixer_controls[0], ARRAY_SIZE(hpr_output_mixer_controls)), SND_SOC_DAPM_PGA("HPR Power", AIC32X4_OUTPWRCTL, 4, 0, NULL, 0), SND_SOC_DAPM_MIXER("LOR Output Mixer", SND_SOC_NOPM, 0, 0, &lor_output_mixer_controls[0], ARRAY_SIZE(lor_output_mixer_controls)), SND_SOC_DAPM_PGA("LOR Power", AIC32X4_OUTPWRCTL, 2, 0, NULL, 0), SND_SOC_DAPM_ADC("Right ADC", "Right Capture", AIC32X4_ADCSETUP, 6, 0), SND_SOC_DAPM_MUX("IN1_R to Right Mixer Positive Resistor", SND_SOC_NOPM, 0, 0, in1r_to_rmixer_controls), SND_SOC_DAPM_MUX("IN2_R to Right Mixer Positive Resistor", SND_SOC_NOPM, 0, 0, in2r_to_rmixer_controls), SND_SOC_DAPM_MUX("IN3_R to Right Mixer Positive Resistor", SND_SOC_NOPM, 0, 0, in3r_to_rmixer_controls), SND_SOC_DAPM_MUX("IN2_L to Right Mixer Positive Resistor", SND_SOC_NOPM, 0, 0, in2l_to_rmixer_controls), SND_SOC_DAPM_MUX("CM_R to Right Mixer Negative Resistor", SND_SOC_NOPM, 0, 0, cmr_to_rmixer_controls), SND_SOC_DAPM_MUX("IN1_L to Right Mixer Negative Resistor", SND_SOC_NOPM, 0, 0, in1l_to_rmixer_controls), SND_SOC_DAPM_MUX("IN3_L to Right Mixer Negative Resistor", SND_SOC_NOPM, 0, 0, in3l_to_rmixer_controls), SND_SOC_DAPM_ADC("Left ADC", "Left Capture", AIC32X4_ADCSETUP, 7, 0), SND_SOC_DAPM_MUX("IN1_L to Left Mixer Positive Resistor", SND_SOC_NOPM, 0, 0, in1l_to_lmixer_controls), SND_SOC_DAPM_MUX("IN2_L to Left Mixer Positive Resistor", SND_SOC_NOPM, 0, 0, in2l_to_lmixer_controls), SND_SOC_DAPM_MUX("IN3_L to Left Mixer Positive Resistor", SND_SOC_NOPM, 0, 0, in3l_to_lmixer_controls), SND_SOC_DAPM_MUX("IN1_R to Left Mixer Positive Resistor", SND_SOC_NOPM, 0, 0, in1r_to_lmixer_controls), SND_SOC_DAPM_MUX("CM_L to Left Mixer Negative Resistor", SND_SOC_NOPM, 0, 0, cml_to_lmixer_controls), SND_SOC_DAPM_MUX("IN2_R to Left Mixer Negative Resistor", SND_SOC_NOPM, 0, 0, in2r_to_lmixer_controls), SND_SOC_DAPM_MUX("IN3_R to Left Mixer Negative Resistor", SND_SOC_NOPM, 0, 0, in3r_to_lmixer_controls), SND_SOC_DAPM_SUPPLY("Mic Bias", AIC32X4_MICBIAS, 6, 0, mic_bias_event, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_POST("ADC Reset", aic32x4_reset_adc), SND_SOC_DAPM_OUTPUT("HPL"), SND_SOC_DAPM_OUTPUT("HPR"), SND_SOC_DAPM_OUTPUT("LOL"), SND_SOC_DAPM_OUTPUT("LOR"), SND_SOC_DAPM_INPUT("IN1_L"), SND_SOC_DAPM_INPUT("IN1_R"), SND_SOC_DAPM_INPUT("IN2_L"), SND_SOC_DAPM_INPUT("IN2_R"), SND_SOC_DAPM_INPUT("IN3_L"), SND_SOC_DAPM_INPUT("IN3_R"), SND_SOC_DAPM_INPUT("CM_L"), SND_SOC_DAPM_INPUT("CM_R"), }; static const struct snd_soc_dapm_route aic32x4_dapm_routes[] = { /* Left Output */ {"HPL Output Mixer", "L_DAC Switch", "Left DAC"}, {"HPL Output Mixer", "IN1_L Switch", "IN1_L"}, {"HPL Power", NULL, "HPL Output Mixer"}, {"HPL", NULL, "HPL Power"}, {"LOL Output Mixer", "L_DAC Switch", "Left DAC"}, {"LOL Power", NULL, "LOL Output Mixer"}, {"LOL", NULL, "LOL Power"}, /* Right Output */ {"HPR Output Mixer", "R_DAC Switch", "Right DAC"}, {"HPR Output Mixer", "IN1_R Switch", "IN1_R"}, {"HPR Power", NULL, "HPR Output Mixer"}, {"HPR", NULL, "HPR Power"}, {"LOR Output Mixer", "R_DAC Switch", "Right DAC"}, {"LOR Power", NULL, "LOR Output Mixer"}, {"LOR", NULL, "LOR Power"}, /* Right Input */ {"Right ADC", NULL, "IN1_R to Right Mixer Positive Resistor"}, {"IN1_R to Right Mixer Positive Resistor", "10 kOhm", "IN1_R"}, {"IN1_R to Right Mixer Positive Resistor", "20 kOhm", "IN1_R"}, {"IN1_R to Right Mixer Positive Resistor", "40 kOhm", "IN1_R"}, {"Right ADC", NULL, "IN2_R to Right Mixer Positive Resistor"}, {"IN2_R to Right Mixer Positive Resistor", "10 kOhm", "IN2_R"}, {"IN2_R to Right Mixer Positive Resistor", "20 kOhm", "IN2_R"}, {"IN2_R to Right Mixer Positive Resistor", "40 kOhm", "IN2_R"}, {"Right ADC", NULL, "IN3_R to Right Mixer Positive Resistor"}, {"IN3_R to Right Mixer Positive Resistor", "10 kOhm", "IN3_R"}, {"IN3_R to Right Mixer Positive Resistor", "20 kOhm", "IN3_R"}, {"IN3_R to Right Mixer Positive Resistor", "40 kOhm", "IN3_R"}, {"Right ADC", NULL, "IN2_L to Right Mixer Positive Resistor"}, {"IN2_L to Right Mixer Positive Resistor", "10 kOhm", "IN2_L"}, {"IN2_L to Right Mixer Positive Resistor", "20 kOhm", "IN2_L"}, {"IN2_L to Right Mixer Positive Resistor", "40 kOhm", "IN2_L"}, {"Right ADC", NULL, "CM_R to Right Mixer Negative Resistor"}, {"CM_R to Right Mixer Negative Resistor", "10 kOhm", "CM_R"}, {"CM_R to Right Mixer Negative Resistor", "20 kOhm", "CM_R"}, {"CM_R to Right Mixer Negative Resistor", "40 kOhm", "CM_R"}, {"Right ADC", NULL, "IN1_L to Right Mixer Negative Resistor"}, {"IN1_L to Right Mixer Negative Resistor", "10 kOhm", "IN1_L"}, {"IN1_L to Right Mixer Negative Resistor", "20 kOhm", "IN1_L"}, {"IN1_L to Right Mixer Negative Resistor", "40 kOhm", "IN1_L"}, {"Right ADC", NULL, "IN3_L to Right Mixer Negative Resistor"}, {"IN3_L to Right Mixer Negative Resistor", "10 kOhm", "IN3_L"}, {"IN3_L to Right Mixer Negative Resistor", "20 kOhm", "IN3_L"}, {"IN3_L to Right Mixer Negative Resistor", "40 kOhm", "IN3_L"}, /* Left Input */ {"Left ADC", NULL, "IN1_L to Left Mixer Positive Resistor"}, {"IN1_L to Left Mixer Positive Resistor", "10 kOhm", "IN1_L"}, {"IN1_L to Left Mixer Positive Resistor", "20 kOhm", "IN1_L"}, {"IN1_L to Left Mixer Positive Resistor", "40 kOhm", "IN1_L"}, {"Left ADC", NULL, "IN2_L to Left Mixer Positive Resistor"}, {"IN2_L to Left Mixer Positive Resistor", "10 kOhm", "IN2_L"}, {"IN2_L to Left Mixer Positive Resistor", "20 kOhm", "IN2_L"}, {"IN2_L to Left Mixer Positive Resistor", "40 kOhm", "IN2_L"}, {"Left ADC", NULL, "IN3_L to Left Mixer Positive Resistor"}, {"IN3_L to Left Mixer Positive Resistor", "10 kOhm", "IN3_L"}, {"IN3_L to Left Mixer Positive Resistor", "20 kOhm", "IN3_L"}, {"IN3_L to Left Mixer Positive Resistor", "40 kOhm", "IN3_L"}, {"Left ADC", NULL, "IN1_R to Left Mixer Positive Resistor"}, {"IN1_R to Left Mixer Positive Resistor", "10 kOhm", "IN1_R"}, {"IN1_R to Left Mixer Positive Resistor", "20 kOhm", "IN1_R"}, {"IN1_R to Left Mixer Positive Resistor", "40 kOhm", "IN1_R"}, {"Left ADC", NULL, "CM_L to Left Mixer Negative Resistor"}, {"CM_L to Left Mixer Negative Resistor", "10 kOhm", "CM_L"}, {"CM_L to Left Mixer Negative Resistor", "20 kOhm", "CM_L"}, {"CM_L to Left Mixer Negative Resistor", "40 kOhm", "CM_L"}, {"Left ADC", NULL, "IN2_R to Left Mixer Negative Resistor"}, {"IN2_R to Left Mixer Negative Resistor", "10 kOhm", "IN2_R"}, {"IN2_R to Left Mixer Negative Resistor", "20 kOhm", "IN2_R"}, {"IN2_R to Left Mixer Negative Resistor", "40 kOhm", "IN2_R"}, {"Left ADC", NULL, "IN3_R to Left Mixer Negative Resistor"}, {"IN3_R to Left Mixer Negative Resistor", "10 kOhm", "IN3_R"}, {"IN3_R to Left Mixer Negative Resistor", "20 kOhm", "IN3_R"}, {"IN3_R to Left Mixer Negative Resistor", "40 kOhm", "IN3_R"}, }; static const struct regmap_range_cfg aic32x4_regmap_pages[] = { { .selector_reg = 0, .selector_mask = 0xff, .window_start = 0, .window_len = 128, .range_min = 0, .range_max = AIC32X4_REFPOWERUP, }, }; const struct regmap_config aic32x4_regmap_config = { .max_register = AIC32X4_REFPOWERUP, .ranges = aic32x4_regmap_pages, .num_ranges = ARRAY_SIZE(aic32x4_regmap_pages), }; EXPORT_SYMBOL(aic32x4_regmap_config); static int aic32x4_set_dai_sysclk(struct snd_soc_dai *codec_dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_component *component = codec_dai->component; struct clk *mclk; struct clk *pll; pll = devm_clk_get(component->dev, "pll"); if (IS_ERR(pll)) return PTR_ERR(pll); mclk = clk_get_parent(pll); return clk_set_rate(mclk, freq); } static int aic32x4_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_component *component = codec_dai->component; struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component); u8 iface_reg_1 = 0; u8 iface_reg_2 = 0; u8 iface_reg_3 = 0; switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_CBP_CFP: iface_reg_1 |= AIC32X4_BCLKMASTER | AIC32X4_WCLKMASTER; break; case SND_SOC_DAIFMT_CBC_CFC: break; default: printk(KERN_ERR "aic32x4: invalid clock provider\n"); return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: break; case SND_SOC_DAIFMT_DSP_A: iface_reg_1 |= (AIC32X4_DSP_MODE << AIC32X4_IFACE1_DATATYPE_SHIFT); iface_reg_3 |= AIC32X4_BCLKINV_MASK; /* invert bit clock */ iface_reg_2 = 0x01; /* add offset 1 */ break; case SND_SOC_DAIFMT_DSP_B: iface_reg_1 |= (AIC32X4_DSP_MODE << AIC32X4_IFACE1_DATATYPE_SHIFT); iface_reg_3 |= AIC32X4_BCLKINV_MASK; /* invert bit clock */ break; case SND_SOC_DAIFMT_RIGHT_J: iface_reg_1 |= (AIC32X4_RIGHT_JUSTIFIED_MODE << AIC32X4_IFACE1_DATATYPE_SHIFT); break; case SND_SOC_DAIFMT_LEFT_J: iface_reg_1 |= (AIC32X4_LEFT_JUSTIFIED_MODE << AIC32X4_IFACE1_DATATYPE_SHIFT); break; default: printk(KERN_ERR "aic32x4: invalid DAI interface format\n"); return -EINVAL; } aic32x4->fmt = fmt; snd_soc_component_update_bits(component, AIC32X4_IFACE1, AIC32X4_IFACE1_DATATYPE_MASK | AIC32X4_IFACE1_MASTER_MASK, iface_reg_1); snd_soc_component_update_bits(component, AIC32X4_IFACE2, AIC32X4_DATA_OFFSET_MASK, iface_reg_2); snd_soc_component_update_bits(component, AIC32X4_IFACE3, AIC32X4_BCLKINV_MASK, iface_reg_3); return 0; } static int aic32x4_set_aosr(struct snd_soc_component *component, u8 aosr) { return snd_soc_component_write(component, AIC32X4_AOSR, aosr); } static int aic32x4_set_dosr(struct snd_soc_component *component, u16 dosr) { snd_soc_component_write(component, AIC32X4_DOSRMSB, dosr >> 8); snd_soc_component_write(component, AIC32X4_DOSRLSB, (dosr & 0xff)); return 0; } static int aic32x4_set_processing_blocks(struct snd_soc_component *component, u8 r_block, u8 p_block) { struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component); if (aic32x4->type == AIC32X4_TYPE_TAS2505) { if (r_block || p_block > 3) return -EINVAL; snd_soc_component_write(component, AIC32X4_DACSPB, p_block); } else { /* AIC32x4 */ if (r_block > 18 || p_block > 25) return -EINVAL; snd_soc_component_write(component, AIC32X4_ADCSPB, r_block); snd_soc_component_write(component, AIC32X4_DACSPB, p_block); } return 0; } static int aic32x4_setup_clocks(struct snd_soc_component *component, unsigned int sample_rate, unsigned int channels, unsigned int bit_depth) { struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component); u8 aosr; u16 dosr; u8 adc_resource_class, dac_resource_class; u8 madc, nadc, mdac, ndac, max_nadc, min_mdac, max_ndac; u8 dosr_increment; u16 max_dosr, min_dosr; unsigned long adc_clock_rate, dac_clock_rate; int ret; static struct clk_bulk_data clocks[] = { { .id = "pll" }, { .id = "nadc" }, { .id = "madc" }, { .id = "ndac" }, { .id = "mdac" }, { .id = "bdiv" }, }; ret = devm_clk_bulk_get(component->dev, ARRAY_SIZE(clocks), clocks); if (ret) return ret; if (sample_rate <= 48000) { aosr = 128; adc_resource_class = 6; dac_resource_class = 8; dosr_increment = 8; if (aic32x4->type == AIC32X4_TYPE_TAS2505) aic32x4_set_processing_blocks(component, 0, 1); else aic32x4_set_processing_blocks(component, 1, 1); } else if (sample_rate <= 96000) { aosr = 64; adc_resource_class = 6; dac_resource_class = 8; dosr_increment = 4; if (aic32x4->type == AIC32X4_TYPE_TAS2505) aic32x4_set_processing_blocks(component, 0, 1); else aic32x4_set_processing_blocks(component, 1, 9); } else if (sample_rate == 192000) { aosr = 32; adc_resource_class = 3; dac_resource_class = 4; dosr_increment = 2; if (aic32x4->type == AIC32X4_TYPE_TAS2505) aic32x4_set_processing_blocks(component, 0, 1); else aic32x4_set_processing_blocks(component, 13, 19); } else { dev_err(component->dev, "Sampling rate not supported\n"); return -EINVAL; } /* PCM over I2S is always 2-channel */ if ((aic32x4->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_I2S) channels = 2; madc = DIV_ROUND_UP((32 * adc_resource_class), aosr); max_dosr = (AIC32X4_MAX_DOSR_FREQ / sample_rate / dosr_increment) * dosr_increment; min_dosr = (AIC32X4_MIN_DOSR_FREQ / sample_rate / dosr_increment) * dosr_increment; max_nadc = AIC32X4_MAX_CODEC_CLKIN_FREQ / (madc * aosr * sample_rate); for (nadc = max_nadc; nadc > 0; --nadc) { adc_clock_rate = nadc * madc * aosr * sample_rate; for (dosr = max_dosr; dosr >= min_dosr; dosr -= dosr_increment) { min_mdac = DIV_ROUND_UP((32 * dac_resource_class), dosr); max_ndac = AIC32X4_MAX_CODEC_CLKIN_FREQ / (min_mdac * dosr * sample_rate); for (mdac = min_mdac; mdac <= 128; ++mdac) { for (ndac = max_ndac; ndac > 0; --ndac) { dac_clock_rate = ndac * mdac * dosr * sample_rate; if (dac_clock_rate == adc_clock_rate) { if (clk_round_rate(clocks[0].clk, dac_clock_rate) == 0) continue; clk_set_rate(clocks[0].clk, dac_clock_rate); clk_set_rate(clocks[1].clk, sample_rate * aosr * madc); clk_set_rate(clocks[2].clk, sample_rate * aosr); aic32x4_set_aosr(component, aosr); clk_set_rate(clocks[3].clk, sample_rate * dosr * mdac); clk_set_rate(clocks[4].clk, sample_rate * dosr); aic32x4_set_dosr(component, dosr); clk_set_rate(clocks[5].clk, sample_rate * channels * bit_depth); return 0; } } } } } dev_err(component->dev, "Could not set clocks to support sample rate.\n"); return -EINVAL; } static int aic32x4_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component); u8 iface1_reg = 0; u8 dacsetup_reg = 0; aic32x4_setup_clocks(component, params_rate(params), params_channels(params), params_physical_width(params)); switch (params_physical_width(params)) { case 16: iface1_reg |= (AIC32X4_WORD_LEN_16BITS << AIC32X4_IFACE1_DATALEN_SHIFT); break; case 20: iface1_reg |= (AIC32X4_WORD_LEN_20BITS << AIC32X4_IFACE1_DATALEN_SHIFT); break; case 24: iface1_reg |= (AIC32X4_WORD_LEN_24BITS << AIC32X4_IFACE1_DATALEN_SHIFT); break; case 32: iface1_reg |= (AIC32X4_WORD_LEN_32BITS << AIC32X4_IFACE1_DATALEN_SHIFT); break; } snd_soc_component_update_bits(component, AIC32X4_IFACE1, AIC32X4_IFACE1_DATALEN_MASK, iface1_reg); if (params_channels(params) == 1) { dacsetup_reg = AIC32X4_RDAC2LCHN | AIC32X4_LDAC2LCHN; } else { if (aic32x4->swapdacs) dacsetup_reg = AIC32X4_RDAC2LCHN | AIC32X4_LDAC2RCHN; else dacsetup_reg = AIC32X4_LDAC2LCHN | AIC32X4_RDAC2RCHN; } snd_soc_component_update_bits(component, AIC32X4_DACSETUP, AIC32X4_DAC_CHAN_MASK, dacsetup_reg); return 0; } static int aic32x4_mute(struct snd_soc_dai *dai, int mute, int direction) { struct snd_soc_component *component = dai->component; snd_soc_component_update_bits(component, AIC32X4_DACMUTE, AIC32X4_MUTEON, mute ? AIC32X4_MUTEON : 0); return 0; } static int aic32x4_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { int ret; static struct clk_bulk_data clocks[] = { { .id = "madc" }, { .id = "mdac" }, { .id = "bdiv" }, }; ret = devm_clk_bulk_get(component->dev, ARRAY_SIZE(clocks), clocks); if (ret) return ret; switch (level) { case SND_SOC_BIAS_ON: ret = clk_bulk_prepare_enable(ARRAY_SIZE(clocks), clocks); if (ret) { dev_err(component->dev, "Failed to enable clocks\n"); return ret; } break; case SND_SOC_BIAS_PREPARE: break; case SND_SOC_BIAS_STANDBY: /* Initial cold start */ if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) break; clk_bulk_disable_unprepare(ARRAY_SIZE(clocks), clocks); break; case SND_SOC_BIAS_OFF: break; } return 0; } #define AIC32X4_RATES SNDRV_PCM_RATE_8000_192000 #define AIC32X4_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \ | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_3LE \ | SNDRV_PCM_FMTBIT_S32_LE) static const struct snd_soc_dai_ops aic32x4_ops = { .hw_params = aic32x4_hw_params, .mute_stream = aic32x4_mute, .set_fmt = aic32x4_set_dai_fmt, .set_sysclk = aic32x4_set_dai_sysclk, .no_capture_mute = 1, }; static struct snd_soc_dai_driver aic32x4_dai = { .name = "tlv320aic32x4-hifi", .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 2, .rates = AIC32X4_RATES, .formats = AIC32X4_FORMATS,}, .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 8, .rates = AIC32X4_RATES, .formats = AIC32X4_FORMATS,}, .ops = &aic32x4_ops, .symmetric_rate = 1, }; static void aic32x4_setup_gpios(struct snd_soc_component *component) { struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component); /* setup GPIO functions */ /* MFP1 */ if (aic32x4->setup->gpio_func[0] != AIC32X4_MFPX_DEFAULT_VALUE) { snd_soc_component_write(component, AIC32X4_DINCTL, aic32x4->setup->gpio_func[0]); snd_soc_add_component_controls(component, aic32x4_mfp1, ARRAY_SIZE(aic32x4_mfp1)); } /* MFP2 */ if (aic32x4->setup->gpio_func[1] != AIC32X4_MFPX_DEFAULT_VALUE) { snd_soc_component_write(component, AIC32X4_DOUTCTL, aic32x4->setup->gpio_func[1]); snd_soc_add_component_controls(component, aic32x4_mfp2, ARRAY_SIZE(aic32x4_mfp2)); } /* MFP3 */ if (aic32x4->setup->gpio_func[2] != AIC32X4_MFPX_DEFAULT_VALUE) { snd_soc_component_write(component, AIC32X4_SCLKCTL, aic32x4->setup->gpio_func[2]); snd_soc_add_component_controls(component, aic32x4_mfp3, ARRAY_SIZE(aic32x4_mfp3)); } /* MFP4 */ if (aic32x4->setup->gpio_func[3] != AIC32X4_MFPX_DEFAULT_VALUE) { snd_soc_component_write(component, AIC32X4_MISOCTL, aic32x4->setup->gpio_func[3]); snd_soc_add_component_controls(component, aic32x4_mfp4, ARRAY_SIZE(aic32x4_mfp4)); } /* MFP5 */ if (aic32x4->setup->gpio_func[4] != AIC32X4_MFPX_DEFAULT_VALUE) { snd_soc_component_write(component, AIC32X4_GPIOCTL, aic32x4->setup->gpio_func[4]); snd_soc_add_component_controls(component, aic32x4_mfp5, ARRAY_SIZE(aic32x4_mfp5)); } } static int aic32x4_component_probe(struct snd_soc_component *component) { struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component); u32 tmp_reg; int ret; static struct clk_bulk_data clocks[] = { { .id = "codec_clkin" }, { .id = "pll" }, { .id = "bdiv" }, { .id = "mdac" }, }; ret = devm_clk_bulk_get(component->dev, ARRAY_SIZE(clocks), clocks); if (ret) return ret; if (aic32x4->setup) aic32x4_setup_gpios(component); clk_set_parent(clocks[0].clk, clocks[1].clk); clk_set_parent(clocks[2].clk, clocks[3].clk); /* Power platform configuration */ if (aic32x4->power_cfg & AIC32X4_PWR_MICBIAS_2075_LDOIN) { snd_soc_component_write(component, AIC32X4_MICBIAS, AIC32X4_MICBIAS_LDOIN | AIC32X4_MICBIAS_2075V); } if (aic32x4->power_cfg & AIC32X4_PWR_AVDD_DVDD_WEAK_DISABLE) snd_soc_component_write(component, AIC32X4_PWRCFG, AIC32X4_AVDDWEAKDISABLE); tmp_reg = (aic32x4->power_cfg & AIC32X4_PWR_AIC32X4_LDO_ENABLE) ? AIC32X4_LDOCTLEN : 0; snd_soc_component_write(component, AIC32X4_LDOCTL, tmp_reg); tmp_reg = snd_soc_component_read(component, AIC32X4_CMMODE); if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_LDOIN_RANGE_18_36) tmp_reg |= AIC32X4_LDOIN_18_36; if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_HP_LDOIN_POWERED) tmp_reg |= AIC32X4_LDOIN2HP; snd_soc_component_write(component, AIC32X4_CMMODE, tmp_reg); /* Mic PGA routing */ if (aic32x4->micpga_routing & AIC32X4_MICPGA_ROUTE_LMIC_IN2R_10K) snd_soc_component_write(component, AIC32X4_LMICPGANIN, AIC32X4_LMICPGANIN_IN2R_10K); else snd_soc_component_write(component, AIC32X4_LMICPGANIN, AIC32X4_LMICPGANIN_CM1L_10K); if (aic32x4->micpga_routing & AIC32X4_MICPGA_ROUTE_RMIC_IN1L_10K) snd_soc_component_write(component, AIC32X4_RMICPGANIN, AIC32X4_RMICPGANIN_IN1L_10K); else snd_soc_component_write(component, AIC32X4_RMICPGANIN, AIC32X4_RMICPGANIN_CM1R_10K); /* * Workaround: for an unknown reason, the ADC needs to be powered up * and down for the first capture to work properly. It seems related to * a HW BUG or some kind of behavior not documented in the datasheet. */ tmp_reg = snd_soc_component_read(component, AIC32X4_ADCSETUP); snd_soc_component_write(component, AIC32X4_ADCSETUP, tmp_reg | AIC32X4_LADC_EN | AIC32X4_RADC_EN); snd_soc_component_write(component, AIC32X4_ADCSETUP, tmp_reg); /* * Enable the fast charging feature and ensure the needed 40ms ellapsed * before using the analog circuits. */ snd_soc_component_write(component, AIC32X4_REFPOWERUP, AIC32X4_REFPOWERUP_40MS); msleep(40); return 0; } static const struct snd_soc_component_driver soc_component_dev_aic32x4 = { .probe = aic32x4_component_probe, .set_bias_level = aic32x4_set_bias_level, .controls = aic32x4_snd_controls, .num_controls = ARRAY_SIZE(aic32x4_snd_controls), .dapm_widgets = aic32x4_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(aic32x4_dapm_widgets), .dapm_routes = aic32x4_dapm_routes, .num_dapm_routes = ARRAY_SIZE(aic32x4_dapm_routes), .suspend_bias_off = 1, .idle_bias_on = 1, .use_pmdown_time = 1, .endianness = 1, }; static const struct snd_kcontrol_new aic32x4_tas2505_snd_controls[] = { SOC_SINGLE_S8_TLV("PCM Playback Volume", AIC32X4_LDACVOL, -0x7f, 0x30, tlv_pcm), SOC_ENUM("DAC Playback PowerTune Switch", l_ptm_enum), SOC_SINGLE_TLV("HP Driver Gain Volume", AIC32X4_HPLGAIN, 0, 0x74, 1, tlv_tas_driver_gain), SOC_SINGLE("HP DAC Playback Switch", AIC32X4_HPLGAIN, 6, 1, 1), SOC_SINGLE_TLV("Speaker Driver Playback Volume", TAS2505_SPKVOL1, 0, 0x74, 1, tlv_tas_driver_gain), SOC_SINGLE_TLV("Speaker Amplifier Playback Volume", TAS2505_SPKVOL2, 4, 5, 0, tlv_amp_vol), SOC_SINGLE("Auto-mute Switch", AIC32X4_DACMUTE, 4, 7, 0), }; static const struct snd_kcontrol_new hp_output_mixer_controls[] = { SOC_DAPM_SINGLE("DAC Switch", AIC32X4_HPLROUTE, 3, 1, 0), }; static const struct snd_soc_dapm_widget aic32x4_tas2505_dapm_widgets[] = { SND_SOC_DAPM_DAC("DAC", "Playback", AIC32X4_DACSETUP, 7, 0), SND_SOC_DAPM_MIXER("HP Output Mixer", SND_SOC_NOPM, 0, 0, &hp_output_mixer_controls[0], ARRAY_SIZE(hp_output_mixer_controls)), SND_SOC_DAPM_PGA("HP Power", AIC32X4_OUTPWRCTL, 5, 0, NULL, 0), SND_SOC_DAPM_PGA("Speaker Driver", TAS2505_SPK, 1, 0, NULL, 0), SND_SOC_DAPM_OUTPUT("HP"), SND_SOC_DAPM_OUTPUT("Speaker"), }; static const struct snd_soc_dapm_route aic32x4_tas2505_dapm_routes[] = { /* Left Output */ {"HP Output Mixer", "DAC Switch", "DAC"}, {"HP Power", NULL, "HP Output Mixer"}, {"HP", NULL, "HP Power"}, {"Speaker Driver", NULL, "DAC"}, {"Speaker", NULL, "Speaker Driver"}, }; static struct snd_soc_dai_driver aic32x4_tas2505_dai = { .name = "tas2505-hifi", .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_96000, .formats = AIC32X4_FORMATS,}, .ops = &aic32x4_ops, .symmetric_rate = 1, }; static int aic32x4_tas2505_component_probe(struct snd_soc_component *component) { struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component); u32 tmp_reg; int ret; static struct clk_bulk_data clocks[] = { { .id = "codec_clkin" }, { .id = "pll" }, { .id = "bdiv" }, { .id = "mdac" }, }; ret = devm_clk_bulk_get(component->dev, ARRAY_SIZE(clocks), clocks); if (ret) return ret; if (aic32x4->setup) aic32x4_setup_gpios(component); clk_set_parent(clocks[0].clk, clocks[1].clk); clk_set_parent(clocks[2].clk, clocks[3].clk); /* Power platform configuration */ if (aic32x4->power_cfg & AIC32X4_PWR_AVDD_DVDD_WEAK_DISABLE) snd_soc_component_write(component, AIC32X4_PWRCFG, AIC32X4_AVDDWEAKDISABLE); tmp_reg = (aic32x4->power_cfg & AIC32X4_PWR_AIC32X4_LDO_ENABLE) ? AIC32X4_LDOCTLEN : 0; snd_soc_component_write(component, AIC32X4_LDOCTL, tmp_reg); tmp_reg = snd_soc_component_read(component, AIC32X4_CMMODE); if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_LDOIN_RANGE_18_36) tmp_reg |= AIC32X4_LDOIN_18_36; if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_HP_LDOIN_POWERED) tmp_reg |= AIC32X4_LDOIN2HP; snd_soc_component_write(component, AIC32X4_CMMODE, tmp_reg); /* * Enable the fast charging feature and ensure the needed 40ms ellapsed * before using the analog circuits. */ snd_soc_component_write(component, TAS2505_REFPOWERUP, AIC32X4_REFPOWERUP_40MS); msleep(40); return 0; } static const struct snd_soc_component_driver soc_component_dev_aic32x4_tas2505 = { .probe = aic32x4_tas2505_component_probe, .set_bias_level = aic32x4_set_bias_level, .controls = aic32x4_tas2505_snd_controls, .num_controls = ARRAY_SIZE(aic32x4_tas2505_snd_controls), .dapm_widgets = aic32x4_tas2505_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(aic32x4_tas2505_dapm_widgets), .dapm_routes = aic32x4_tas2505_dapm_routes, .num_dapm_routes = ARRAY_SIZE(aic32x4_tas2505_dapm_routes), .suspend_bias_off = 1, .idle_bias_on = 1, .use_pmdown_time = 1, .endianness = 1, }; static int aic32x4_parse_dt(struct aic32x4_priv *aic32x4, struct device_node *np) { struct aic32x4_setup_data *aic32x4_setup; int ret; aic32x4_setup = devm_kzalloc(aic32x4->dev, sizeof(*aic32x4_setup), GFP_KERNEL); if (!aic32x4_setup) return -ENOMEM; ret = of_property_match_string(np, "clock-names", "mclk"); if (ret < 0) return -EINVAL; aic32x4->mclk_name = of_clk_get_parent_name(np, ret); aic32x4->swapdacs = false; aic32x4->micpga_routing = 0; aic32x4->rstn_gpio = of_get_named_gpio(np, "reset-gpios", 0); if (of_property_read_u32_array(np, "aic32x4-gpio-func", aic32x4_setup->gpio_func, 5) >= 0) aic32x4->setup = aic32x4_setup; return 0; } static void aic32x4_disable_regulators(struct aic32x4_priv *aic32x4) { regulator_disable(aic32x4->supply_iov); if (!IS_ERR(aic32x4->supply_ldo)) regulator_disable(aic32x4->supply_ldo); if (!IS_ERR(aic32x4->supply_dv)) regulator_disable(aic32x4->supply_dv); if (!IS_ERR(aic32x4->supply_av)) regulator_disable(aic32x4->supply_av); } static int aic32x4_setup_regulators(struct device *dev, struct aic32x4_priv *aic32x4) { int ret = 0; aic32x4->supply_ldo = devm_regulator_get_optional(dev, "ldoin"); aic32x4->supply_iov = devm_regulator_get(dev, "iov"); aic32x4->supply_dv = devm_regulator_get_optional(dev, "dv"); aic32x4->supply_av = devm_regulator_get_optional(dev, "av"); /* Check if the regulator requirements are fulfilled */ if (IS_ERR(aic32x4->supply_iov)) { dev_err(dev, "Missing supply 'iov'\n"); return PTR_ERR(aic32x4->supply_iov); } if (IS_ERR(aic32x4->supply_ldo)) { if (PTR_ERR(aic32x4->supply_ldo) == -EPROBE_DEFER) return -EPROBE_DEFER; if (IS_ERR(aic32x4->supply_dv)) { dev_err(dev, "Missing supply 'dv' or 'ldoin'\n"); return PTR_ERR(aic32x4->supply_dv); } if (IS_ERR(aic32x4->supply_av)) { dev_err(dev, "Missing supply 'av' or 'ldoin'\n"); return PTR_ERR(aic32x4->supply_av); } } else { if (PTR_ERR(aic32x4->supply_dv) == -EPROBE_DEFER) return -EPROBE_DEFER; if (PTR_ERR(aic32x4->supply_av) == -EPROBE_DEFER) return -EPROBE_DEFER; } ret = regulator_enable(aic32x4->supply_iov); if (ret) { dev_err(dev, "Failed to enable regulator iov\n"); return ret; } if (!IS_ERR(aic32x4->supply_ldo)) { ret = regulator_enable(aic32x4->supply_ldo); if (ret) { dev_err(dev, "Failed to enable regulator ldo\n"); goto error_ldo; } } if (!IS_ERR(aic32x4->supply_dv)) { ret = regulator_enable(aic32x4->supply_dv); if (ret) { dev_err(dev, "Failed to enable regulator dv\n"); goto error_dv; } } if (!IS_ERR(aic32x4->supply_av)) { ret = regulator_enable(aic32x4->supply_av); if (ret) { dev_err(dev, "Failed to enable regulator av\n"); goto error_av; } } if (!IS_ERR(aic32x4->supply_ldo) && IS_ERR(aic32x4->supply_av)) aic32x4->power_cfg |= AIC32X4_PWR_AIC32X4_LDO_ENABLE; return 0; error_av: if (!IS_ERR(aic32x4->supply_dv)) regulator_disable(aic32x4->supply_dv); error_dv: if (!IS_ERR(aic32x4->supply_ldo)) regulator_disable(aic32x4->supply_ldo); error_ldo: regulator_disable(aic32x4->supply_iov); return ret; } int aic32x4_probe(struct device *dev, struct regmap *regmap) { struct aic32x4_priv *aic32x4; struct aic32x4_pdata *pdata = dev->platform_data; struct device_node *np = dev->of_node; int ret; if (IS_ERR(regmap)) return PTR_ERR(regmap); aic32x4 = devm_kzalloc(dev, sizeof(struct aic32x4_priv), GFP_KERNEL); if (aic32x4 == NULL) return -ENOMEM; aic32x4->dev = dev; aic32x4->type = (uintptr_t)dev_get_drvdata(dev); dev_set_drvdata(dev, aic32x4); if (pdata) { aic32x4->power_cfg = pdata->power_cfg; aic32x4->swapdacs = pdata->swapdacs; aic32x4->micpga_routing = pdata->micpga_routing; aic32x4->rstn_gpio = pdata->rstn_gpio; aic32x4->mclk_name = "mclk"; } else if (np) { ret = aic32x4_parse_dt(aic32x4, np); if (ret) { dev_err(dev, "Failed to parse DT node\n"); return ret; } } else { aic32x4->power_cfg = 0; aic32x4->swapdacs = false; aic32x4->micpga_routing = 0; aic32x4->rstn_gpio = -1; aic32x4->mclk_name = "mclk"; } if (gpio_is_valid(aic32x4->rstn_gpio)) { ret = devm_gpio_request_one(dev, aic32x4->rstn_gpio, GPIOF_OUT_INIT_LOW, "tlv320aic32x4 rstn"); if (ret != 0) return ret; } ret = aic32x4_setup_regulators(dev, aic32x4); if (ret) { dev_err(dev, "Failed to setup regulators\n"); return ret; } if (gpio_is_valid(aic32x4->rstn_gpio)) { ndelay(10); gpio_set_value_cansleep(aic32x4->rstn_gpio, 1); mdelay(1); } ret = regmap_write(regmap, AIC32X4_RESET, 0x01); if (ret) goto err_disable_regulators; ret = aic32x4_register_clocks(dev, aic32x4->mclk_name); if (ret) goto err_disable_regulators; switch (aic32x4->type) { case AIC32X4_TYPE_TAS2505: ret = devm_snd_soc_register_component(dev, &soc_component_dev_aic32x4_tas2505, &aic32x4_tas2505_dai, 1); break; default: ret = devm_snd_soc_register_component(dev, &soc_component_dev_aic32x4, &aic32x4_dai, 1); } if (ret) { dev_err(dev, "Failed to register component\n"); goto err_disable_regulators; } return 0; err_disable_regulators: aic32x4_disable_regulators(aic32x4); return ret; } EXPORT_SYMBOL(aic32x4_probe); void aic32x4_remove(struct device *dev) { struct aic32x4_priv *aic32x4 = dev_get_drvdata(dev); aic32x4_disable_regulators(aic32x4); } EXPORT_SYMBOL(aic32x4_remove); MODULE_DESCRIPTION("ASoC tlv320aic32x4 codec driver"); MODULE_AUTHOR("Javier Martin <javier.martin@vista-silicon.com>"); MODULE_LICENSE("GPL");