// SPDX-License-Identifier: GPL-2.0 // // sgtl5000.c -- SGTL5000 ALSA SoC Audio driver // // Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved. #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/pm.h> #include <linux/i2c.h> #include <linux/clk.h> #include <linux/log2.h> #include <linux/regmap.h> #include <linux/regulator/driver.h> #include <linux/regulator/machine.h> #include <linux/regulator/consumer.h> #include <linux/of_device.h> #include <sound/core.h> #include <sound/tlv.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-dapm.h> #include <sound/initval.h> #include "sgtl5000.h" #define SGTL5000_DAP_REG_OFFSET 0x0100 #define SGTL5000_MAX_REG_OFFSET 0x013A /* Delay for the VAG ramp up */ #define SGTL5000_VAG_POWERUP_DELAY 500 /* ms */ /* Delay for the VAG ramp down */ #define SGTL5000_VAG_POWERDOWN_DELAY 500 /* ms */ #define SGTL5000_OUTPUTS_MUTE (SGTL5000_HP_MUTE | SGTL5000_LINE_OUT_MUTE) /* default value of sgtl5000 registers */ static const struct reg_default sgtl5000_reg_defaults[] = { { SGTL5000_CHIP_DIG_POWER, 0x0000 }, { SGTL5000_CHIP_I2S_CTRL, 0x0010 }, { SGTL5000_CHIP_SSS_CTRL, 0x0010 }, { SGTL5000_CHIP_ADCDAC_CTRL, 0x020c }, { SGTL5000_CHIP_DAC_VOL, 0x3c3c }, { SGTL5000_CHIP_PAD_STRENGTH, 0x015f }, { SGTL5000_CHIP_ANA_ADC_CTRL, 0x0000 }, { SGTL5000_CHIP_ANA_HP_CTRL, 0x1818 }, { SGTL5000_CHIP_ANA_CTRL, 0x0111 }, { SGTL5000_CHIP_REF_CTRL, 0x0000 }, { SGTL5000_CHIP_MIC_CTRL, 0x0000 }, { SGTL5000_CHIP_LINE_OUT_CTRL, 0x0000 }, { SGTL5000_CHIP_LINE_OUT_VOL, 0x0404 }, { SGTL5000_CHIP_PLL_CTRL, 0x5000 }, { SGTL5000_CHIP_CLK_TOP_CTRL, 0x0000 }, { SGTL5000_CHIP_ANA_STATUS, 0x0000 }, { SGTL5000_CHIP_SHORT_CTRL, 0x0000 }, { SGTL5000_CHIP_ANA_TEST2, 0x0000 }, { SGTL5000_DAP_CTRL, 0x0000 }, { SGTL5000_DAP_PEQ, 0x0000 }, { SGTL5000_DAP_BASS_ENHANCE, 0x0040 }, { SGTL5000_DAP_BASS_ENHANCE_CTRL, 0x051f }, { SGTL5000_DAP_AUDIO_EQ, 0x0000 }, { SGTL5000_DAP_SURROUND, 0x0040 }, { SGTL5000_DAP_EQ_BASS_BAND0, 0x002f }, { SGTL5000_DAP_EQ_BASS_BAND1, 0x002f }, { SGTL5000_DAP_EQ_BASS_BAND2, 0x002f }, { SGTL5000_DAP_EQ_BASS_BAND3, 0x002f }, { SGTL5000_DAP_EQ_BASS_BAND4, 0x002f }, { SGTL5000_DAP_MAIN_CHAN, 0x8000 }, { SGTL5000_DAP_MIX_CHAN, 0x0000 }, { SGTL5000_DAP_AVC_CTRL, 0x0510 }, { SGTL5000_DAP_AVC_THRESHOLD, 0x1473 }, { SGTL5000_DAP_AVC_ATTACK, 0x0028 }, { SGTL5000_DAP_AVC_DECAY, 0x0050 }, }; /* AVC: Threshold dB -> register: pre-calculated values */ static const u16 avc_thr_db2reg[97] = { 0x5168, 0x488E, 0x40AA, 0x39A1, 0x335D, 0x2DC7, 0x28CC, 0x245D, 0x2068, 0x1CE2, 0x19BE, 0x16F1, 0x1472, 0x1239, 0x103E, 0x0E7A, 0x0CE6, 0x0B7F, 0x0A3F, 0x0922, 0x0824, 0x0741, 0x0677, 0x05C3, 0x0522, 0x0493, 0x0414, 0x03A2, 0x033D, 0x02E3, 0x0293, 0x024B, 0x020B, 0x01D2, 0x019F, 0x0172, 0x014A, 0x0126, 0x0106, 0x00E9, 0x00D0, 0x00B9, 0x00A5, 0x0093, 0x0083, 0x0075, 0x0068, 0x005D, 0x0052, 0x0049, 0x0041, 0x003A, 0x0034, 0x002E, 0x0029, 0x0025, 0x0021, 0x001D, 0x001A, 0x0017, 0x0014, 0x0012, 0x0010, 0x000E, 0x000D, 0x000B, 0x000A, 0x0009, 0x0008, 0x0007, 0x0006, 0x0005, 0x0005, 0x0004, 0x0004, 0x0003, 0x0003, 0x0002, 0x0002, 0x0002, 0x0002, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}; /* regulator supplies for sgtl5000, VDDD is an optional external supply */ enum sgtl5000_regulator_supplies { VDDA, VDDIO, VDDD, SGTL5000_SUPPLY_NUM }; /* vddd is optional supply */ static const char *supply_names[SGTL5000_SUPPLY_NUM] = { "VDDA", "VDDIO", "VDDD" }; #define LDO_VOLTAGE 1200000 #define LINREG_VDDD ((1600 - LDO_VOLTAGE / 1000) / 50) enum sgtl5000_micbias_resistor { SGTL5000_MICBIAS_OFF = 0, SGTL5000_MICBIAS_2K = 2, SGTL5000_MICBIAS_4K = 4, SGTL5000_MICBIAS_8K = 8, }; enum { I2S_LRCLK_STRENGTH_DISABLE, I2S_LRCLK_STRENGTH_LOW, I2S_LRCLK_STRENGTH_MEDIUM, I2S_LRCLK_STRENGTH_HIGH, }; enum { I2S_SCLK_STRENGTH_DISABLE, I2S_SCLK_STRENGTH_LOW, I2S_SCLK_STRENGTH_MEDIUM, I2S_SCLK_STRENGTH_HIGH, }; enum { HP_POWER_EVENT, DAC_POWER_EVENT, ADC_POWER_EVENT, LAST_POWER_EVENT = ADC_POWER_EVENT }; /* sgtl5000 private structure in codec */ struct sgtl5000_priv { int sysclk; /* sysclk rate */ int master; /* i2s master or not */ int fmt; /* i2s data format */ struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM]; int num_supplies; struct regmap *regmap; struct clk *mclk; int revision; u8 micbias_resistor; u8 micbias_voltage; u8 lrclk_strength; u8 sclk_strength; u16 mute_state[LAST_POWER_EVENT + 1]; }; static inline int hp_sel_input(struct snd_soc_component *component) { return (snd_soc_component_read32(component, SGTL5000_CHIP_ANA_CTRL) & SGTL5000_HP_SEL_MASK) >> SGTL5000_HP_SEL_SHIFT; } static inline u16 mute_output(struct snd_soc_component *component, u16 mute_mask) { u16 mute_reg = snd_soc_component_read32(component, SGTL5000_CHIP_ANA_CTRL); snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL, mute_mask, mute_mask); return mute_reg; } static inline void restore_output(struct snd_soc_component *component, u16 mute_mask, u16 mute_reg) { snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL, mute_mask, mute_reg); } static void vag_power_on(struct snd_soc_component *component, u32 source) { if (snd_soc_component_read32(component, SGTL5000_CHIP_ANA_POWER) & SGTL5000_VAG_POWERUP) return; snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP); /* When VAG powering on to get local loop from Line-In, the sleep * is required to avoid loud pop. */ if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN && source == HP_POWER_EVENT) msleep(SGTL5000_VAG_POWERUP_DELAY); } static int vag_power_consumers(struct snd_soc_component *component, u16 ana_pwr_reg, u32 source) { int consumers = 0; /* count dac/adc consumers unconditional */ if (ana_pwr_reg & SGTL5000_DAC_POWERUP) consumers++; if (ana_pwr_reg & SGTL5000_ADC_POWERUP) consumers++; /* * If the event comes from HP and Line-In is selected, * current action is 'DAC to be powered down'. * As HP_POWERUP is not set when HP muxed to line-in, * we need to keep VAG power ON. */ if (source == HP_POWER_EVENT) { if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN) consumers++; } else { if (ana_pwr_reg & SGTL5000_HP_POWERUP) consumers++; } return consumers; } static void vag_power_off(struct snd_soc_component *component, u32 source) { u16 ana_pwr = snd_soc_component_read32(component, SGTL5000_CHIP_ANA_POWER); if (!(ana_pwr & SGTL5000_VAG_POWERUP)) return; /* * This function calls when any of VAG power consumers is disappearing. * Thus, if there is more than one consumer at the moment, as minimum * one consumer will definitely stay after the end of the current * event. * Don't clear VAG_POWERUP if 2 or more consumers of VAG present: * - LINE_IN (for HP events) / HP (for DAC/ADC events) * - DAC * - ADC * (the current consumer is disappearing right now) */ if (vag_power_consumers(component, ana_pwr, source) >= 2) return; snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, SGTL5000_VAG_POWERUP, 0); /* In power down case, we need wait 400-1000 ms * when VAG fully ramped down. * As longer we wait, as smaller pop we've got. */ msleep(SGTL5000_VAG_POWERDOWN_DELAY); } /* * mic_bias power on/off share the same register bits with * output impedance of mic bias, when power on mic bias, we * need reclaim it to impedance value. * 0x0 = Powered off * 0x1 = 2Kohm * 0x2 = 4Kohm * 0x3 = 8Kohm */ static int mic_bias_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_POST_PMU: /* change mic bias resistor */ snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL, SGTL5000_BIAS_R_MASK, sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT); break; case SND_SOC_DAPM_PRE_PMD: snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL, SGTL5000_BIAS_R_MASK, 0); break; } return 0; } static int vag_and_mute_control(struct snd_soc_component *component, int event, int event_source) { static const u16 mute_mask[] = { /* * Mask for HP_POWER_EVENT. * Muxing Headphones have to be wrapped with mute/unmute * headphones only. */ SGTL5000_HP_MUTE, /* * Masks for DAC_POWER_EVENT/ADC_POWER_EVENT. * Muxing DAC or ADC block have to wrapped with mute/unmute * both headphones and line-out. */ SGTL5000_OUTPUTS_MUTE, SGTL5000_OUTPUTS_MUTE }; struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_PRE_PMU: sgtl5000->mute_state[event_source] = mute_output(component, mute_mask[event_source]); break; case SND_SOC_DAPM_POST_PMU: vag_power_on(component, event_source); restore_output(component, mute_mask[event_source], sgtl5000->mute_state[event_source]); break; case SND_SOC_DAPM_PRE_PMD: sgtl5000->mute_state[event_source] = mute_output(component, mute_mask[event_source]); vag_power_off(component, event_source); break; case SND_SOC_DAPM_POST_PMD: restore_output(component, mute_mask[event_source], sgtl5000->mute_state[event_source]); break; default: break; } return 0; } /* * Mute Headphone when power it up/down. * Control VAG power on HP power path. */ static int headphone_pga_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); return vag_and_mute_control(component, event, HP_POWER_EVENT); } /* As manual describes, ADC/DAC powering up/down requires * to mute outputs to avoid pops. * Control VAG power on ADC/DAC power path. */ static int adc_updown_depop(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); return vag_and_mute_control(component, event, ADC_POWER_EVENT); } static int dac_updown_depop(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); return vag_and_mute_control(component, event, DAC_POWER_EVENT); } /* input sources for ADC */ static const char *adc_mux_text[] = { "MIC_IN", "LINE_IN" }; static SOC_ENUM_SINGLE_DECL(adc_enum, SGTL5000_CHIP_ANA_CTRL, 2, adc_mux_text); static const struct snd_kcontrol_new adc_mux = SOC_DAPM_ENUM("Capture Mux", adc_enum); /* input sources for headphone */ static const char *hp_mux_text[] = { "DAC", "LINE_IN" }; static SOC_ENUM_SINGLE_DECL(hp_enum, SGTL5000_CHIP_ANA_CTRL, 6, hp_mux_text); static const struct snd_kcontrol_new hp_mux = SOC_DAPM_ENUM("Headphone Mux", hp_enum); /* input sources for DAC */ static const char *dac_mux_text[] = { "ADC", "I2S", "Rsvrd", "DAP" }; static SOC_ENUM_SINGLE_DECL(dac_enum, SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAC_SEL_SHIFT, dac_mux_text); static const struct snd_kcontrol_new dac_mux = SOC_DAPM_ENUM("Digital Input Mux", dac_enum); /* input sources for DAP */ static const char *dap_mux_text[] = { "ADC", "I2S" }; static SOC_ENUM_SINGLE_DECL(dap_enum, SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_SEL_SHIFT, dap_mux_text); static const struct snd_kcontrol_new dap_mux = SOC_DAPM_ENUM("DAP Mux", dap_enum); /* input sources for DAP mix */ static const char *dapmix_mux_text[] = { "ADC", "I2S" }; static SOC_ENUM_SINGLE_DECL(dapmix_enum, SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_MIX_SEL_SHIFT, dapmix_mux_text); static const struct snd_kcontrol_new dapmix_mux = SOC_DAPM_ENUM("DAP MIX Mux", dapmix_enum); static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = { SND_SOC_DAPM_INPUT("LINE_IN"), SND_SOC_DAPM_INPUT("MIC_IN"), SND_SOC_DAPM_OUTPUT("HP_OUT"), SND_SOC_DAPM_OUTPUT("LINE_OUT"), SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0, mic_bias_event, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_PGA_E("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0, headphone_pga_event, SND_SOC_DAPM_PRE_POST_PMU | SND_SOC_DAPM_PRE_POST_PMD), SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0), SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux), SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &hp_mux), SND_SOC_DAPM_MUX("Digital Input Mux", SND_SOC_NOPM, 0, 0, &dac_mux), SND_SOC_DAPM_MUX("DAP Mux", SGTL5000_DAP_CTRL, 0, 0, &dap_mux), SND_SOC_DAPM_MUX("DAP MIX Mux", SGTL5000_DAP_CTRL, 4, 0, &dapmix_mux), SND_SOC_DAPM_MIXER("DAP", SGTL5000_CHIP_DIG_POWER, 4, 0, NULL, 0), /* aif for i2s input */ SND_SOC_DAPM_AIF_IN("AIFIN", "Playback", 0, SGTL5000_CHIP_DIG_POWER, 0, 0), /* aif for i2s output */ SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture", 0, SGTL5000_CHIP_DIG_POWER, 1, 0), SND_SOC_DAPM_ADC_E("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0, adc_updown_depop, SND_SOC_DAPM_PRE_POST_PMU | SND_SOC_DAPM_PRE_POST_PMD), SND_SOC_DAPM_DAC_E("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0, dac_updown_depop, SND_SOC_DAPM_PRE_POST_PMU | SND_SOC_DAPM_PRE_POST_PMD), }; /* routes for sgtl5000 */ static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = { {"Capture Mux", "LINE_IN", "LINE_IN"}, /* line_in --> adc_mux */ {"Capture Mux", "MIC_IN", "MIC_IN"}, /* mic_in --> adc_mux */ {"ADC", NULL, "Capture Mux"}, /* adc_mux --> adc */ {"AIFOUT", NULL, "ADC"}, /* adc --> i2s_out */ {"DAP Mux", "ADC", "ADC"}, /* adc --> DAP mux */ {"DAP Mux", NULL, "AIFIN"}, /* i2s --> DAP mux */ {"DAP", NULL, "DAP Mux"}, /* DAP mux --> dap */ {"DAP MIX Mux", "ADC", "ADC"}, /* adc --> DAP MIX mux */ {"DAP MIX Mux", NULL, "AIFIN"}, /* i2s --> DAP MIX mux */ {"DAP", NULL, "DAP MIX Mux"}, /* DAP MIX mux --> dap */ {"Digital Input Mux", "ADC", "ADC"}, /* adc --> audio mux */ {"Digital Input Mux", NULL, "AIFIN"}, /* i2s --> audio mux */ {"Digital Input Mux", NULL, "DAP"}, /* dap --> audio mux */ {"DAC", NULL, "Digital Input Mux"}, /* audio mux --> dac */ {"Headphone Mux", "DAC", "DAC"}, /* dac --> hp_mux */ {"LO", NULL, "DAC"}, /* dac --> line_out */ {"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */ {"HP", NULL, "Headphone Mux"}, /* hp_mux --> hp */ {"LINE_OUT", NULL, "LO"}, {"HP_OUT", NULL, "HP"}, }; /* custom function to fetch info of PCM playback volume */ static int dac_info_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = 0xfc - 0x3c; return 0; } /* * custom function to get of PCM playback volume * * dac volume register * 15-------------8-7--------------0 * | R channel vol | L channel vol | * ------------------------------- * * PCM volume with 0.5017 dB steps from 0 to -90 dB * * register values map to dB * 0x3B and less = Reserved * 0x3C = 0 dB * 0x3D = -0.5 dB * 0xF0 = -90 dB * 0xFC and greater = Muted * * register value map to userspace value * * register value 0x3c(0dB) 0xf0(-90dB)0xfc * ------------------------------ * userspace value 0xc0 0 */ static int dac_get_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); int reg; int l; int r; reg = snd_soc_component_read32(component, SGTL5000_CHIP_DAC_VOL); /* get left channel volume */ l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT; /* get right channel volume */ r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT; /* make sure value fall in (0x3c,0xfc) */ l = clamp(l, 0x3c, 0xfc); r = clamp(r, 0x3c, 0xfc); /* invert it and map to userspace value */ l = 0xfc - l; r = 0xfc - r; ucontrol->value.integer.value[0] = l; ucontrol->value.integer.value[1] = r; return 0; } /* * custom function to put of PCM playback volume * * dac volume register * 15-------------8-7--------------0 * | R channel vol | L channel vol | * ------------------------------- * * PCM volume with 0.5017 dB steps from 0 to -90 dB * * register values map to dB * 0x3B and less = Reserved * 0x3C = 0 dB * 0x3D = -0.5 dB * 0xF0 = -90 dB * 0xFC and greater = Muted * * userspace value map to register value * * userspace value 0xc0 0 * ------------------------------ * register value 0x3c(0dB) 0xf0(-90dB)0xfc */ static int dac_put_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); int reg; int l; int r; l = ucontrol->value.integer.value[0]; r = ucontrol->value.integer.value[1]; /* make sure userspace volume fall in (0, 0xfc-0x3c) */ l = clamp(l, 0, 0xfc - 0x3c); r = clamp(r, 0, 0xfc - 0x3c); /* invert it, get the value can be set to register */ l = 0xfc - l; r = 0xfc - r; /* shift to get the register value */ reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT | r << SGTL5000_DAC_VOL_RIGHT_SHIFT; snd_soc_component_write(component, SGTL5000_CHIP_DAC_VOL, reg); return 0; } /* * custom function to get AVC threshold * * The threshold dB is calculated by rearranging the calculation from the * avc_put_threshold function: register_value = 10^(dB/20) * 0.636 * 2^15 ==> * dB = ( fls(register_value) - 14.347 ) * 6.02 * * As this calculation is expensive and the threshold dB values may not exceed * 0 to 96 we use pre-calculated values. */ static int avc_get_threshold(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); int db, i; u16 reg = snd_soc_component_read32(component, SGTL5000_DAP_AVC_THRESHOLD); /* register value 0 => -96dB */ if (!reg) { ucontrol->value.integer.value[0] = 96; ucontrol->value.integer.value[1] = 96; return 0; } /* get dB from register value (rounded down) */ for (i = 0; avc_thr_db2reg[i] > reg; i++) ; db = i; ucontrol->value.integer.value[0] = db; ucontrol->value.integer.value[1] = db; return 0; } /* * custom function to put AVC threshold * * The register value is calculated by following formula: * register_value = 10^(dB/20) * 0.636 * 2^15 * As this calculation is expensive and the threshold dB values may not exceed * 0 to 96 we use pre-calculated values. */ static int avc_put_threshold(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); int db; u16 reg; db = (int)ucontrol->value.integer.value[0]; if (db < 0 || db > 96) return -EINVAL; reg = avc_thr_db2reg[db]; snd_soc_component_write(component, SGTL5000_DAP_AVC_THRESHOLD, reg); return 0; } static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0); /* tlv for mic gain, 0db 20db 30db 40db */ static const DECLARE_TLV_DB_RANGE(mic_gain_tlv, 0, 0, TLV_DB_SCALE_ITEM(0, 0, 0), 1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0) ); /* tlv for DAP channels, 0% - 100% - 200% */ static const DECLARE_TLV_DB_SCALE(dap_volume, 0, 1, 0); /* tlv for bass bands, -11.75db to 12.0db, step .25db */ static const DECLARE_TLV_DB_SCALE(bass_band, -1175, 25, 0); /* tlv for hp volume, -51.5db to 12.0db, step .5db */ static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0); /* tlv for lineout volume, 31 steps of .5db each */ static const DECLARE_TLV_DB_SCALE(lineout_volume, -1550, 50, 0); /* tlv for dap avc max gain, 0db, 6db, 12db */ static const DECLARE_TLV_DB_SCALE(avc_max_gain, 0, 600, 0); /* tlv for dap avc threshold, */ static const DECLARE_TLV_DB_MINMAX(avc_threshold, 0, 9600); static const struct snd_kcontrol_new sgtl5000_snd_controls[] = { /* SOC_DOUBLE_S8_TLV with invert */ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "PCM Playback Volume", .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = dac_info_volsw, .get = dac_get_volsw, .put = dac_put_volsw, }, SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0), SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)", SGTL5000_CHIP_ANA_ADC_CTRL, 8, 1, 0, capture_6db_attenuate), SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0), SOC_SINGLE("Capture Switch", SGTL5000_CHIP_ANA_CTRL, 0, 1, 1), SOC_DOUBLE_TLV("Headphone Playback Volume", SGTL5000_CHIP_ANA_HP_CTRL, 0, 8, 0x7f, 1, headphone_volume), SOC_SINGLE("Headphone Playback Switch", SGTL5000_CHIP_ANA_CTRL, 4, 1, 1), SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL, 5, 1, 0), SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL, 0, 3, 0, mic_gain_tlv), SOC_DOUBLE_TLV("Lineout Playback Volume", SGTL5000_CHIP_LINE_OUT_VOL, SGTL5000_LINE_OUT_VOL_LEFT_SHIFT, SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT, 0x1f, 1, lineout_volume), SOC_SINGLE("Lineout Playback Switch", SGTL5000_CHIP_ANA_CTRL, 8, 1, 1), SOC_SINGLE_TLV("DAP Main channel", SGTL5000_DAP_MAIN_CHAN, 0, 0xffff, 0, dap_volume), SOC_SINGLE_TLV("DAP Mix channel", SGTL5000_DAP_MIX_CHAN, 0, 0xffff, 0, dap_volume), /* Automatic Volume Control (DAP AVC) */ SOC_SINGLE("AVC Switch", SGTL5000_DAP_AVC_CTRL, 0, 1, 0), SOC_SINGLE("AVC Hard Limiter Switch", SGTL5000_DAP_AVC_CTRL, 5, 1, 0), SOC_SINGLE_TLV("AVC Max Gain Volume", SGTL5000_DAP_AVC_CTRL, 12, 2, 0, avc_max_gain), SOC_SINGLE("AVC Integrator Response", SGTL5000_DAP_AVC_CTRL, 8, 3, 0), SOC_SINGLE_EXT_TLV("AVC Threshold Volume", SGTL5000_DAP_AVC_THRESHOLD, 0, 96, 0, avc_get_threshold, avc_put_threshold, avc_threshold), SOC_SINGLE_TLV("BASS 0", SGTL5000_DAP_EQ_BASS_BAND0, 0, 0x5F, 0, bass_band), SOC_SINGLE_TLV("BASS 1", SGTL5000_DAP_EQ_BASS_BAND1, 0, 0x5F, 0, bass_band), SOC_SINGLE_TLV("BASS 2", SGTL5000_DAP_EQ_BASS_BAND2, 0, 0x5F, 0, bass_band), SOC_SINGLE_TLV("BASS 3", SGTL5000_DAP_EQ_BASS_BAND3, 0, 0x5F, 0, bass_band), SOC_SINGLE_TLV("BASS 4", SGTL5000_DAP_EQ_BASS_BAND4, 0, 0x5F, 0, bass_band), }; /* mute the codec used by alsa core */ static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute) { struct snd_soc_component *component = codec_dai->component; u16 i2s_pwr = SGTL5000_I2S_IN_POWERUP; /* * During 'digital mute' do not mute DAC * because LINE_IN would be muted aswell. We want to mute * only I2S block - this can be done by powering it off */ snd_soc_component_update_bits(component, SGTL5000_CHIP_DIG_POWER, i2s_pwr, mute ? 0 : i2s_pwr); return 0; } /* set codec format */ static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_component *component = codec_dai->component; struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); u16 i2sctl = 0; sgtl5000->master = 0; /* * i2s clock and frame master setting. * ONLY support: * - clock and frame slave, * - clock and frame master */ switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: break; case SND_SOC_DAIFMT_CBM_CFM: i2sctl |= SGTL5000_I2S_MASTER; sgtl5000->master = 1; break; default: return -EINVAL; } /* setting i2s data format */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_DSP_A: i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT; break; case SND_SOC_DAIFMT_DSP_B: i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT; i2sctl |= SGTL5000_I2S_LRALIGN; break; case SND_SOC_DAIFMT_I2S: i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT; break; case SND_SOC_DAIFMT_RIGHT_J: i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT; i2sctl |= SGTL5000_I2S_LRPOL; break; case SND_SOC_DAIFMT_LEFT_J: i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT; i2sctl |= SGTL5000_I2S_LRALIGN; break; default: return -EINVAL; } sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK; /* Clock inversion */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_NF: i2sctl |= SGTL5000_I2S_SCLK_INV; break; default: return -EINVAL; } snd_soc_component_write(component, SGTL5000_CHIP_I2S_CTRL, i2sctl); return 0; } /* set codec sysclk */ static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_component *component = codec_dai->component; struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); switch (clk_id) { case SGTL5000_SYSCLK: sgtl5000->sysclk = freq; break; default: return -EINVAL; } return 0; } /* * set clock according to i2s frame clock, * sgtl5000 provides 2 clock sources: * 1. sys_mclk: sample freq can only be configured to * 1/256, 1/384, 1/512 of sys_mclk. * 2. pll: can derive any audio clocks. * * clock setting rules: * 1. in slave mode, only sys_mclk can be used * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz * and above. * 3. usage of sys_mclk is preferred over pll to save power. */ static int sgtl5000_set_clock(struct snd_soc_component *component, int frame_rate) { struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); int clk_ctl = 0; int sys_fs; /* sample freq */ /* * sample freq should be divided by frame clock, * if frame clock is lower than 44.1 kHz, sample freq should be set to * 32 kHz or 44.1 kHz. */ switch (frame_rate) { case 8000: case 16000: sys_fs = 32000; break; case 11025: case 22050: sys_fs = 44100; break; default: sys_fs = frame_rate; break; } /* set divided factor of frame clock */ switch (sys_fs / frame_rate) { case 4: clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT; break; case 2: clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT; break; case 1: clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT; break; default: return -EINVAL; } /* set the sys_fs according to frame rate */ switch (sys_fs) { case 32000: clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT; break; case 44100: clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT; break; case 48000: clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT; break; case 96000: clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT; break; default: dev_err(component->dev, "frame rate %d not supported\n", frame_rate); return -EINVAL; } /* * calculate the divider of mclk/sample_freq, * factor of freq = 96 kHz can only be 256, since mclk is in the range * of 8 MHz - 27 MHz */ switch (sgtl5000->sysclk / frame_rate) { case 256: clk_ctl |= SGTL5000_MCLK_FREQ_256FS << SGTL5000_MCLK_FREQ_SHIFT; break; case 384: clk_ctl |= SGTL5000_MCLK_FREQ_384FS << SGTL5000_MCLK_FREQ_SHIFT; break; case 512: clk_ctl |= SGTL5000_MCLK_FREQ_512FS << SGTL5000_MCLK_FREQ_SHIFT; break; default: /* if mclk does not satisfy the divider, use pll */ if (sgtl5000->master) { clk_ctl |= SGTL5000_MCLK_FREQ_PLL << SGTL5000_MCLK_FREQ_SHIFT; } else { dev_err(component->dev, "PLL not supported in slave mode\n"); dev_err(component->dev, "%d ratio is not supported. " "SYS_MCLK needs to be 256, 384 or 512 * fs\n", sgtl5000->sysclk / frame_rate); return -EINVAL; } } /* if using pll, please check manual 6.4.2 for detail */ if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) { u64 out, t; int div2; int pll_ctl; unsigned int in, int_div, frac_div; if (sgtl5000->sysclk > 17000000) { div2 = 1; in = sgtl5000->sysclk / 2; } else { div2 = 0; in = sgtl5000->sysclk; } if (sys_fs == 44100) out = 180633600; else out = 196608000; t = do_div(out, in); int_div = out; t *= 2048; do_div(t, in); frac_div = t; pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT | frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT; snd_soc_component_write(component, SGTL5000_CHIP_PLL_CTRL, pll_ctl); if (div2) snd_soc_component_update_bits(component, SGTL5000_CHIP_CLK_TOP_CTRL, SGTL5000_INPUT_FREQ_DIV2, SGTL5000_INPUT_FREQ_DIV2); else snd_soc_component_update_bits(component, SGTL5000_CHIP_CLK_TOP_CTRL, SGTL5000_INPUT_FREQ_DIV2, 0); /* power up pll */ snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP, SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP); /* if using pll, clk_ctrl must be set after pll power up */ snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl); } else { /* otherwise, clk_ctrl must be set before pll power down */ snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl); /* power down pll */ snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP, 0); } return 0; } /* * Set PCM DAI bit size and sample rate. * input: params_rate, params_fmt */ static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); int channels = params_channels(params); int i2s_ctl = 0; int stereo; int ret; /* sysclk should already set */ if (!sgtl5000->sysclk) { dev_err(component->dev, "%s: set sysclk first!\n", __func__); return -EFAULT; } if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) stereo = SGTL5000_DAC_STEREO; else stereo = SGTL5000_ADC_STEREO; /* set mono to save power */ snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, stereo, channels == 1 ? 0 : stereo); /* set codec clock base on lrclk */ ret = sgtl5000_set_clock(component, params_rate(params)); if (ret) return ret; /* set i2s data format */ switch (params_width(params)) { case 16: if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J) return -EINVAL; i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT; i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS << SGTL5000_I2S_SCLKFREQ_SHIFT; break; case 20: i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT; i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << SGTL5000_I2S_SCLKFREQ_SHIFT; break; case 24: i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT; i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << SGTL5000_I2S_SCLKFREQ_SHIFT; break; case 32: if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J) return -EINVAL; i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT; i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << SGTL5000_I2S_SCLKFREQ_SHIFT; break; default: return -EINVAL; } snd_soc_component_update_bits(component, SGTL5000_CHIP_I2S_CTRL, SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK, i2s_ctl); return 0; } /* * set dac bias * common state changes: * startup: * off --> standby --> prepare --> on * standby --> prepare --> on * * stop: * on --> prepare --> standby */ static int sgtl5000_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { struct sgtl5000_priv *sgtl = snd_soc_component_get_drvdata(component); int ret; switch (level) { case SND_SOC_BIAS_ON: case SND_SOC_BIAS_PREPARE: case SND_SOC_BIAS_STANDBY: regcache_cache_only(sgtl->regmap, false); ret = regcache_sync(sgtl->regmap); if (ret) { regcache_cache_only(sgtl->regmap, true); return ret; } snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, SGTL5000_REFTOP_POWERUP, SGTL5000_REFTOP_POWERUP); break; case SND_SOC_BIAS_OFF: regcache_cache_only(sgtl->regmap, true); snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, SGTL5000_REFTOP_POWERUP, 0); break; } return 0; } #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\ SNDRV_PCM_FMTBIT_S20_3LE |\ SNDRV_PCM_FMTBIT_S24_LE |\ SNDRV_PCM_FMTBIT_S32_LE) static const struct snd_soc_dai_ops sgtl5000_ops = { .hw_params = sgtl5000_pcm_hw_params, .digital_mute = sgtl5000_digital_mute, .set_fmt = sgtl5000_set_dai_fmt, .set_sysclk = sgtl5000_set_dai_sysclk, }; static struct snd_soc_dai_driver sgtl5000_dai = { .name = "sgtl5000", .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 2, /* * only support 8~48K + 96K, * TODO modify hw_param to support more */ .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000, .formats = SGTL5000_FORMATS, }, .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000, .formats = SGTL5000_FORMATS, }, .ops = &sgtl5000_ops, .symmetric_rates = 1, }; static bool sgtl5000_volatile(struct device *dev, unsigned int reg) { switch (reg) { case SGTL5000_CHIP_ID: case SGTL5000_CHIP_ADCDAC_CTRL: case SGTL5000_CHIP_ANA_STATUS: return true; } return false; } static bool sgtl5000_readable(struct device *dev, unsigned int reg) { switch (reg) { case SGTL5000_CHIP_ID: case SGTL5000_CHIP_DIG_POWER: case SGTL5000_CHIP_CLK_CTRL: case SGTL5000_CHIP_I2S_CTRL: case SGTL5000_CHIP_SSS_CTRL: case SGTL5000_CHIP_ADCDAC_CTRL: case SGTL5000_CHIP_DAC_VOL: case SGTL5000_CHIP_PAD_STRENGTH: case SGTL5000_CHIP_ANA_ADC_CTRL: case SGTL5000_CHIP_ANA_HP_CTRL: case SGTL5000_CHIP_ANA_CTRL: case SGTL5000_CHIP_LINREG_CTRL: case SGTL5000_CHIP_REF_CTRL: case SGTL5000_CHIP_MIC_CTRL: case SGTL5000_CHIP_LINE_OUT_CTRL: case SGTL5000_CHIP_LINE_OUT_VOL: case SGTL5000_CHIP_ANA_POWER: case SGTL5000_CHIP_PLL_CTRL: case SGTL5000_CHIP_CLK_TOP_CTRL: case SGTL5000_CHIP_ANA_STATUS: case SGTL5000_CHIP_SHORT_CTRL: case SGTL5000_CHIP_ANA_TEST2: case SGTL5000_DAP_CTRL: case SGTL5000_DAP_PEQ: case SGTL5000_DAP_BASS_ENHANCE: case SGTL5000_DAP_BASS_ENHANCE_CTRL: case SGTL5000_DAP_AUDIO_EQ: case SGTL5000_DAP_SURROUND: case SGTL5000_DAP_FLT_COEF_ACCESS: case SGTL5000_DAP_COEF_WR_B0_MSB: case SGTL5000_DAP_COEF_WR_B0_LSB: case SGTL5000_DAP_EQ_BASS_BAND0: case SGTL5000_DAP_EQ_BASS_BAND1: case SGTL5000_DAP_EQ_BASS_BAND2: case SGTL5000_DAP_EQ_BASS_BAND3: case SGTL5000_DAP_EQ_BASS_BAND4: case SGTL5000_DAP_MAIN_CHAN: case SGTL5000_DAP_MIX_CHAN: case SGTL5000_DAP_AVC_CTRL: case SGTL5000_DAP_AVC_THRESHOLD: case SGTL5000_DAP_AVC_ATTACK: case SGTL5000_DAP_AVC_DECAY: case SGTL5000_DAP_COEF_WR_B1_MSB: case SGTL5000_DAP_COEF_WR_B1_LSB: case SGTL5000_DAP_COEF_WR_B2_MSB: case SGTL5000_DAP_COEF_WR_B2_LSB: case SGTL5000_DAP_COEF_WR_A1_MSB: case SGTL5000_DAP_COEF_WR_A1_LSB: case SGTL5000_DAP_COEF_WR_A2_MSB: case SGTL5000_DAP_COEF_WR_A2_LSB: return true; default: return false; } } /* * This precalculated table contains all (vag_val * 100 / lo_calcntrl) results * to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL * The calculatation was done for all possible register values which * is the array index and the following formula: 10^((idx−15)/40) * 100 */ static const u8 vol_quot_table[] = { 42, 45, 47, 50, 53, 56, 60, 63, 67, 71, 75, 79, 84, 89, 94, 100, 106, 112, 119, 126, 133, 141, 150, 158, 168, 178, 188, 200, 211, 224, 237, 251 }; /* * sgtl5000 has 3 internal power supplies: * 1. VAG, normally set to vdda/2 * 2. charge pump, set to different value * according to voltage of vdda and vddio * 3. line out VAG, normally set to vddio/2 * * and should be set according to: * 1. vddd provided by external or not * 2. vdda and vddio voltage value. > 3.1v or not */ static int sgtl5000_set_power_regs(struct snd_soc_component *component) { int vddd; int vdda; int vddio; u16 ana_pwr; u16 lreg_ctrl; int vag; int lo_vag; int vol_quot; int lo_vol; size_t i; struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); vdda = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer); vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer); vddd = (sgtl5000->num_supplies > VDDD) ? regulator_get_voltage(sgtl5000->supplies[VDDD].consumer) : LDO_VOLTAGE; vdda = vdda / 1000; vddio = vddio / 1000; vddd = vddd / 1000; if (vdda <= 0 || vddio <= 0 || vddd < 0) { dev_err(component->dev, "regulator voltage not set correctly\n"); return -EINVAL; } /* according to datasheet, maximum voltage of supplies */ if (vdda > 3600 || vddio > 3600 || vddd > 1980) { dev_err(component->dev, "exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n", vdda, vddio, vddd); return -EINVAL; } /* reset value */ ana_pwr = snd_soc_component_read32(component, SGTL5000_CHIP_ANA_POWER); ana_pwr |= SGTL5000_DAC_STEREO | SGTL5000_ADC_STEREO | SGTL5000_REFTOP_POWERUP; lreg_ctrl = snd_soc_component_read32(component, SGTL5000_CHIP_LINREG_CTRL); if (vddio < 3100 && vdda < 3100) { /* enable internal oscillator used for charge pump */ snd_soc_component_update_bits(component, SGTL5000_CHIP_CLK_TOP_CTRL, SGTL5000_INT_OSC_EN, SGTL5000_INT_OSC_EN); /* Enable VDDC charge pump */ ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP; } else { ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP; /* * if vddio == vdda the source of charge pump should be * assigned manually to VDDIO */ if (regulator_is_equal(sgtl5000->supplies[VDDA].consumer, sgtl5000->supplies[VDDIO].consumer)) { lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD; lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO << SGTL5000_VDDC_MAN_ASSN_SHIFT; } } snd_soc_component_write(component, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl); snd_soc_component_write(component, SGTL5000_CHIP_ANA_POWER, ana_pwr); /* * set ADC/DAC VAG to vdda / 2, * should stay in range (0.8v, 1.575v) */ vag = vdda / 2; if (vag <= SGTL5000_ANA_GND_BASE) vag = 0; else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP * (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT)) vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT; else vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP; snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL, SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT); /* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */ lo_vag = vddio / 2; if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE) lo_vag = 0; else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE + SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX) lo_vag = SGTL5000_LINE_OUT_GND_MAX; else lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) / SGTL5000_LINE_OUT_GND_STP; snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_CTRL, SGTL5000_LINE_OUT_CURRENT_MASK | SGTL5000_LINE_OUT_GND_MASK, lo_vag << SGTL5000_LINE_OUT_GND_SHIFT | SGTL5000_LINE_OUT_CURRENT_360u << SGTL5000_LINE_OUT_CURRENT_SHIFT); /* * Set lineout output level in range (0..31) * the same value is used for right and left channel * * Searching for a suitable index solving this formula: * idx = 40 * log10(vag_val / lo_cagcntrl) + 15 */ vol_quot = lo_vag ? (vag * 100) / lo_vag : 0; lo_vol = 0; for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) { if (vol_quot >= vol_quot_table[i]) lo_vol = i; else break; } snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_VOL, SGTL5000_LINE_OUT_VOL_RIGHT_MASK | SGTL5000_LINE_OUT_VOL_LEFT_MASK, lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT | lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT); return 0; } static int sgtl5000_enable_regulators(struct i2c_client *client) { int ret; int i; int external_vddd = 0; struct regulator *vddd; struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client); for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++) sgtl5000->supplies[i].supply = supply_names[i]; vddd = regulator_get_optional(&client->dev, "VDDD"); if (IS_ERR(vddd)) { /* See if it's just not registered yet */ if (PTR_ERR(vddd) == -EPROBE_DEFER) return -EPROBE_DEFER; } else { external_vddd = 1; regulator_put(vddd); } sgtl5000->num_supplies = ARRAY_SIZE(sgtl5000->supplies) - 1 + external_vddd; ret = regulator_bulk_get(&client->dev, sgtl5000->num_supplies, sgtl5000->supplies); if (ret) return ret; ret = regulator_bulk_enable(sgtl5000->num_supplies, sgtl5000->supplies); if (!ret) usleep_range(10, 20); else regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies); return ret; } static int sgtl5000_probe(struct snd_soc_component *component) { int ret; u16 reg; struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); unsigned int zcd_mask = SGTL5000_HP_ZCD_EN | SGTL5000_ADC_ZCD_EN; /* power up sgtl5000 */ ret = sgtl5000_set_power_regs(component); if (ret) goto err; /* enable small pop, introduce 400ms delay in turning off */ snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL, SGTL5000_SMALL_POP, SGTL5000_SMALL_POP); /* disable short cut detector */ snd_soc_component_write(component, SGTL5000_CHIP_SHORT_CTRL, 0); snd_soc_component_write(component, SGTL5000_CHIP_DIG_POWER, SGTL5000_ADC_EN | SGTL5000_DAC_EN); /* enable dac volume ramp by default */ snd_soc_component_write(component, SGTL5000_CHIP_ADCDAC_CTRL, SGTL5000_DAC_VOL_RAMP_EN | SGTL5000_DAC_MUTE_RIGHT | SGTL5000_DAC_MUTE_LEFT); reg = ((sgtl5000->lrclk_strength) << SGTL5000_PAD_I2S_LRCLK_SHIFT | (sgtl5000->sclk_strength) << SGTL5000_PAD_I2S_SCLK_SHIFT | 0x1f); snd_soc_component_write(component, SGTL5000_CHIP_PAD_STRENGTH, reg); snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL, zcd_mask, zcd_mask); snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL, SGTL5000_BIAS_R_MASK, sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT); snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL, SGTL5000_BIAS_VOLT_MASK, sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT); /* * enable DAP Graphic EQ * TODO: * Add control for changing between PEQ/Tone Control/GEQ */ snd_soc_component_write(component, SGTL5000_DAP_AUDIO_EQ, SGTL5000_DAP_SEL_GEQ); /* Unmute DAC after start */ snd_soc_component_update_bits(component, SGTL5000_CHIP_ADCDAC_CTRL, SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT, 0); return 0; err: return ret; } static int sgtl5000_of_xlate_dai_id(struct snd_soc_component *component, struct device_node *endpoint) { /* return dai id 0, whatever the endpoint index */ return 0; } static const struct snd_soc_component_driver sgtl5000_driver = { .probe = sgtl5000_probe, .set_bias_level = sgtl5000_set_bias_level, .controls = sgtl5000_snd_controls, .num_controls = ARRAY_SIZE(sgtl5000_snd_controls), .dapm_widgets = sgtl5000_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets), .dapm_routes = sgtl5000_dapm_routes, .num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes), .of_xlate_dai_id = sgtl5000_of_xlate_dai_id, .suspend_bias_off = 1, .idle_bias_on = 1, .use_pmdown_time = 1, .endianness = 1, .non_legacy_dai_naming = 1, }; static const struct regmap_config sgtl5000_regmap = { .reg_bits = 16, .val_bits = 16, .reg_stride = 2, .max_register = SGTL5000_MAX_REG_OFFSET, .volatile_reg = sgtl5000_volatile, .readable_reg = sgtl5000_readable, .cache_type = REGCACHE_RBTREE, .reg_defaults = sgtl5000_reg_defaults, .num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults), }; /* * Write all the default values from sgtl5000_reg_defaults[] array into the * sgtl5000 registers, to make sure we always start with the sane registers * values as stated in the datasheet. * * Since sgtl5000 does not have a reset line, nor a reset command in software, * we follow this approach to guarantee we always start from the default values * and avoid problems like, not being able to probe after an audio playback * followed by a system reset or a 'reboot' command in Linux */ static void sgtl5000_fill_defaults(struct i2c_client *client) { struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client); int i, ret, val, index; for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) { val = sgtl5000_reg_defaults[i].def; index = sgtl5000_reg_defaults[i].reg; ret = regmap_write(sgtl5000->regmap, index, val); if (ret) dev_err(&client->dev, "%s: error %d setting reg 0x%02x to 0x%04x\n", __func__, ret, index, val); } } static int sgtl5000_i2c_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct sgtl5000_priv *sgtl5000; int ret, reg, rev; struct device_node *np = client->dev.of_node; u32 value; u16 ana_pwr; sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL); if (!sgtl5000) return -ENOMEM; i2c_set_clientdata(client, sgtl5000); ret = sgtl5000_enable_regulators(client); if (ret) return ret; sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap); if (IS_ERR(sgtl5000->regmap)) { ret = PTR_ERR(sgtl5000->regmap); dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret); goto disable_regs; } sgtl5000->mclk = devm_clk_get(&client->dev, NULL); if (IS_ERR(sgtl5000->mclk)) { ret = PTR_ERR(sgtl5000->mclk); /* Defer the probe to see if the clk will be provided later */ if (ret == -ENOENT) ret = -EPROBE_DEFER; if (ret != -EPROBE_DEFER) dev_err(&client->dev, "Failed to get mclock: %d\n", ret); goto disable_regs; } ret = clk_prepare_enable(sgtl5000->mclk); if (ret) { dev_err(&client->dev, "Error enabling clock %d\n", ret); goto disable_regs; } /* Need 8 clocks before I2C accesses */ udelay(1); /* read chip information */ ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, ®); if (ret) { dev_err(&client->dev, "Error reading chip id %d\n", ret); goto disable_clk; } if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) != SGTL5000_PARTID_PART_ID) { dev_err(&client->dev, "Device with ID register %x is not a sgtl5000\n", reg); ret = -ENODEV; goto disable_clk; } rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT; dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev); sgtl5000->revision = rev; /* reconfigure the clocks in case we're using the PLL */ ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_CLK_CTRL, SGTL5000_CHIP_CLK_CTRL_DEFAULT); if (ret) dev_err(&client->dev, "Error %d initializing CHIP_CLK_CTRL\n", ret); /* Mute everything to avoid pop from the following power-up */ ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_CTRL, SGTL5000_CHIP_ANA_CTRL_DEFAULT); if (ret) { dev_err(&client->dev, "Error %d muting outputs via CHIP_ANA_CTRL\n", ret); goto disable_clk; } /* * If VAG is powered-on (e.g. from previous boot), it would be disabled * by the write to ANA_POWER in later steps of the probe code. This * may create a loud pop even with all outputs muted. The proper way * to circumvent this is disabling the bit first and waiting the proper * cool-down time. */ ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, &value); if (ret) { dev_err(&client->dev, "Failed to read ANA_POWER: %d\n", ret); goto disable_clk; } if (value & SGTL5000_VAG_POWERUP) { ret = regmap_update_bits(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, SGTL5000_VAG_POWERUP, 0); if (ret) { dev_err(&client->dev, "Error %d disabling VAG\n", ret); goto disable_clk; } msleep(SGTL5000_VAG_POWERDOWN_DELAY); } /* Follow section 2.2.1.1 of AN3663 */ ana_pwr = SGTL5000_ANA_POWER_DEFAULT; if (sgtl5000->num_supplies <= VDDD) { /* internal VDDD at 1.2V */ ret = regmap_update_bits(sgtl5000->regmap, SGTL5000_CHIP_LINREG_CTRL, SGTL5000_LINREG_VDDD_MASK, LINREG_VDDD); if (ret) dev_err(&client->dev, "Error %d setting LINREG_VDDD\n", ret); ana_pwr |= SGTL5000_LINEREG_D_POWERUP; dev_info(&client->dev, "Using internal LDO instead of VDDD: check ER1 erratum\n"); } else { /* using external LDO for VDDD * Clear startup powerup and simple powerup * bits to save power */ ana_pwr &= ~(SGTL5000_STARTUP_POWERUP | SGTL5000_LINREG_SIMPLE_POWERUP); dev_dbg(&client->dev, "Using external VDDD\n"); } ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, ana_pwr); if (ret) dev_err(&client->dev, "Error %d setting CHIP_ANA_POWER to %04x\n", ret, ana_pwr); if (np) { if (!of_property_read_u32(np, "micbias-resistor-k-ohms", &value)) { switch (value) { case SGTL5000_MICBIAS_OFF: sgtl5000->micbias_resistor = 0; break; case SGTL5000_MICBIAS_2K: sgtl5000->micbias_resistor = 1; break; case SGTL5000_MICBIAS_4K: sgtl5000->micbias_resistor = 2; break; case SGTL5000_MICBIAS_8K: sgtl5000->micbias_resistor = 3; break; default: sgtl5000->micbias_resistor = 2; dev_err(&client->dev, "Unsuitable MicBias resistor\n"); } } else { /* default is 4Kohms */ sgtl5000->micbias_resistor = 2; } if (!of_property_read_u32(np, "micbias-voltage-m-volts", &value)) { /* 1250mV => 0 */ /* steps of 250mV */ if ((value >= 1250) && (value <= 3000)) sgtl5000->micbias_voltage = (value / 250) - 5; else { sgtl5000->micbias_voltage = 0; dev_err(&client->dev, "Unsuitable MicBias voltage\n"); } } else { sgtl5000->micbias_voltage = 0; } } sgtl5000->lrclk_strength = I2S_LRCLK_STRENGTH_LOW; if (!of_property_read_u32(np, "lrclk-strength", &value)) { if (value > I2S_LRCLK_STRENGTH_HIGH) value = I2S_LRCLK_STRENGTH_LOW; sgtl5000->lrclk_strength = value; } sgtl5000->sclk_strength = I2S_SCLK_STRENGTH_LOW; if (!of_property_read_u32(np, "sclk-strength", &value)) { if (value > I2S_SCLK_STRENGTH_HIGH) value = I2S_SCLK_STRENGTH_LOW; sgtl5000->sclk_strength = value; } /* Ensure sgtl5000 will start with sane register values */ sgtl5000_fill_defaults(client); ret = devm_snd_soc_register_component(&client->dev, &sgtl5000_driver, &sgtl5000_dai, 1); if (ret) goto disable_clk; return 0; disable_clk: clk_disable_unprepare(sgtl5000->mclk); disable_regs: regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies); regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies); return ret; } static int sgtl5000_i2c_remove(struct i2c_client *client) { struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client); clk_disable_unprepare(sgtl5000->mclk); regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies); regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies); return 0; } static const struct i2c_device_id sgtl5000_id[] = { {"sgtl5000", 0}, {}, }; MODULE_DEVICE_TABLE(i2c, sgtl5000_id); static const struct of_device_id sgtl5000_dt_ids[] = { { .compatible = "fsl,sgtl5000", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids); static struct i2c_driver sgtl5000_i2c_driver = { .driver = { .name = "sgtl5000", .of_match_table = sgtl5000_dt_ids, }, .probe = sgtl5000_i2c_probe, .remove = sgtl5000_i2c_remove, .id_table = sgtl5000_id, }; module_i2c_driver(sgtl5000_i2c_driver); MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver"); MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>"); MODULE_LICENSE("GPL");