// SPDX-License-Identifier: GPL-2.0-only /* * AppArmor security module * * This file contains AppArmor dfa based regular expression matching engine * * Copyright (C) 1998-2008 Novell/SUSE * Copyright 2009-2012 Canonical Ltd. */ #include <linux/errno.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/err.h> #include <linux/kref.h> #include "include/lib.h" #include "include/match.h" #define base_idx(X) ((X) & 0xffffff) static char nulldfa_src[] = { #include "nulldfa.in" }; struct aa_dfa *nulldfa; static char stacksplitdfa_src[] = { #include "stacksplitdfa.in" }; struct aa_dfa *stacksplitdfa; int aa_setup_dfa_engine(void) { int error; nulldfa = aa_dfa_unpack(nulldfa_src, sizeof(nulldfa_src), TO_ACCEPT1_FLAG(YYTD_DATA32) | TO_ACCEPT2_FLAG(YYTD_DATA32)); if (IS_ERR(nulldfa)) { error = PTR_ERR(nulldfa); nulldfa = NULL; return error; } stacksplitdfa = aa_dfa_unpack(stacksplitdfa_src, sizeof(stacksplitdfa_src), TO_ACCEPT1_FLAG(YYTD_DATA32) | TO_ACCEPT2_FLAG(YYTD_DATA32)); if (IS_ERR(stacksplitdfa)) { aa_put_dfa(nulldfa); nulldfa = NULL; error = PTR_ERR(stacksplitdfa); stacksplitdfa = NULL; return error; } return 0; } void aa_teardown_dfa_engine(void) { aa_put_dfa(stacksplitdfa); aa_put_dfa(nulldfa); } /** * unpack_table - unpack a dfa table (one of accept, default, base, next check) * @blob: data to unpack (NOT NULL) * @bsize: size of blob * * Returns: pointer to table else NULL on failure * * NOTE: must be freed by kvfree (not kfree) */ static struct table_header *unpack_table(char *blob, size_t bsize) { struct table_header *table = NULL; struct table_header th; size_t tsize; if (bsize < sizeof(struct table_header)) goto out; /* loaded td_id's start at 1, subtract 1 now to avoid doing * it every time we use td_id as an index */ th.td_id = be16_to_cpu(*(__be16 *) (blob)) - 1; if (th.td_id > YYTD_ID_MAX) goto out; th.td_flags = be16_to_cpu(*(__be16 *) (blob + 2)); th.td_lolen = be32_to_cpu(*(__be32 *) (blob + 8)); blob += sizeof(struct table_header); if (!(th.td_flags == YYTD_DATA16 || th.td_flags == YYTD_DATA32 || th.td_flags == YYTD_DATA8)) goto out; /* if we have a table it must have some entries */ if (th.td_lolen == 0) goto out; tsize = table_size(th.td_lolen, th.td_flags); if (bsize < tsize) goto out; table = kvzalloc(tsize, GFP_KERNEL); if (table) { table->td_id = th.td_id; table->td_flags = th.td_flags; table->td_lolen = th.td_lolen; if (th.td_flags == YYTD_DATA8) UNPACK_ARRAY(table->td_data, blob, th.td_lolen, u8, u8, byte_to_byte); else if (th.td_flags == YYTD_DATA16) UNPACK_ARRAY(table->td_data, blob, th.td_lolen, u16, __be16, be16_to_cpu); else if (th.td_flags == YYTD_DATA32) UNPACK_ARRAY(table->td_data, blob, th.td_lolen, u32, __be32, be32_to_cpu); else goto fail; /* if table was vmalloced make sure the page tables are synced * before it is used, as it goes live to all cpus. */ if (is_vmalloc_addr(table)) vm_unmap_aliases(); } out: return table; fail: kvfree(table); return NULL; } /** * verify_table_headers - verify that the tables headers are as expected * @tables - array of dfa tables to check (NOT NULL) * @flags: flags controlling what type of accept table are acceptable * * Assumes dfa has gone through the first pass verification done by unpacking * NOTE: this does not valid accept table values * * Returns: %0 else error code on failure to verify */ static int verify_table_headers(struct table_header **tables, int flags) { size_t state_count, trans_count; int error = -EPROTO; /* check that required tables exist */ if (!(tables[YYTD_ID_DEF] && tables[YYTD_ID_BASE] && tables[YYTD_ID_NXT] && tables[YYTD_ID_CHK])) goto out; /* accept.size == default.size == base.size */ state_count = tables[YYTD_ID_BASE]->td_lolen; if (ACCEPT1_FLAGS(flags)) { if (!tables[YYTD_ID_ACCEPT]) goto out; if (state_count != tables[YYTD_ID_ACCEPT]->td_lolen) goto out; } if (ACCEPT2_FLAGS(flags)) { if (!tables[YYTD_ID_ACCEPT2]) goto out; if (state_count != tables[YYTD_ID_ACCEPT2]->td_lolen) goto out; } if (state_count != tables[YYTD_ID_DEF]->td_lolen) goto out; /* next.size == chk.size */ trans_count = tables[YYTD_ID_NXT]->td_lolen; if (trans_count != tables[YYTD_ID_CHK]->td_lolen) goto out; /* if equivalence classes then its table size must be 256 */ if (tables[YYTD_ID_EC] && tables[YYTD_ID_EC]->td_lolen != 256) goto out; error = 0; out: return error; } /** * verify_dfa - verify that transitions and states in the tables are in bounds. * @dfa: dfa to test (NOT NULL) * * Assumes dfa has gone through the first pass verification done by unpacking * NOTE: this does not valid accept table values * * Returns: %0 else error code on failure to verify */ static int verify_dfa(struct aa_dfa *dfa) { size_t i, state_count, trans_count; int error = -EPROTO; state_count = dfa->tables[YYTD_ID_BASE]->td_lolen; trans_count = dfa->tables[YYTD_ID_NXT]->td_lolen; if (state_count == 0) goto out; for (i = 0; i < state_count; i++) { if (!(BASE_TABLE(dfa)[i] & MATCH_FLAG_DIFF_ENCODE) && (DEFAULT_TABLE(dfa)[i] >= state_count)) goto out; if (BASE_TABLE(dfa)[i] & MATCH_FLAGS_INVALID) { pr_err("AppArmor DFA state with invalid match flags"); goto out; } if ((BASE_TABLE(dfa)[i] & MATCH_FLAG_DIFF_ENCODE)) { if (!(dfa->flags & YYTH_FLAG_DIFF_ENCODE)) { pr_err("AppArmor DFA diff encoded transition state without header flag"); goto out; } } if ((BASE_TABLE(dfa)[i] & MATCH_FLAG_OOB_TRANSITION)) { if (base_idx(BASE_TABLE(dfa)[i]) < dfa->max_oob) { pr_err("AppArmor DFA out of bad transition out of range"); goto out; } if (!(dfa->flags & YYTH_FLAG_OOB_TRANS)) { pr_err("AppArmor DFA out of bad transition state without header flag"); goto out; } } if (base_idx(BASE_TABLE(dfa)[i]) + 255 >= trans_count) { pr_err("AppArmor DFA next/check upper bounds error\n"); goto out; } } for (i = 0; i < trans_count; i++) { if (NEXT_TABLE(dfa)[i] >= state_count) goto out; if (CHECK_TABLE(dfa)[i] >= state_count) goto out; } /* Now that all the other tables are verified, verify diffencoding */ for (i = 0; i < state_count; i++) { size_t j, k; for (j = i; (BASE_TABLE(dfa)[j] & MATCH_FLAG_DIFF_ENCODE) && !(BASE_TABLE(dfa)[j] & MARK_DIFF_ENCODE); j = k) { k = DEFAULT_TABLE(dfa)[j]; if (j == k) goto out; if (k < j) break; /* already verified */ BASE_TABLE(dfa)[j] |= MARK_DIFF_ENCODE; } } error = 0; out: return error; } /** * dfa_free - free a dfa allocated by aa_dfa_unpack * @dfa: the dfa to free (MAYBE NULL) * * Requires: reference count to dfa == 0 */ static void dfa_free(struct aa_dfa *dfa) { if (dfa) { int i; for (i = 0; i < ARRAY_SIZE(dfa->tables); i++) { kvfree(dfa->tables[i]); dfa->tables[i] = NULL; } kfree(dfa); } } /** * aa_dfa_free_kref - free aa_dfa by kref (called by aa_put_dfa) * @kr: kref callback for freeing of a dfa (NOT NULL) */ void aa_dfa_free_kref(struct kref *kref) { struct aa_dfa *dfa = container_of(kref, struct aa_dfa, count); dfa_free(dfa); } /** * aa_dfa_unpack - unpack the binary tables of a serialized dfa * @blob: aligned serialized stream of data to unpack (NOT NULL) * @size: size of data to unpack * @flags: flags controlling what type of accept tables are acceptable * * Unpack a dfa that has been serialized. To find information on the dfa * format look in Documentation/admin-guide/LSM/apparmor.rst * Assumes the dfa @blob stream has been aligned on a 8 byte boundary * * Returns: an unpacked dfa ready for matching or ERR_PTR on failure */ struct aa_dfa *aa_dfa_unpack(void *blob, size_t size, int flags) { int hsize; int error = -ENOMEM; char *data = blob; struct table_header *table = NULL; struct aa_dfa *dfa = kzalloc(sizeof(struct aa_dfa), GFP_KERNEL); if (!dfa) goto fail; kref_init(&dfa->count); error = -EPROTO; /* get dfa table set header */ if (size < sizeof(struct table_set_header)) goto fail; if (ntohl(*(__be32 *) data) != YYTH_MAGIC) goto fail; hsize = ntohl(*(__be32 *) (data + 4)); if (size < hsize) goto fail; dfa->flags = ntohs(*(__be16 *) (data + 12)); if (dfa->flags & ~(YYTH_FLAGS)) goto fail; /* * TODO: needed for dfa to support more than 1 oob * if (dfa->flags & YYTH_FLAGS_OOB_TRANS) { * if (hsize < 16 + 4) * goto fail; * dfa->max_oob = ntol(*(__be32 *) (data + 16)); * if (dfa->max <= MAX_OOB_SUPPORTED) { * pr_err("AppArmor DFA OOB greater than supported\n"); * goto fail; * } * } */ dfa->max_oob = 1; data += hsize; size -= hsize; while (size > 0) { table = unpack_table(data, size); if (!table) goto fail; switch (table->td_id) { case YYTD_ID_ACCEPT: if (!(table->td_flags & ACCEPT1_FLAGS(flags))) goto fail; break; case YYTD_ID_ACCEPT2: if (!(table->td_flags & ACCEPT2_FLAGS(flags))) goto fail; break; case YYTD_ID_BASE: if (table->td_flags != YYTD_DATA32) goto fail; break; case YYTD_ID_DEF: case YYTD_ID_NXT: case YYTD_ID_CHK: if (table->td_flags != YYTD_DATA16) goto fail; break; case YYTD_ID_EC: if (table->td_flags != YYTD_DATA8) goto fail; break; default: goto fail; } /* check for duplicate table entry */ if (dfa->tables[table->td_id]) goto fail; dfa->tables[table->td_id] = table; data += table_size(table->td_lolen, table->td_flags); size -= table_size(table->td_lolen, table->td_flags); table = NULL; } error = verify_table_headers(dfa->tables, flags); if (error) goto fail; if (flags & DFA_FLAG_VERIFY_STATES) { error = verify_dfa(dfa); if (error) goto fail; } return dfa; fail: kvfree(table); dfa_free(dfa); return ERR_PTR(error); } #define match_char(state, def, base, next, check, C) \ do { \ u32 b = (base)[(state)]; \ unsigned int pos = base_idx(b) + (C); \ if ((check)[pos] != (state)) { \ (state) = (def)[(state)]; \ if (b & MATCH_FLAG_DIFF_ENCODE) \ continue; \ break; \ } \ (state) = (next)[pos]; \ break; \ } while (1) /** * aa_dfa_match_len - traverse @dfa to find state @str stops at * @dfa: the dfa to match @str against (NOT NULL) * @start: the state of the dfa to start matching in * @str: the string of bytes to match against the dfa (NOT NULL) * @len: length of the string of bytes to match * * aa_dfa_match_len will match @str against the dfa and return the state it * finished matching in. The final state can be used to look up the accepting * label, or as the start state of a continuing match. * * This function will happily match again the 0 byte and only finishes * when @len input is consumed. * * Returns: final state reached after input is consumed */ unsigned int aa_dfa_match_len(struct aa_dfa *dfa, unsigned int start, const char *str, int len) { u16 *def = DEFAULT_TABLE(dfa); u32 *base = BASE_TABLE(dfa); u16 *next = NEXT_TABLE(dfa); u16 *check = CHECK_TABLE(dfa); unsigned int state = start; if (state == 0) return 0; /* current state is <state>, matching character *str */ if (dfa->tables[YYTD_ID_EC]) { /* Equivalence class table defined */ u8 *equiv = EQUIV_TABLE(dfa); for (; len; len--) match_char(state, def, base, next, check, equiv[(u8) *str++]); } else { /* default is direct to next state */ for (; len; len--) match_char(state, def, base, next, check, (u8) *str++); } return state; } /** * aa_dfa_match - traverse @dfa to find state @str stops at * @dfa: the dfa to match @str against (NOT NULL) * @start: the state of the dfa to start matching in * @str: the null terminated string of bytes to match against the dfa (NOT NULL) * * aa_dfa_match will match @str against the dfa and return the state it * finished matching in. The final state can be used to look up the accepting * label, or as the start state of a continuing match. * * Returns: final state reached after input is consumed */ unsigned int aa_dfa_match(struct aa_dfa *dfa, unsigned int start, const char *str) { u16 *def = DEFAULT_TABLE(dfa); u32 *base = BASE_TABLE(dfa); u16 *next = NEXT_TABLE(dfa); u16 *check = CHECK_TABLE(dfa); unsigned int state = start; if (state == 0) return 0; /* current state is <state>, matching character *str */ if (dfa->tables[YYTD_ID_EC]) { /* Equivalence class table defined */ u8 *equiv = EQUIV_TABLE(dfa); /* default is direct to next state */ while (*str) match_char(state, def, base, next, check, equiv[(u8) *str++]); } else { /* default is direct to next state */ while (*str) match_char(state, def, base, next, check, (u8) *str++); } return state; } /** * aa_dfa_next - step one character to the next state in the dfa * @dfa: the dfa to traverse (NOT NULL) * @state: the state to start in * @c: the input character to transition on * * aa_dfa_match will step through the dfa by one input character @c * * Returns: state reach after input @c */ unsigned int aa_dfa_next(struct aa_dfa *dfa, unsigned int state, const char c) { u16 *def = DEFAULT_TABLE(dfa); u32 *base = BASE_TABLE(dfa); u16 *next = NEXT_TABLE(dfa); u16 *check = CHECK_TABLE(dfa); /* current state is <state>, matching character *str */ if (dfa->tables[YYTD_ID_EC]) { /* Equivalence class table defined */ u8 *equiv = EQUIV_TABLE(dfa); match_char(state, def, base, next, check, equiv[(u8) c]); } else match_char(state, def, base, next, check, (u8) c); return state; } unsigned int aa_dfa_outofband_transition(struct aa_dfa *dfa, unsigned int state) { u16 *def = DEFAULT_TABLE(dfa); u32 *base = BASE_TABLE(dfa); u16 *next = NEXT_TABLE(dfa); u16 *check = CHECK_TABLE(dfa); u32 b = (base)[(state)]; if (!(b & MATCH_FLAG_OOB_TRANSITION)) return DFA_NOMATCH; /* No Equivalence class remapping for outofband transitions */ match_char(state, def, base, next, check, -1); return state; } /** * aa_dfa_match_until - traverse @dfa until accept state or end of input * @dfa: the dfa to match @str against (NOT NULL) * @start: the state of the dfa to start matching in * @str: the null terminated string of bytes to match against the dfa (NOT NULL) * @retpos: first character in str after match OR end of string * * aa_dfa_match will match @str against the dfa and return the state it * finished matching in. The final state can be used to look up the accepting * label, or as the start state of a continuing match. * * Returns: final state reached after input is consumed */ unsigned int aa_dfa_match_until(struct aa_dfa *dfa, unsigned int start, const char *str, const char **retpos) { u16 *def = DEFAULT_TABLE(dfa); u32 *base = BASE_TABLE(dfa); u16 *next = NEXT_TABLE(dfa); u16 *check = CHECK_TABLE(dfa); u32 *accept = ACCEPT_TABLE(dfa); unsigned int state = start, pos; if (state == 0) return 0; /* current state is <state>, matching character *str */ if (dfa->tables[YYTD_ID_EC]) { /* Equivalence class table defined */ u8 *equiv = EQUIV_TABLE(dfa); /* default is direct to next state */ while (*str) { pos = base_idx(base[state]) + equiv[(u8) *str++]; if (check[pos] == state) state = next[pos]; else state = def[state]; if (accept[state]) break; } } else { /* default is direct to next state */ while (*str) { pos = base_idx(base[state]) + (u8) *str++; if (check[pos] == state) state = next[pos]; else state = def[state]; if (accept[state]) break; } } *retpos = str; return state; } /** * aa_dfa_matchn_until - traverse @dfa until accept or @n bytes consumed * @dfa: the dfa to match @str against (NOT NULL) * @start: the state of the dfa to start matching in * @str: the string of bytes to match against the dfa (NOT NULL) * @n: length of the string of bytes to match * @retpos: first character in str after match OR str + n * * aa_dfa_match_len will match @str against the dfa and return the state it * finished matching in. The final state can be used to look up the accepting * label, or as the start state of a continuing match. * * This function will happily match again the 0 byte and only finishes * when @n input is consumed. * * Returns: final state reached after input is consumed */ unsigned int aa_dfa_matchn_until(struct aa_dfa *dfa, unsigned int start, const char *str, int n, const char **retpos) { u16 *def = DEFAULT_TABLE(dfa); u32 *base = BASE_TABLE(dfa); u16 *next = NEXT_TABLE(dfa); u16 *check = CHECK_TABLE(dfa); u32 *accept = ACCEPT_TABLE(dfa); unsigned int state = start, pos; *retpos = NULL; if (state == 0) return 0; /* current state is <state>, matching character *str */ if (dfa->tables[YYTD_ID_EC]) { /* Equivalence class table defined */ u8 *equiv = EQUIV_TABLE(dfa); /* default is direct to next state */ for (; n; n--) { pos = base_idx(base[state]) + equiv[(u8) *str++]; if (check[pos] == state) state = next[pos]; else state = def[state]; if (accept[state]) break; } } else { /* default is direct to next state */ for (; n; n--) { pos = base_idx(base[state]) + (u8) *str++; if (check[pos] == state) state = next[pos]; else state = def[state]; if (accept[state]) break; } } *retpos = str; return state; } #define inc_wb_pos(wb) \ do { \ wb->pos = (wb->pos + 1) & (WB_HISTORY_SIZE - 1); \ wb->len = (wb->len + 1) & (WB_HISTORY_SIZE - 1); \ } while (0) /* For DFAs that don't support extended tagging of states */ static bool is_loop(struct match_workbuf *wb, unsigned int state, unsigned int *adjust) { unsigned int pos = wb->pos; unsigned int i; if (wb->history[pos] < state) return false; for (i = 0; i <= wb->len; i++) { if (wb->history[pos] == state) { *adjust = i; return true; } if (pos == 0) pos = WB_HISTORY_SIZE; pos--; } *adjust = i; return true; } static unsigned int leftmatch_fb(struct aa_dfa *dfa, unsigned int start, const char *str, struct match_workbuf *wb, unsigned int *count) { u16 *def = DEFAULT_TABLE(dfa); u32 *base = BASE_TABLE(dfa); u16 *next = NEXT_TABLE(dfa); u16 *check = CHECK_TABLE(dfa); unsigned int state = start, pos; AA_BUG(!dfa); AA_BUG(!str); AA_BUG(!wb); AA_BUG(!count); *count = 0; if (state == 0) return 0; /* current state is <state>, matching character *str */ if (dfa->tables[YYTD_ID_EC]) { /* Equivalence class table defined */ u8 *equiv = EQUIV_TABLE(dfa); /* default is direct to next state */ while (*str) { unsigned int adjust; wb->history[wb->pos] = state; pos = base_idx(base[state]) + equiv[(u8) *str++]; if (check[pos] == state) state = next[pos]; else state = def[state]; if (is_loop(wb, state, &adjust)) { state = aa_dfa_match(dfa, state, str); *count -= adjust; goto out; } inc_wb_pos(wb); (*count)++; } } else { /* default is direct to next state */ while (*str) { unsigned int adjust; wb->history[wb->pos] = state; pos = base_idx(base[state]) + (u8) *str++; if (check[pos] == state) state = next[pos]; else state = def[state]; if (is_loop(wb, state, &adjust)) { state = aa_dfa_match(dfa, state, str); *count -= adjust; goto out; } inc_wb_pos(wb); (*count)++; } } out: if (!state) *count = 0; return state; } /** * aa_dfa_leftmatch - traverse @dfa to find state @str stops at * @dfa: the dfa to match @str against (NOT NULL) * @start: the state of the dfa to start matching in * @str: the null terminated string of bytes to match against the dfa (NOT NULL) * @count: current count of longest left. * * aa_dfa_match will match @str against the dfa and return the state it * finished matching in. The final state can be used to look up the accepting * label, or as the start state of a continuing match. * * Returns: final state reached after input is consumed */ unsigned int aa_dfa_leftmatch(struct aa_dfa *dfa, unsigned int start, const char *str, unsigned int *count) { DEFINE_MATCH_WB(wb); /* TODO: match for extended state dfas */ return leftmatch_fb(dfa, start, str, &wb, count); }