// SPDX-License-Identifier: GPL-2.0 /* * linux/net/sunrpc/xprtsock.c * * Client-side transport implementation for sockets. * * TCP callback races fixes (C) 1998 Red Hat * TCP send fixes (C) 1998 Red Hat * TCP NFS related read + write fixes * (C) 1999 Dave Airlie, University of Limerick, Ireland * * Rewrite of larges part of the code in order to stabilize TCP stuff. * Fix behaviour when socket buffer is full. * (C) 1999 Trond Myklebust * * IP socket transport implementation, (C) 2005 Chuck Lever * * IPv6 support contributed by Gilles Quillard, Bull Open Source, 2005. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SUNRPC_BACKCHANNEL #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include "socklib.h" #include "sunrpc.h" static void xs_close(struct rpc_xprt *xprt); static void xs_set_srcport(struct sock_xprt *transport, struct socket *sock); static void xs_tcp_set_socket_timeouts(struct rpc_xprt *xprt, struct socket *sock); /* * xprtsock tunables */ static unsigned int xprt_udp_slot_table_entries = RPC_DEF_SLOT_TABLE; static unsigned int xprt_tcp_slot_table_entries = RPC_MIN_SLOT_TABLE; static unsigned int xprt_max_tcp_slot_table_entries = RPC_MAX_SLOT_TABLE; static unsigned int xprt_min_resvport = RPC_DEF_MIN_RESVPORT; static unsigned int xprt_max_resvport = RPC_DEF_MAX_RESVPORT; #define XS_TCP_LINGER_TO (15U * HZ) static unsigned int xs_tcp_fin_timeout __read_mostly = XS_TCP_LINGER_TO; /* * We can register our own files under /proc/sys/sunrpc by * calling register_sysctl() again. The files in that * directory become the union of all files registered there. * * We simply need to make sure that we don't collide with * someone else's file names! */ static unsigned int min_slot_table_size = RPC_MIN_SLOT_TABLE; static unsigned int max_slot_table_size = RPC_MAX_SLOT_TABLE; static unsigned int max_tcp_slot_table_limit = RPC_MAX_SLOT_TABLE_LIMIT; static unsigned int xprt_min_resvport_limit = RPC_MIN_RESVPORT; static unsigned int xprt_max_resvport_limit = RPC_MAX_RESVPORT; static struct ctl_table_header *sunrpc_table_header; static struct xprt_class xs_local_transport; static struct xprt_class xs_udp_transport; static struct xprt_class xs_tcp_transport; static struct xprt_class xs_tcp_tls_transport; static struct xprt_class xs_bc_tcp_transport; /* * FIXME: changing the UDP slot table size should also resize the UDP * socket buffers for existing UDP transports */ static struct ctl_table xs_tunables_table[] = { { .procname = "udp_slot_table_entries", .data = &xprt_udp_slot_table_entries, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = &min_slot_table_size, .extra2 = &max_slot_table_size }, { .procname = "tcp_slot_table_entries", .data = &xprt_tcp_slot_table_entries, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = &min_slot_table_size, .extra2 = &max_slot_table_size }, { .procname = "tcp_max_slot_table_entries", .data = &xprt_max_tcp_slot_table_entries, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = &min_slot_table_size, .extra2 = &max_tcp_slot_table_limit }, { .procname = "min_resvport", .data = &xprt_min_resvport, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = &xprt_min_resvport_limit, .extra2 = &xprt_max_resvport_limit }, { .procname = "max_resvport", .data = &xprt_max_resvport, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = &xprt_min_resvport_limit, .extra2 = &xprt_max_resvport_limit }, { .procname = "tcp_fin_timeout", .data = &xs_tcp_fin_timeout, .maxlen = sizeof(xs_tcp_fin_timeout), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { }, }; /* * Wait duration for a reply from the RPC portmapper. */ #define XS_BIND_TO (60U * HZ) /* * Delay if a UDP socket connect error occurs. This is most likely some * kind of resource problem on the local host. */ #define XS_UDP_REEST_TO (2U * HZ) /* * The reestablish timeout allows clients to delay for a bit before attempting * to reconnect to a server that just dropped our connection. * * We implement an exponential backoff when trying to reestablish a TCP * transport connection with the server. Some servers like to drop a TCP * connection when they are overworked, so we start with a short timeout and * increase over time if the server is down or not responding. */ #define XS_TCP_INIT_REEST_TO (3U * HZ) /* * TCP idle timeout; client drops the transport socket if it is idle * for this long. Note that we also timeout UDP sockets to prevent * holding port numbers when there is no RPC traffic. */ #define XS_IDLE_DISC_TO (5U * 60 * HZ) /* * TLS handshake timeout. */ #define XS_TLS_HANDSHAKE_TO (10U * HZ) #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) # undef RPC_DEBUG_DATA # define RPCDBG_FACILITY RPCDBG_TRANS #endif #ifdef RPC_DEBUG_DATA static void xs_pktdump(char *msg, u32 *packet, unsigned int count) { u8 *buf = (u8 *) packet; int j; dprintk("RPC: %s\n", msg); for (j = 0; j < count && j < 128; j += 4) { if (!(j & 31)) { if (j) dprintk("\n"); dprintk("0x%04x ", j); } dprintk("%02x%02x%02x%02x ", buf[j], buf[j+1], buf[j+2], buf[j+3]); } dprintk("\n"); } #else static inline void xs_pktdump(char *msg, u32 *packet, unsigned int count) { /* NOP */ } #endif static inline struct rpc_xprt *xprt_from_sock(struct sock *sk) { return (struct rpc_xprt *) sk->sk_user_data; } static inline struct sockaddr *xs_addr(struct rpc_xprt *xprt) { return (struct sockaddr *) &xprt->addr; } static inline struct sockaddr_un *xs_addr_un(struct rpc_xprt *xprt) { return (struct sockaddr_un *) &xprt->addr; } static inline struct sockaddr_in *xs_addr_in(struct rpc_xprt *xprt) { return (struct sockaddr_in *) &xprt->addr; } static inline struct sockaddr_in6 *xs_addr_in6(struct rpc_xprt *xprt) { return (struct sockaddr_in6 *) &xprt->addr; } static void xs_format_common_peer_addresses(struct rpc_xprt *xprt) { struct sockaddr *sap = xs_addr(xprt); struct sockaddr_in6 *sin6; struct sockaddr_in *sin; struct sockaddr_un *sun; char buf[128]; switch (sap->sa_family) { case AF_LOCAL: sun = xs_addr_un(xprt); if (sun->sun_path[0]) { strscpy(buf, sun->sun_path, sizeof(buf)); } else { buf[0] = '@'; strscpy(buf+1, sun->sun_path+1, sizeof(buf)-1); } xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL); break; case AF_INET: (void)rpc_ntop(sap, buf, sizeof(buf)); xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL); sin = xs_addr_in(xprt); snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr)); break; case AF_INET6: (void)rpc_ntop(sap, buf, sizeof(buf)); xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL); sin6 = xs_addr_in6(xprt); snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr); break; default: BUG(); } xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); } static void xs_format_common_peer_ports(struct rpc_xprt *xprt) { struct sockaddr *sap = xs_addr(xprt); char buf[128]; snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap)); xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL); snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap)); xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL); } static void xs_format_peer_addresses(struct rpc_xprt *xprt, const char *protocol, const char *netid) { xprt->address_strings[RPC_DISPLAY_PROTO] = protocol; xprt->address_strings[RPC_DISPLAY_NETID] = netid; xs_format_common_peer_addresses(xprt); xs_format_common_peer_ports(xprt); } static void xs_update_peer_port(struct rpc_xprt *xprt) { kfree(xprt->address_strings[RPC_DISPLAY_HEX_PORT]); kfree(xprt->address_strings[RPC_DISPLAY_PORT]); xs_format_common_peer_ports(xprt); } static void xs_free_peer_addresses(struct rpc_xprt *xprt) { unsigned int i; for (i = 0; i < RPC_DISPLAY_MAX; i++) switch (i) { case RPC_DISPLAY_PROTO: case RPC_DISPLAY_NETID: continue; default: kfree(xprt->address_strings[i]); } } static size_t xs_alloc_sparse_pages(struct xdr_buf *buf, size_t want, gfp_t gfp) { size_t i,n; if (!want || !(buf->flags & XDRBUF_SPARSE_PAGES)) return want; n = (buf->page_base + want + PAGE_SIZE - 1) >> PAGE_SHIFT; for (i = 0; i < n; i++) { if (buf->pages[i]) continue; buf->bvec[i].bv_page = buf->pages[i] = alloc_page(gfp); if (!buf->pages[i]) { i *= PAGE_SIZE; return i > buf->page_base ? i - buf->page_base : 0; } } return want; } static int xs_sock_process_cmsg(struct socket *sock, struct msghdr *msg, struct cmsghdr *cmsg, int ret) { u8 content_type = tls_get_record_type(sock->sk, cmsg); u8 level, description; switch (content_type) { case 0: break; case TLS_RECORD_TYPE_DATA: /* TLS sets EOR at the end of each application data * record, even though there might be more frames * waiting to be decrypted. */ msg->msg_flags &= ~MSG_EOR; break; case TLS_RECORD_TYPE_ALERT: tls_alert_recv(sock->sk, msg, &level, &description); ret = (level == TLS_ALERT_LEVEL_FATAL) ? -EACCES : -EAGAIN; break; default: /* discard this record type */ ret = -EAGAIN; } return ret; } static int xs_sock_recv_cmsg(struct socket *sock, struct msghdr *msg, int flags) { union { struct cmsghdr cmsg; u8 buf[CMSG_SPACE(sizeof(u8))]; } u; int ret; msg->msg_control = &u; msg->msg_controllen = sizeof(u); ret = sock_recvmsg(sock, msg, flags); if (msg->msg_controllen != sizeof(u)) ret = xs_sock_process_cmsg(sock, msg, &u.cmsg, ret); return ret; } static ssize_t xs_sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags, size_t seek) { ssize_t ret; if (seek != 0) iov_iter_advance(&msg->msg_iter, seek); ret = xs_sock_recv_cmsg(sock, msg, flags); return ret > 0 ? ret + seek : ret; } static ssize_t xs_read_kvec(struct socket *sock, struct msghdr *msg, int flags, struct kvec *kvec, size_t count, size_t seek) { iov_iter_kvec(&msg->msg_iter, ITER_DEST, kvec, 1, count); return xs_sock_recvmsg(sock, msg, flags, seek); } static ssize_t xs_read_bvec(struct socket *sock, struct msghdr *msg, int flags, struct bio_vec *bvec, unsigned long nr, size_t count, size_t seek) { iov_iter_bvec(&msg->msg_iter, ITER_DEST, bvec, nr, count); return xs_sock_recvmsg(sock, msg, flags, seek); } static ssize_t xs_read_discard(struct socket *sock, struct msghdr *msg, int flags, size_t count) { iov_iter_discard(&msg->msg_iter, ITER_DEST, count); return xs_sock_recv_cmsg(sock, msg, flags); } #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE static void xs_flush_bvec(const struct bio_vec *bvec, size_t count, size_t seek) { struct bvec_iter bi = { .bi_size = count, }; struct bio_vec bv; bvec_iter_advance(bvec, &bi, seek & PAGE_MASK); for_each_bvec(bv, bvec, bi, bi) flush_dcache_page(bv.bv_page); } #else static inline void xs_flush_bvec(const struct bio_vec *bvec, size_t count, size_t seek) { } #endif static ssize_t xs_read_xdr_buf(struct socket *sock, struct msghdr *msg, int flags, struct xdr_buf *buf, size_t count, size_t seek, size_t *read) { size_t want, seek_init = seek, offset = 0; ssize_t ret; want = min_t(size_t, count, buf->head[0].iov_len); if (seek < want) { ret = xs_read_kvec(sock, msg, flags, &buf->head[0], want, seek); if (ret <= 0) goto sock_err; offset += ret; if (offset == count || msg->msg_flags & (MSG_EOR|MSG_TRUNC)) goto out; if (ret != want) goto out; seek = 0; } else { seek -= want; offset += want; } want = xs_alloc_sparse_pages( buf, min_t(size_t, count - offset, buf->page_len), GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); if (seek < want) { ret = xs_read_bvec(sock, msg, flags, buf->bvec, xdr_buf_pagecount(buf), want + buf->page_base, seek + buf->page_base); if (ret <= 0) goto sock_err; xs_flush_bvec(buf->bvec, ret, seek + buf->page_base); ret -= buf->page_base; offset += ret; if (offset == count || msg->msg_flags & (MSG_EOR|MSG_TRUNC)) goto out; if (ret != want) goto out; seek = 0; } else { seek -= want; offset += want; } want = min_t(size_t, count - offset, buf->tail[0].iov_len); if (seek < want) { ret = xs_read_kvec(sock, msg, flags, &buf->tail[0], want, seek); if (ret <= 0) goto sock_err; offset += ret; if (offset == count || msg->msg_flags & (MSG_EOR|MSG_TRUNC)) goto out; if (ret != want) goto out; } else if (offset < seek_init) offset = seek_init; ret = -EMSGSIZE; out: *read = offset - seek_init; return ret; sock_err: offset += seek; goto out; } static void xs_read_header(struct sock_xprt *transport, struct xdr_buf *buf) { if (!transport->recv.copied) { if (buf->head[0].iov_len >= transport->recv.offset) memcpy(buf->head[0].iov_base, &transport->recv.xid, transport->recv.offset); transport->recv.copied = transport->recv.offset; } } static bool xs_read_stream_request_done(struct sock_xprt *transport) { return transport->recv.fraghdr & cpu_to_be32(RPC_LAST_STREAM_FRAGMENT); } static void xs_read_stream_check_eor(struct sock_xprt *transport, struct msghdr *msg) { if (xs_read_stream_request_done(transport)) msg->msg_flags |= MSG_EOR; } static ssize_t xs_read_stream_request(struct sock_xprt *transport, struct msghdr *msg, int flags, struct rpc_rqst *req) { struct xdr_buf *buf = &req->rq_private_buf; size_t want, read; ssize_t ret; xs_read_header(transport, buf); want = transport->recv.len - transport->recv.offset; if (want != 0) { ret = xs_read_xdr_buf(transport->sock, msg, flags, buf, transport->recv.copied + want, transport->recv.copied, &read); transport->recv.offset += read; transport->recv.copied += read; } if (transport->recv.offset == transport->recv.len) xs_read_stream_check_eor(transport, msg); if (want == 0) return 0; switch (ret) { default: break; case -EFAULT: case -EMSGSIZE: msg->msg_flags |= MSG_TRUNC; return read; case 0: return -ESHUTDOWN; } return ret < 0 ? ret : read; } static size_t xs_read_stream_headersize(bool isfrag) { if (isfrag) return sizeof(__be32); return 3 * sizeof(__be32); } static ssize_t xs_read_stream_header(struct sock_xprt *transport, struct msghdr *msg, int flags, size_t want, size_t seek) { struct kvec kvec = { .iov_base = &transport->recv.fraghdr, .iov_len = want, }; return xs_read_kvec(transport->sock, msg, flags, &kvec, want, seek); } #if defined(CONFIG_SUNRPC_BACKCHANNEL) static ssize_t xs_read_stream_call(struct sock_xprt *transport, struct msghdr *msg, int flags) { struct rpc_xprt *xprt = &transport->xprt; struct rpc_rqst *req; ssize_t ret; /* Is this transport associated with the backchannel? */ if (!xprt->bc_serv) return -ESHUTDOWN; /* Look up and lock the request corresponding to the given XID */ req = xprt_lookup_bc_request(xprt, transport->recv.xid); if (!req) { printk(KERN_WARNING "Callback slot table overflowed\n"); return -ESHUTDOWN; } if (transport->recv.copied && !req->rq_private_buf.len) return -ESHUTDOWN; ret = xs_read_stream_request(transport, msg, flags, req); if (msg->msg_flags & (MSG_EOR|MSG_TRUNC)) xprt_complete_bc_request(req, transport->recv.copied); else req->rq_private_buf.len = transport->recv.copied; return ret; } #else /* CONFIG_SUNRPC_BACKCHANNEL */ static ssize_t xs_read_stream_call(struct sock_xprt *transport, struct msghdr *msg, int flags) { return -ESHUTDOWN; } #endif /* CONFIG_SUNRPC_BACKCHANNEL */ static ssize_t xs_read_stream_reply(struct sock_xprt *transport, struct msghdr *msg, int flags) { struct rpc_xprt *xprt = &transport->xprt; struct rpc_rqst *req; ssize_t ret = 0; /* Look up and lock the request corresponding to the given XID */ spin_lock(&xprt->queue_lock); req = xprt_lookup_rqst(xprt, transport->recv.xid); if (!req || (transport->recv.copied && !req->rq_private_buf.len)) { msg->msg_flags |= MSG_TRUNC; goto out; } xprt_pin_rqst(req); spin_unlock(&xprt->queue_lock); ret = xs_read_stream_request(transport, msg, flags, req); spin_lock(&xprt->queue_lock); if (msg->msg_flags & (MSG_EOR|MSG_TRUNC)) xprt_complete_rqst(req->rq_task, transport->recv.copied); else req->rq_private_buf.len = transport->recv.copied; xprt_unpin_rqst(req); out: spin_unlock(&xprt->queue_lock); return ret; } static ssize_t xs_read_stream(struct sock_xprt *transport, int flags) { struct msghdr msg = { 0 }; size_t want, read = 0; ssize_t ret = 0; if (transport->recv.len == 0) { want = xs_read_stream_headersize(transport->recv.copied != 0); ret = xs_read_stream_header(transport, &msg, flags, want, transport->recv.offset); if (ret <= 0) goto out_err; transport->recv.offset = ret; if (transport->recv.offset != want) return transport->recv.offset; transport->recv.len = be32_to_cpu(transport->recv.fraghdr) & RPC_FRAGMENT_SIZE_MASK; transport->recv.offset -= sizeof(transport->recv.fraghdr); read = ret; } switch (be32_to_cpu(transport->recv.calldir)) { default: msg.msg_flags |= MSG_TRUNC; break; case RPC_CALL: ret = xs_read_stream_call(transport, &msg, flags); break; case RPC_REPLY: ret = xs_read_stream_reply(transport, &msg, flags); } if (msg.msg_flags & MSG_TRUNC) { transport->recv.calldir = cpu_to_be32(-1); transport->recv.copied = -1; } if (ret < 0) goto out_err; read += ret; if (transport->recv.offset < transport->recv.len) { if (!(msg.msg_flags & MSG_TRUNC)) return read; msg.msg_flags = 0; ret = xs_read_discard(transport->sock, &msg, flags, transport->recv.len - transport->recv.offset); if (ret <= 0) goto out_err; transport->recv.offset += ret; read += ret; if (transport->recv.offset != transport->recv.len) return read; } if (xs_read_stream_request_done(transport)) { trace_xs_stream_read_request(transport); transport->recv.copied = 0; } transport->recv.offset = 0; transport->recv.len = 0; return read; out_err: return ret != 0 ? ret : -ESHUTDOWN; } static __poll_t xs_poll_socket(struct sock_xprt *transport) { return transport->sock->ops->poll(transport->file, transport->sock, NULL); } static bool xs_poll_socket_readable(struct sock_xprt *transport) { __poll_t events = xs_poll_socket(transport); return (events & (EPOLLIN | EPOLLRDNORM)) && !(events & EPOLLRDHUP); } static void xs_poll_check_readable(struct sock_xprt *transport) { clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state); if (test_bit(XPRT_SOCK_IGNORE_RECV, &transport->sock_state)) return; if (!xs_poll_socket_readable(transport)) return; if (!test_and_set_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) queue_work(xprtiod_workqueue, &transport->recv_worker); } static void xs_stream_data_receive(struct sock_xprt *transport) { size_t read = 0; ssize_t ret = 0; mutex_lock(&transport->recv_mutex); if (transport->sock == NULL) goto out; for (;;) { ret = xs_read_stream(transport, MSG_DONTWAIT); if (ret < 0) break; read += ret; cond_resched(); } if (ret == -ESHUTDOWN) kernel_sock_shutdown(transport->sock, SHUT_RDWR); else if (ret == -EACCES) xprt_wake_pending_tasks(&transport->xprt, -EACCES); else xs_poll_check_readable(transport); out: mutex_unlock(&transport->recv_mutex); trace_xs_stream_read_data(&transport->xprt, ret, read); } static void xs_stream_data_receive_workfn(struct work_struct *work) { struct sock_xprt *transport = container_of(work, struct sock_xprt, recv_worker); unsigned int pflags = memalloc_nofs_save(); xs_stream_data_receive(transport); memalloc_nofs_restore(pflags); } static void xs_stream_reset_connect(struct sock_xprt *transport) { transport->recv.offset = 0; transport->recv.len = 0; transport->recv.copied = 0; transport->xmit.offset = 0; } static void xs_stream_start_connect(struct sock_xprt *transport) { transport->xprt.stat.connect_count++; transport->xprt.stat.connect_start = jiffies; } #define XS_SENDMSG_FLAGS (MSG_DONTWAIT | MSG_NOSIGNAL) /** * xs_nospace - handle transmit was incomplete * @req: pointer to RPC request * @transport: pointer to struct sock_xprt * */ static int xs_nospace(struct rpc_rqst *req, struct sock_xprt *transport) { struct rpc_xprt *xprt = &transport->xprt; struct sock *sk = transport->inet; int ret = -EAGAIN; trace_rpc_socket_nospace(req, transport); /* Protect against races with write_space */ spin_lock(&xprt->transport_lock); /* Don't race with disconnect */ if (xprt_connected(xprt)) { /* wait for more buffer space */ set_bit(XPRT_SOCK_NOSPACE, &transport->sock_state); set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); sk->sk_write_pending++; xprt_wait_for_buffer_space(xprt); } else ret = -ENOTCONN; spin_unlock(&xprt->transport_lock); return ret; } static int xs_sock_nospace(struct rpc_rqst *req) { struct sock_xprt *transport = container_of(req->rq_xprt, struct sock_xprt, xprt); struct sock *sk = transport->inet; int ret = -EAGAIN; lock_sock(sk); if (!sock_writeable(sk)) ret = xs_nospace(req, transport); release_sock(sk); return ret; } static int xs_stream_nospace(struct rpc_rqst *req, bool vm_wait) { struct sock_xprt *transport = container_of(req->rq_xprt, struct sock_xprt, xprt); struct sock *sk = transport->inet; int ret = -EAGAIN; if (vm_wait) return -ENOBUFS; lock_sock(sk); if (!sk_stream_memory_free(sk)) ret = xs_nospace(req, transport); release_sock(sk); return ret; } static int xs_stream_prepare_request(struct rpc_rqst *req, struct xdr_buf *buf) { return xdr_alloc_bvec(buf, rpc_task_gfp_mask()); } /* * Determine if the previous message in the stream was aborted before it * could complete transmission. */ static bool xs_send_request_was_aborted(struct sock_xprt *transport, struct rpc_rqst *req) { return transport->xmit.offset != 0 && req->rq_bytes_sent == 0; } /* * Return the stream record marker field for a record of length < 2^31-1 */ static rpc_fraghdr xs_stream_record_marker(struct xdr_buf *xdr) { if (!xdr->len) return 0; return cpu_to_be32(RPC_LAST_STREAM_FRAGMENT | (u32)xdr->len); } /** * xs_local_send_request - write an RPC request to an AF_LOCAL socket * @req: pointer to RPC request * * Return values: * 0: The request has been sent * EAGAIN: The socket was blocked, please call again later to * complete the request * ENOTCONN: Caller needs to invoke connect logic then call again * other: Some other error occurred, the request was not sent */ static int xs_local_send_request(struct rpc_rqst *req) { struct rpc_xprt *xprt = req->rq_xprt; struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); struct xdr_buf *xdr = &req->rq_snd_buf; rpc_fraghdr rm = xs_stream_record_marker(xdr); unsigned int msglen = rm ? req->rq_slen + sizeof(rm) : req->rq_slen; struct msghdr msg = { .msg_flags = XS_SENDMSG_FLAGS, }; bool vm_wait; unsigned int sent; int status; /* Close the stream if the previous transmission was incomplete */ if (xs_send_request_was_aborted(transport, req)) { xprt_force_disconnect(xprt); return -ENOTCONN; } xs_pktdump("packet data:", req->rq_svec->iov_base, req->rq_svec->iov_len); vm_wait = sk_stream_is_writeable(transport->inet) ? true : false; req->rq_xtime = ktime_get(); status = xprt_sock_sendmsg(transport->sock, &msg, xdr, transport->xmit.offset, rm, &sent); dprintk("RPC: %s(%u) = %d\n", __func__, xdr->len - transport->xmit.offset, status); if (likely(sent > 0) || status == 0) { transport->xmit.offset += sent; req->rq_bytes_sent = transport->xmit.offset; if (likely(req->rq_bytes_sent >= msglen)) { req->rq_xmit_bytes_sent += transport->xmit.offset; transport->xmit.offset = 0; return 0; } status = -EAGAIN; vm_wait = false; } switch (status) { case -EAGAIN: status = xs_stream_nospace(req, vm_wait); break; default: dprintk("RPC: sendmsg returned unrecognized error %d\n", -status); fallthrough; case -EPIPE: xprt_force_disconnect(xprt); status = -ENOTCONN; } return status; } /** * xs_udp_send_request - write an RPC request to a UDP socket * @req: pointer to RPC request * * Return values: * 0: The request has been sent * EAGAIN: The socket was blocked, please call again later to * complete the request * ENOTCONN: Caller needs to invoke connect logic then call again * other: Some other error occurred, the request was not sent */ static int xs_udp_send_request(struct rpc_rqst *req) { struct rpc_xprt *xprt = req->rq_xprt; struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); struct xdr_buf *xdr = &req->rq_snd_buf; struct msghdr msg = { .msg_name = xs_addr(xprt), .msg_namelen = xprt->addrlen, .msg_flags = XS_SENDMSG_FLAGS, }; unsigned int sent; int status; xs_pktdump("packet data:", req->rq_svec->iov_base, req->rq_svec->iov_len); if (!xprt_bound(xprt)) return -ENOTCONN; if (!xprt_request_get_cong(xprt, req)) return -EBADSLT; status = xdr_alloc_bvec(xdr, rpc_task_gfp_mask()); if (status < 0) return status; req->rq_xtime = ktime_get(); status = xprt_sock_sendmsg(transport->sock, &msg, xdr, 0, 0, &sent); dprintk("RPC: xs_udp_send_request(%u) = %d\n", xdr->len, status); /* firewall is blocking us, don't return -EAGAIN or we end up looping */ if (status == -EPERM) goto process_status; if (status == -EAGAIN && sock_writeable(transport->inet)) status = -ENOBUFS; if (sent > 0 || status == 0) { req->rq_xmit_bytes_sent += sent; if (sent >= req->rq_slen) return 0; /* Still some bytes left; set up for a retry later. */ status = -EAGAIN; } process_status: switch (status) { case -ENOTSOCK: status = -ENOTCONN; /* Should we call xs_close() here? */ break; case -EAGAIN: status = xs_sock_nospace(req); break; case -ENETUNREACH: case -ENOBUFS: case -EPIPE: case -ECONNREFUSED: case -EPERM: /* When the server has died, an ICMP port unreachable message * prompts ECONNREFUSED. */ break; default: dprintk("RPC: sendmsg returned unrecognized error %d\n", -status); } return status; } /** * xs_tcp_send_request - write an RPC request to a TCP socket * @req: pointer to RPC request * * Return values: * 0: The request has been sent * EAGAIN: The socket was blocked, please call again later to * complete the request * ENOTCONN: Caller needs to invoke connect logic then call again * other: Some other error occurred, the request was not sent * * XXX: In the case of soft timeouts, should we eventually give up * if sendmsg is not able to make progress? */ static int xs_tcp_send_request(struct rpc_rqst *req) { struct rpc_xprt *xprt = req->rq_xprt; struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); struct xdr_buf *xdr = &req->rq_snd_buf; rpc_fraghdr rm = xs_stream_record_marker(xdr); unsigned int msglen = rm ? req->rq_slen + sizeof(rm) : req->rq_slen; struct msghdr msg = { .msg_flags = XS_SENDMSG_FLAGS, }; bool vm_wait; unsigned int sent; int status; /* Close the stream if the previous transmission was incomplete */ if (xs_send_request_was_aborted(transport, req)) { if (transport->sock != NULL) kernel_sock_shutdown(transport->sock, SHUT_RDWR); return -ENOTCONN; } if (!transport->inet) return -ENOTCONN; xs_pktdump("packet data:", req->rq_svec->iov_base, req->rq_svec->iov_len); if (test_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state)) xs_tcp_set_socket_timeouts(xprt, transport->sock); xs_set_srcport(transport, transport->sock); /* Continue transmitting the packet/record. We must be careful * to cope with writespace callbacks arriving _after_ we have * called sendmsg(). */ req->rq_xtime = ktime_get(); tcp_sock_set_cork(transport->inet, true); vm_wait = sk_stream_is_writeable(transport->inet) ? true : false; do { status = xprt_sock_sendmsg(transport->sock, &msg, xdr, transport->xmit.offset, rm, &sent); dprintk("RPC: xs_tcp_send_request(%u) = %d\n", xdr->len - transport->xmit.offset, status); /* If we've sent the entire packet, immediately * reset the count of bytes sent. */ transport->xmit.offset += sent; req->rq_bytes_sent = transport->xmit.offset; if (likely(req->rq_bytes_sent >= msglen)) { req->rq_xmit_bytes_sent += transport->xmit.offset; transport->xmit.offset = 0; if (atomic_long_read(&xprt->xmit_queuelen) == 1) tcp_sock_set_cork(transport->inet, false); return 0; } WARN_ON_ONCE(sent == 0 && status == 0); if (sent > 0) vm_wait = false; } while (status == 0); switch (status) { case -ENOTSOCK: status = -ENOTCONN; /* Should we call xs_close() here? */ break; case -EAGAIN: status = xs_stream_nospace(req, vm_wait); break; case -ECONNRESET: case -ECONNREFUSED: case -ENOTCONN: case -EADDRINUSE: case -ENOBUFS: case -EPIPE: break; default: dprintk("RPC: sendmsg returned unrecognized error %d\n", -status); } return status; } static void xs_save_old_callbacks(struct sock_xprt *transport, struct sock *sk) { transport->old_data_ready = sk->sk_data_ready; transport->old_state_change = sk->sk_state_change; transport->old_write_space = sk->sk_write_space; transport->old_error_report = sk->sk_error_report; } static void xs_restore_old_callbacks(struct sock_xprt *transport, struct sock *sk) { sk->sk_data_ready = transport->old_data_ready; sk->sk_state_change = transport->old_state_change; sk->sk_write_space = transport->old_write_space; sk->sk_error_report = transport->old_error_report; } static void xs_sock_reset_state_flags(struct rpc_xprt *xprt) { struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state); clear_bit(XPRT_SOCK_WAKE_ERROR, &transport->sock_state); clear_bit(XPRT_SOCK_WAKE_WRITE, &transport->sock_state); clear_bit(XPRT_SOCK_WAKE_DISCONNECT, &transport->sock_state); clear_bit(XPRT_SOCK_NOSPACE, &transport->sock_state); } static void xs_run_error_worker(struct sock_xprt *transport, unsigned int nr) { set_bit(nr, &transport->sock_state); queue_work(xprtiod_workqueue, &transport->error_worker); } static void xs_sock_reset_connection_flags(struct rpc_xprt *xprt) { xprt->connect_cookie++; smp_mb__before_atomic(); clear_bit(XPRT_CLOSE_WAIT, &xprt->state); clear_bit(XPRT_CLOSING, &xprt->state); xs_sock_reset_state_flags(xprt); smp_mb__after_atomic(); } /** * xs_error_report - callback to handle TCP socket state errors * @sk: socket * * Note: we don't call sock_error() since there may be a rpc_task * using the socket, and so we don't want to clear sk->sk_err. */ static void xs_error_report(struct sock *sk) { struct sock_xprt *transport; struct rpc_xprt *xprt; if (!(xprt = xprt_from_sock(sk))) return; transport = container_of(xprt, struct sock_xprt, xprt); transport->xprt_err = -sk->sk_err; if (transport->xprt_err == 0) return; dprintk("RPC: xs_error_report client %p, error=%d...\n", xprt, -transport->xprt_err); trace_rpc_socket_error(xprt, sk->sk_socket, transport->xprt_err); /* barrier ensures xprt_err is set before XPRT_SOCK_WAKE_ERROR */ smp_mb__before_atomic(); xs_run_error_worker(transport, XPRT_SOCK_WAKE_ERROR); } static void xs_reset_transport(struct sock_xprt *transport) { struct socket *sock = transport->sock; struct sock *sk = transport->inet; struct rpc_xprt *xprt = &transport->xprt; struct file *filp = transport->file; if (sk == NULL) return; /* * Make sure we're calling this in a context from which it is safe * to call __fput_sync(). In practice that means rpciod and the * system workqueue. */ if (!(current->flags & PF_WQ_WORKER)) { WARN_ON_ONCE(1); set_bit(XPRT_CLOSE_WAIT, &xprt->state); return; } if (atomic_read(&transport->xprt.swapper)) sk_clear_memalloc(sk); tls_handshake_cancel(sk); kernel_sock_shutdown(sock, SHUT_RDWR); mutex_lock(&transport->recv_mutex); lock_sock(sk); transport->inet = NULL; transport->sock = NULL; transport->file = NULL; sk->sk_user_data = NULL; xs_restore_old_callbacks(transport, sk); xprt_clear_connected(xprt); xs_sock_reset_connection_flags(xprt); /* Reset stream record info */ xs_stream_reset_connect(transport); release_sock(sk); mutex_unlock(&transport->recv_mutex); trace_rpc_socket_close(xprt, sock); __fput_sync(filp); xprt_disconnect_done(xprt); } /** * xs_close - close a socket * @xprt: transport * * This is used when all requests are complete; ie, no DRC state remains * on the server we want to save. * * The caller _must_ be holding XPRT_LOCKED in order to avoid issues with * xs_reset_transport() zeroing the socket from underneath a writer. */ static void xs_close(struct rpc_xprt *xprt) { struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); dprintk("RPC: xs_close xprt %p\n", xprt); if (transport->sock) tls_handshake_close(transport->sock); xs_reset_transport(transport); xprt->reestablish_timeout = 0; } static void xs_inject_disconnect(struct rpc_xprt *xprt) { dprintk("RPC: injecting transport disconnect on xprt=%p\n", xprt); xprt_disconnect_done(xprt); } static void xs_xprt_free(struct rpc_xprt *xprt) { xs_free_peer_addresses(xprt); xprt_free(xprt); } /** * xs_destroy - prepare to shutdown a transport * @xprt: doomed transport * */ static void xs_destroy(struct rpc_xprt *xprt) { struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); dprintk("RPC: xs_destroy xprt %p\n", xprt); cancel_delayed_work_sync(&transport->connect_worker); xs_close(xprt); cancel_work_sync(&transport->recv_worker); cancel_work_sync(&transport->error_worker); xs_xprt_free(xprt); module_put(THIS_MODULE); } /** * xs_udp_data_read_skb - receive callback for UDP sockets * @xprt: transport * @sk: socket * @skb: skbuff * */ static void xs_udp_data_read_skb(struct rpc_xprt *xprt, struct sock *sk, struct sk_buff *skb) { struct rpc_task *task; struct rpc_rqst *rovr; int repsize, copied; u32 _xid; __be32 *xp; repsize = skb->len; if (repsize < 4) { dprintk("RPC: impossible RPC reply size %d!\n", repsize); return; } /* Copy the XID from the skb... */ xp = skb_header_pointer(skb, 0, sizeof(_xid), &_xid); if (xp == NULL) return; /* Look up and lock the request corresponding to the given XID */ spin_lock(&xprt->queue_lock); rovr = xprt_lookup_rqst(xprt, *xp); if (!rovr) goto out_unlock; xprt_pin_rqst(rovr); xprt_update_rtt(rovr->rq_task); spin_unlock(&xprt->queue_lock); task = rovr->rq_task; if ((copied = rovr->rq_private_buf.buflen) > repsize) copied = repsize; /* Suck it into the iovec, verify checksum if not done by hw. */ if (csum_partial_copy_to_xdr(&rovr->rq_private_buf, skb)) { spin_lock(&xprt->queue_lock); __UDPX_INC_STATS(sk, UDP_MIB_INERRORS); goto out_unpin; } spin_lock(&xprt->transport_lock); xprt_adjust_cwnd(xprt, task, copied); spin_unlock(&xprt->transport_lock); spin_lock(&xprt->queue_lock); xprt_complete_rqst(task, copied); __UDPX_INC_STATS(sk, UDP_MIB_INDATAGRAMS); out_unpin: xprt_unpin_rqst(rovr); out_unlock: spin_unlock(&xprt->queue_lock); } static void xs_udp_data_receive(struct sock_xprt *transport) { struct sk_buff *skb; struct sock *sk; int err; mutex_lock(&transport->recv_mutex); sk = transport->inet; if (sk == NULL) goto out; for (;;) { skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); if (skb == NULL) break; xs_udp_data_read_skb(&transport->xprt, sk, skb); consume_skb(skb); cond_resched(); } xs_poll_check_readable(transport); out: mutex_unlock(&transport->recv_mutex); } static void xs_udp_data_receive_workfn(struct work_struct *work) { struct sock_xprt *transport = container_of(work, struct sock_xprt, recv_worker); unsigned int pflags = memalloc_nofs_save(); xs_udp_data_receive(transport); memalloc_nofs_restore(pflags); } /** * xs_data_ready - "data ready" callback for sockets * @sk: socket with data to read * */ static void xs_data_ready(struct sock *sk) { struct rpc_xprt *xprt; trace_sk_data_ready(sk); xprt = xprt_from_sock(sk); if (xprt != NULL) { struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); trace_xs_data_ready(xprt); transport->old_data_ready(sk); if (test_bit(XPRT_SOCK_IGNORE_RECV, &transport->sock_state)) return; /* Any data means we had a useful conversation, so * then we don't need to delay the next reconnect */ if (xprt->reestablish_timeout) xprt->reestablish_timeout = 0; if (!test_and_set_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) queue_work(xprtiod_workqueue, &transport->recv_worker); } } /* * Helper function to force a TCP close if the server is sending * junk and/or it has put us in CLOSE_WAIT */ static void xs_tcp_force_close(struct rpc_xprt *xprt) { xprt_force_disconnect(xprt); } #if defined(CONFIG_SUNRPC_BACKCHANNEL) static size_t xs_tcp_bc_maxpayload(struct rpc_xprt *xprt) { return PAGE_SIZE; } #endif /* CONFIG_SUNRPC_BACKCHANNEL */ /** * xs_local_state_change - callback to handle AF_LOCAL socket state changes * @sk: socket whose state has changed * */ static void xs_local_state_change(struct sock *sk) { struct rpc_xprt *xprt; struct sock_xprt *transport; if (!(xprt = xprt_from_sock(sk))) return; transport = container_of(xprt, struct sock_xprt, xprt); if (sk->sk_shutdown & SHUTDOWN_MASK) { clear_bit(XPRT_CONNECTED, &xprt->state); /* Trigger the socket release */ xs_run_error_worker(transport, XPRT_SOCK_WAKE_DISCONNECT); } } /** * xs_tcp_state_change - callback to handle TCP socket state changes * @sk: socket whose state has changed * */ static void xs_tcp_state_change(struct sock *sk) { struct rpc_xprt *xprt; struct sock_xprt *transport; if (!(xprt = xprt_from_sock(sk))) return; dprintk("RPC: xs_tcp_state_change client %p...\n", xprt); dprintk("RPC: state %x conn %d dead %d zapped %d sk_shutdown %d\n", sk->sk_state, xprt_connected(xprt), sock_flag(sk, SOCK_DEAD), sock_flag(sk, SOCK_ZAPPED), sk->sk_shutdown); transport = container_of(xprt, struct sock_xprt, xprt); trace_rpc_socket_state_change(xprt, sk->sk_socket); switch (sk->sk_state) { case TCP_ESTABLISHED: if (!xprt_test_and_set_connected(xprt)) { xprt->connect_cookie++; clear_bit(XPRT_SOCK_CONNECTING, &transport->sock_state); xprt_clear_connecting(xprt); xprt->stat.connect_count++; xprt->stat.connect_time += (long)jiffies - xprt->stat.connect_start; xs_run_error_worker(transport, XPRT_SOCK_WAKE_PENDING); } break; case TCP_FIN_WAIT1: /* The client initiated a shutdown of the socket */ xprt->connect_cookie++; xprt->reestablish_timeout = 0; set_bit(XPRT_CLOSING, &xprt->state); smp_mb__before_atomic(); clear_bit(XPRT_CONNECTED, &xprt->state); clear_bit(XPRT_CLOSE_WAIT, &xprt->state); smp_mb__after_atomic(); break; case TCP_CLOSE_WAIT: /* The server initiated a shutdown of the socket */ xprt->connect_cookie++; clear_bit(XPRT_CONNECTED, &xprt->state); xs_run_error_worker(transport, XPRT_SOCK_WAKE_DISCONNECT); fallthrough; case TCP_CLOSING: /* * If the server closed down the connection, make sure that * we back off before reconnecting */ if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO) xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; break; case TCP_LAST_ACK: set_bit(XPRT_CLOSING, &xprt->state); smp_mb__before_atomic(); clear_bit(XPRT_CONNECTED, &xprt->state); smp_mb__after_atomic(); break; case TCP_CLOSE: if (test_and_clear_bit(XPRT_SOCK_CONNECTING, &transport->sock_state)) xprt_clear_connecting(xprt); clear_bit(XPRT_CLOSING, &xprt->state); /* Trigger the socket release */ xs_run_error_worker(transport, XPRT_SOCK_WAKE_DISCONNECT); } } static void xs_write_space(struct sock *sk) { struct sock_xprt *transport; struct rpc_xprt *xprt; if (!sk->sk_socket) return; clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); if (unlikely(!(xprt = xprt_from_sock(sk)))) return; transport = container_of(xprt, struct sock_xprt, xprt); if (!test_and_clear_bit(XPRT_SOCK_NOSPACE, &transport->sock_state)) return; xs_run_error_worker(transport, XPRT_SOCK_WAKE_WRITE); sk->sk_write_pending--; } /** * xs_udp_write_space - callback invoked when socket buffer space * becomes available * @sk: socket whose state has changed * * Called when more output buffer space is available for this socket. * We try not to wake our writers until they can make "significant" * progress, otherwise we'll waste resources thrashing kernel_sendmsg * with a bunch of small requests. */ static void xs_udp_write_space(struct sock *sk) { /* from net/core/sock.c:sock_def_write_space */ if (sock_writeable(sk)) xs_write_space(sk); } /** * xs_tcp_write_space - callback invoked when socket buffer space * becomes available * @sk: socket whose state has changed * * Called when more output buffer space is available for this socket. * We try not to wake our writers until they can make "significant" * progress, otherwise we'll waste resources thrashing kernel_sendmsg * with a bunch of small requests. */ static void xs_tcp_write_space(struct sock *sk) { /* from net/core/stream.c:sk_stream_write_space */ if (sk_stream_is_writeable(sk)) xs_write_space(sk); } static void xs_udp_do_set_buffer_size(struct rpc_xprt *xprt) { struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); struct sock *sk = transport->inet; if (transport->rcvsize) { sk->sk_userlocks |= SOCK_RCVBUF_LOCK; sk->sk_rcvbuf = transport->rcvsize * xprt->max_reqs * 2; } if (transport->sndsize) { sk->sk_userlocks |= SOCK_SNDBUF_LOCK; sk->sk_sndbuf = transport->sndsize * xprt->max_reqs * 2; sk->sk_write_space(sk); } } /** * xs_udp_set_buffer_size - set send and receive limits * @xprt: generic transport * @sndsize: requested size of send buffer, in bytes * @rcvsize: requested size of receive buffer, in bytes * * Set socket send and receive buffer size limits. */ static void xs_udp_set_buffer_size(struct rpc_xprt *xprt, size_t sndsize, size_t rcvsize) { struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); transport->sndsize = 0; if (sndsize) transport->sndsize = sndsize + 1024; transport->rcvsize = 0; if (rcvsize) transport->rcvsize = rcvsize + 1024; xs_udp_do_set_buffer_size(xprt); } /** * xs_udp_timer - called when a retransmit timeout occurs on a UDP transport * @xprt: controlling transport * @task: task that timed out * * Adjust the congestion window after a retransmit timeout has occurred. */ static void xs_udp_timer(struct rpc_xprt *xprt, struct rpc_task *task) { spin_lock(&xprt->transport_lock); xprt_adjust_cwnd(xprt, task, -ETIMEDOUT); spin_unlock(&xprt->transport_lock); } static int xs_get_random_port(void) { unsigned short min = xprt_min_resvport, max = xprt_max_resvport; unsigned short range; unsigned short rand; if (max < min) return -EADDRINUSE; range = max - min + 1; rand = get_random_u32_below(range); return rand + min; } static unsigned short xs_sock_getport(struct socket *sock) { struct sockaddr_storage buf; unsigned short port = 0; if (kernel_getsockname(sock, (struct sockaddr *)&buf) < 0) goto out; switch (buf.ss_family) { case AF_INET6: port = ntohs(((struct sockaddr_in6 *)&buf)->sin6_port); break; case AF_INET: port = ntohs(((struct sockaddr_in *)&buf)->sin_port); } out: return port; } /** * xs_set_port - reset the port number in the remote endpoint address * @xprt: generic transport * @port: new port number * */ static void xs_set_port(struct rpc_xprt *xprt, unsigned short port) { dprintk("RPC: setting port for xprt %p to %u\n", xprt, port); rpc_set_port(xs_addr(xprt), port); xs_update_peer_port(xprt); } static void xs_set_srcport(struct sock_xprt *transport, struct socket *sock) { if (transport->srcport == 0 && transport->xprt.reuseport) transport->srcport = xs_sock_getport(sock); } static int xs_get_srcport(struct sock_xprt *transport) { int port = transport->srcport; if (port == 0 && transport->xprt.resvport) port = xs_get_random_port(); return port; } static unsigned short xs_sock_srcport(struct rpc_xprt *xprt) { struct sock_xprt *sock = container_of(xprt, struct sock_xprt, xprt); unsigned short ret = 0; mutex_lock(&sock->recv_mutex); if (sock->sock) ret = xs_sock_getport(sock->sock); mutex_unlock(&sock->recv_mutex); return ret; } static int xs_sock_srcaddr(struct rpc_xprt *xprt, char *buf, size_t buflen) { struct sock_xprt *sock = container_of(xprt, struct sock_xprt, xprt); union { struct sockaddr sa; struct sockaddr_storage st; } saddr; int ret = -ENOTCONN; mutex_lock(&sock->recv_mutex); if (sock->sock) { ret = kernel_getsockname(sock->sock, &saddr.sa); if (ret >= 0) ret = snprintf(buf, buflen, "%pISc", &saddr.sa); } mutex_unlock(&sock->recv_mutex); return ret; } static unsigned short xs_next_srcport(struct sock_xprt *transport, unsigned short port) { if (transport->srcport != 0) transport->srcport = 0; if (!transport->xprt.resvport) return 0; if (port <= xprt_min_resvport || port > xprt_max_resvport) return xprt_max_resvport; return --port; } static int xs_bind(struct sock_xprt *transport, struct socket *sock) { struct sockaddr_storage myaddr; int err, nloop = 0; int port = xs_get_srcport(transport); unsigned short last; /* * If we are asking for any ephemeral port (i.e. port == 0 && * transport->xprt.resvport == 0), don't bind. Let the local * port selection happen implicitly when the socket is used * (for example at connect time). * * This ensures that we can continue to establish TCP * connections even when all local ephemeral ports are already * a part of some TCP connection. This makes no difference * for UDP sockets, but also doesn't harm them. * * If we're asking for any reserved port (i.e. port == 0 && * transport->xprt.resvport == 1) xs_get_srcport above will * ensure that port is non-zero and we will bind as needed. */ if (port <= 0) return port; memcpy(&myaddr, &transport->srcaddr, transport->xprt.addrlen); do { rpc_set_port((struct sockaddr *)&myaddr, port); err = kernel_bind(sock, (struct sockaddr *)&myaddr, transport->xprt.addrlen); if (err == 0) { if (transport->xprt.reuseport) transport->srcport = port; break; } last = port; port = xs_next_srcport(transport, port); if (port > last) nloop++; } while (err == -EADDRINUSE && nloop != 2); if (myaddr.ss_family == AF_INET) dprintk("RPC: %s %pI4:%u: %s (%d)\n", __func__, &((struct sockaddr_in *)&myaddr)->sin_addr, port, err ? "failed" : "ok", err); else dprintk("RPC: %s %pI6:%u: %s (%d)\n", __func__, &((struct sockaddr_in6 *)&myaddr)->sin6_addr, port, err ? "failed" : "ok", err); return err; } /* * We don't support autobind on AF_LOCAL sockets */ static void xs_local_rpcbind(struct rpc_task *task) { xprt_set_bound(task->tk_xprt); } static void xs_local_set_port(struct rpc_xprt *xprt, unsigned short port) { } #ifdef CONFIG_DEBUG_LOCK_ALLOC static struct lock_class_key xs_key[3]; static struct lock_class_key xs_slock_key[3]; static inline void xs_reclassify_socketu(struct socket *sock) { struct sock *sk = sock->sk; sock_lock_init_class_and_name(sk, "slock-AF_LOCAL-RPC", &xs_slock_key[0], "sk_lock-AF_LOCAL-RPC", &xs_key[0]); } static inline void xs_reclassify_socket4(struct socket *sock) { struct sock *sk = sock->sk; sock_lock_init_class_and_name(sk, "slock-AF_INET-RPC", &xs_slock_key[1], "sk_lock-AF_INET-RPC", &xs_key[1]); } static inline void xs_reclassify_socket6(struct socket *sock) { struct sock *sk = sock->sk; sock_lock_init_class_and_name(sk, "slock-AF_INET6-RPC", &xs_slock_key[2], "sk_lock-AF_INET6-RPC", &xs_key[2]); } static inline void xs_reclassify_socket(int family, struct socket *sock) { if (WARN_ON_ONCE(!sock_allow_reclassification(sock->sk))) return; switch (family) { case AF_LOCAL: xs_reclassify_socketu(sock); break; case AF_INET: xs_reclassify_socket4(sock); break; case AF_INET6: xs_reclassify_socket6(sock); break; } } #else static inline void xs_reclassify_socket(int family, struct socket *sock) { } #endif static void xs_dummy_setup_socket(struct work_struct *work) { } static struct socket *xs_create_sock(struct rpc_xprt *xprt, struct sock_xprt *transport, int family, int type, int protocol, bool reuseport) { struct file *filp; struct socket *sock; int err; err = __sock_create(xprt->xprt_net, family, type, protocol, &sock, 1); if (err < 0) { dprintk("RPC: can't create %d transport socket (%d).\n", protocol, -err); goto out; } xs_reclassify_socket(family, sock); if (reuseport) sock_set_reuseport(sock->sk); err = xs_bind(transport, sock); if (err) { sock_release(sock); goto out; } filp = sock_alloc_file(sock, O_NONBLOCK, NULL); if (IS_ERR(filp)) return ERR_CAST(filp); transport->file = filp; return sock; out: return ERR_PTR(err); } static int xs_local_finish_connecting(struct rpc_xprt *xprt, struct socket *sock) { struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); if (!transport->inet) { struct sock *sk = sock->sk; lock_sock(sk); xs_save_old_callbacks(transport, sk); sk->sk_user_data = xprt; sk->sk_data_ready = xs_data_ready; sk->sk_write_space = xs_udp_write_space; sk->sk_state_change = xs_local_state_change; sk->sk_error_report = xs_error_report; sk->sk_use_task_frag = false; xprt_clear_connected(xprt); /* Reset to new socket */ transport->sock = sock; transport->inet = sk; release_sock(sk); } xs_stream_start_connect(transport); return kernel_connect(sock, xs_addr(xprt), xprt->addrlen, 0); } /** * xs_local_setup_socket - create AF_LOCAL socket, connect to a local endpoint * @transport: socket transport to connect */ static int xs_local_setup_socket(struct sock_xprt *transport) { struct rpc_xprt *xprt = &transport->xprt; struct file *filp; struct socket *sock; int status; status = __sock_create(xprt->xprt_net, AF_LOCAL, SOCK_STREAM, 0, &sock, 1); if (status < 0) { dprintk("RPC: can't create AF_LOCAL " "transport socket (%d).\n", -status); goto out; } xs_reclassify_socket(AF_LOCAL, sock); filp = sock_alloc_file(sock, O_NONBLOCK, NULL); if (IS_ERR(filp)) { status = PTR_ERR(filp); goto out; } transport->file = filp; dprintk("RPC: worker connecting xprt %p via AF_LOCAL to %s\n", xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); status = xs_local_finish_connecting(xprt, sock); trace_rpc_socket_connect(xprt, sock, status); switch (status) { case 0: dprintk("RPC: xprt %p connected to %s\n", xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); xprt->stat.connect_count++; xprt->stat.connect_time += (long)jiffies - xprt->stat.connect_start; xprt_set_connected(xprt); break; case -ENOBUFS: break; case -ENOENT: dprintk("RPC: xprt %p: socket %s does not exist\n", xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); break; case -ECONNREFUSED: dprintk("RPC: xprt %p: connection refused for %s\n", xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); break; default: printk(KERN_ERR "%s: unhandled error (%d) connecting to %s\n", __func__, -status, xprt->address_strings[RPC_DISPLAY_ADDR]); } out: xprt_clear_connecting(xprt); xprt_wake_pending_tasks(xprt, status); return status; } static void xs_local_connect(struct rpc_xprt *xprt, struct rpc_task *task) { struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); int ret; if (transport->file) goto force_disconnect; if (RPC_IS_ASYNC(task)) { /* * We want the AF_LOCAL connect to be resolved in the * filesystem namespace of the process making the rpc * call. Thus we connect synchronously. * * If we want to support asynchronous AF_LOCAL calls, * we'll need to figure out how to pass a namespace to * connect. */ rpc_task_set_rpc_status(task, -ENOTCONN); goto out_wake; } ret = xs_local_setup_socket(transport); if (ret && !RPC_IS_SOFTCONN(task)) msleep_interruptible(15000); return; force_disconnect: xprt_force_disconnect(xprt); out_wake: xprt_clear_connecting(xprt); xprt_wake_pending_tasks(xprt, -ENOTCONN); } #if IS_ENABLED(CONFIG_SUNRPC_SWAP) /* * Note that this should be called with XPRT_LOCKED held, or recv_mutex * held, or when we otherwise know that we have exclusive access to the * socket, to guard against races with xs_reset_transport. */ static void xs_set_memalloc(struct rpc_xprt *xprt) { struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); /* * If there's no sock, then we have nothing to set. The * reconnecting process will get it for us. */ if (!transport->inet) return; if (atomic_read(&xprt->swapper)) sk_set_memalloc(transport->inet); } /** * xs_enable_swap - Tag this transport as being used for swap. * @xprt: transport to tag * * Take a reference to this transport on behalf of the rpc_clnt, and * optionally mark it for swapping if it wasn't already. */ static int xs_enable_swap(struct rpc_xprt *xprt) { struct sock_xprt *xs = container_of(xprt, struct sock_xprt, xprt); mutex_lock(&xs->recv_mutex); if (atomic_inc_return(&xprt->swapper) == 1 && xs->inet) sk_set_memalloc(xs->inet); mutex_unlock(&xs->recv_mutex); return 0; } /** * xs_disable_swap - Untag this transport as being used for swap. * @xprt: transport to tag * * Drop a "swapper" reference to this xprt on behalf of the rpc_clnt. If the * swapper refcount goes to 0, untag the socket as a memalloc socket. */ static void xs_disable_swap(struct rpc_xprt *xprt) { struct sock_xprt *xs = container_of(xprt, struct sock_xprt, xprt); mutex_lock(&xs->recv_mutex); if (atomic_dec_and_test(&xprt->swapper) && xs->inet) sk_clear_memalloc(xs->inet); mutex_unlock(&xs->recv_mutex); } #else static void xs_set_memalloc(struct rpc_xprt *xprt) { } static int xs_enable_swap(struct rpc_xprt *xprt) { return -EINVAL; } static void xs_disable_swap(struct rpc_xprt *xprt) { } #endif static void xs_udp_finish_connecting(struct rpc_xprt *xprt, struct socket *sock) { struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); if (!transport->inet) { struct sock *sk = sock->sk; lock_sock(sk); xs_save_old_callbacks(transport, sk); sk->sk_user_data = xprt; sk->sk_data_ready = xs_data_ready; sk->sk_write_space = xs_udp_write_space; sk->sk_use_task_frag = false; xprt_set_connected(xprt); /* Reset to new socket */ transport->sock = sock; transport->inet = sk; xs_set_memalloc(xprt); release_sock(sk); } xs_udp_do_set_buffer_size(xprt); xprt->stat.connect_start = jiffies; } static void xs_udp_setup_socket(struct work_struct *work) { struct sock_xprt *transport = container_of(work, struct sock_xprt, connect_worker.work); struct rpc_xprt *xprt = &transport->xprt; struct socket *sock; int status = -EIO; unsigned int pflags = current->flags; if (atomic_read(&xprt->swapper)) current->flags |= PF_MEMALLOC; sock = xs_create_sock(xprt, transport, xs_addr(xprt)->sa_family, SOCK_DGRAM, IPPROTO_UDP, false); if (IS_ERR(sock)) goto out; dprintk("RPC: worker connecting xprt %p via %s to " "%s (port %s)\n", xprt, xprt->address_strings[RPC_DISPLAY_PROTO], xprt->address_strings[RPC_DISPLAY_ADDR], xprt->address_strings[RPC_DISPLAY_PORT]); xs_udp_finish_connecting(xprt, sock); trace_rpc_socket_connect(xprt, sock, 0); status = 0; out: xprt_clear_connecting(xprt); xprt_unlock_connect(xprt, transport); xprt_wake_pending_tasks(xprt, status); current_restore_flags(pflags, PF_MEMALLOC); } /** * xs_tcp_shutdown - gracefully shut down a TCP socket * @xprt: transport * * Initiates a graceful shutdown of the TCP socket by calling the * equivalent of shutdown(SHUT_RDWR); */ static void xs_tcp_shutdown(struct rpc_xprt *xprt) { struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); struct socket *sock = transport->sock; int skst = transport->inet ? transport->inet->sk_state : TCP_CLOSE; if (sock == NULL) return; if (!xprt->reuseport) { xs_close(xprt); return; } switch (skst) { case TCP_FIN_WAIT1: case TCP_FIN_WAIT2: case TCP_LAST_ACK: break; case TCP_ESTABLISHED: case TCP_CLOSE_WAIT: kernel_sock_shutdown(sock, SHUT_RDWR); trace_rpc_socket_shutdown(xprt, sock); break; default: xs_reset_transport(transport); } } static void xs_tcp_set_socket_timeouts(struct rpc_xprt *xprt, struct socket *sock) { struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); struct net *net = sock_net(sock->sk); unsigned long connect_timeout; unsigned long syn_retries; unsigned int keepidle; unsigned int keepcnt; unsigned int timeo; unsigned long t; spin_lock(&xprt->transport_lock); keepidle = DIV_ROUND_UP(xprt->timeout->to_initval, HZ); keepcnt = xprt->timeout->to_retries + 1; timeo = jiffies_to_msecs(xprt->timeout->to_initval) * (xprt->timeout->to_retries + 1); clear_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state); spin_unlock(&xprt->transport_lock); /* TCP Keepalive options */ sock_set_keepalive(sock->sk); tcp_sock_set_keepidle(sock->sk, keepidle); tcp_sock_set_keepintvl(sock->sk, keepidle); tcp_sock_set_keepcnt(sock->sk, keepcnt); /* TCP user timeout (see RFC5482) */ tcp_sock_set_user_timeout(sock->sk, timeo); /* Connect timeout */ connect_timeout = max_t(unsigned long, DIV_ROUND_UP(xprt->connect_timeout, HZ), 1); syn_retries = max_t(unsigned long, READ_ONCE(net->ipv4.sysctl_tcp_syn_retries), 1); for (t = 0; t <= syn_retries && (1UL << t) < connect_timeout; t++) ; if (t <= syn_retries) tcp_sock_set_syncnt(sock->sk, t - 1); } static void xs_tcp_do_set_connect_timeout(struct rpc_xprt *xprt, unsigned long connect_timeout) { struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); struct rpc_timeout to; unsigned long initval; memcpy(&to, xprt->timeout, sizeof(to)); /* Arbitrary lower limit */ initval = max_t(unsigned long, connect_timeout, XS_TCP_INIT_REEST_TO); to.to_initval = initval; to.to_maxval = initval; to.to_retries = 0; memcpy(&transport->tcp_timeout, &to, sizeof(transport->tcp_timeout)); xprt->timeout = &transport->tcp_timeout; xprt->connect_timeout = connect_timeout; } static void xs_tcp_set_connect_timeout(struct rpc_xprt *xprt, unsigned long connect_timeout, unsigned long reconnect_timeout) { struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); spin_lock(&xprt->transport_lock); if (reconnect_timeout < xprt->max_reconnect_timeout) xprt->max_reconnect_timeout = reconnect_timeout; if (connect_timeout < xprt->connect_timeout) xs_tcp_do_set_connect_timeout(xprt, connect_timeout); set_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state); spin_unlock(&xprt->transport_lock); } static int xs_tcp_finish_connecting(struct rpc_xprt *xprt, struct socket *sock) { struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); if (!transport->inet) { struct sock *sk = sock->sk; /* Avoid temporary address, they are bad for long-lived * connections such as NFS mounts. * RFC4941, section 3.6 suggests that: * Individual applications, which have specific * knowledge about the normal duration of connections, * MAY override this as appropriate. */ if (xs_addr(xprt)->sa_family == PF_INET6) { ip6_sock_set_addr_preferences(sk, IPV6_PREFER_SRC_PUBLIC); } xs_tcp_set_socket_timeouts(xprt, sock); tcp_sock_set_nodelay(sk); lock_sock(sk); xs_save_old_callbacks(transport, sk); sk->sk_user_data = xprt; sk->sk_data_ready = xs_data_ready; sk->sk_state_change = xs_tcp_state_change; sk->sk_write_space = xs_tcp_write_space; sk->sk_error_report = xs_error_report; sk->sk_use_task_frag = false; /* socket options */ sock_reset_flag(sk, SOCK_LINGER); xprt_clear_connected(xprt); /* Reset to new socket */ transport->sock = sock; transport->inet = sk; release_sock(sk); } if (!xprt_bound(xprt)) return -ENOTCONN; xs_set_memalloc(xprt); xs_stream_start_connect(transport); /* Tell the socket layer to start connecting... */ set_bit(XPRT_SOCK_CONNECTING, &transport->sock_state); return kernel_connect(sock, xs_addr(xprt), xprt->addrlen, O_NONBLOCK); } /** * xs_tcp_setup_socket - create a TCP socket and connect to a remote endpoint * @work: queued work item * * Invoked by a work queue tasklet. */ static void xs_tcp_setup_socket(struct work_struct *work) { struct sock_xprt *transport = container_of(work, struct sock_xprt, connect_worker.work); struct socket *sock = transport->sock; struct rpc_xprt *xprt = &transport->xprt; int status; unsigned int pflags = current->flags; if (atomic_read(&xprt->swapper)) current->flags |= PF_MEMALLOC; if (xprt_connected(xprt)) goto out; if (test_and_clear_bit(XPRT_SOCK_CONNECT_SENT, &transport->sock_state) || !sock) { xs_reset_transport(transport); sock = xs_create_sock(xprt, transport, xs_addr(xprt)->sa_family, SOCK_STREAM, IPPROTO_TCP, true); if (IS_ERR(sock)) { xprt_wake_pending_tasks(xprt, PTR_ERR(sock)); goto out; } } dprintk("RPC: worker connecting xprt %p via %s to " "%s (port %s)\n", xprt, xprt->address_strings[RPC_DISPLAY_PROTO], xprt->address_strings[RPC_DISPLAY_ADDR], xprt->address_strings[RPC_DISPLAY_PORT]); status = xs_tcp_finish_connecting(xprt, sock); trace_rpc_socket_connect(xprt, sock, status); dprintk("RPC: %p connect status %d connected %d sock state %d\n", xprt, -status, xprt_connected(xprt), sock->sk->sk_state); switch (status) { case 0: case -EINPROGRESS: /* SYN_SENT! */ set_bit(XPRT_SOCK_CONNECT_SENT, &transport->sock_state); if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO) xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; fallthrough; case -EALREADY: goto out_unlock; case -EADDRNOTAVAIL: /* Source port number is unavailable. Try a new one! */ transport->srcport = 0; status = -EAGAIN; break; case -EPERM: /* Happens, for instance, if a BPF program is preventing * the connect. Remap the error so upper layers can better * deal with it. */ status = -ECONNREFUSED; fallthrough; case -EINVAL: /* Happens, for instance, if the user specified a link * local IPv6 address without a scope-id. */ case -ECONNREFUSED: case -ECONNRESET: case -ENETDOWN: case -ENETUNREACH: case -EHOSTUNREACH: case -EADDRINUSE: case -ENOBUFS: break; default: printk("%s: connect returned unhandled error %d\n", __func__, status); status = -EAGAIN; } /* xs_tcp_force_close() wakes tasks with a fixed error code. * We need to wake them first to ensure the correct error code. */ xprt_wake_pending_tasks(xprt, status); xs_tcp_force_close(xprt); out: xprt_clear_connecting(xprt); out_unlock: xprt_unlock_connect(xprt, transport); current_restore_flags(pflags, PF_MEMALLOC); } /* * Transfer the connected socket to @upper_transport, then mark that * xprt CONNECTED. */ static int xs_tcp_tls_finish_connecting(struct rpc_xprt *lower_xprt, struct sock_xprt *upper_transport) { struct sock_xprt *lower_transport = container_of(lower_xprt, struct sock_xprt, xprt); struct rpc_xprt *upper_xprt = &upper_transport->xprt; if (!upper_transport->inet) { struct socket *sock = lower_transport->sock; struct sock *sk = sock->sk; /* Avoid temporary address, they are bad for long-lived * connections such as NFS mounts. * RFC4941, section 3.6 suggests that: * Individual applications, which have specific * knowledge about the normal duration of connections, * MAY override this as appropriate. */ if (xs_addr(upper_xprt)->sa_family == PF_INET6) ip6_sock_set_addr_preferences(sk, IPV6_PREFER_SRC_PUBLIC); xs_tcp_set_socket_timeouts(upper_xprt, sock); tcp_sock_set_nodelay(sk); lock_sock(sk); /* @sk is already connected, so it now has the RPC callbacks. * Reach into @lower_transport to save the original ones. */ upper_transport->old_data_ready = lower_transport->old_data_ready; upper_transport->old_state_change = lower_transport->old_state_change; upper_transport->old_write_space = lower_transport->old_write_space; upper_transport->old_error_report = lower_transport->old_error_report; sk->sk_user_data = upper_xprt; /* socket options */ sock_reset_flag(sk, SOCK_LINGER); xprt_clear_connected(upper_xprt); upper_transport->sock = sock; upper_transport->inet = sk; upper_transport->file = lower_transport->file; release_sock(sk); /* Reset lower_transport before shutting down its clnt */ mutex_lock(&lower_transport->recv_mutex); lower_transport->inet = NULL; lower_transport->sock = NULL; lower_transport->file = NULL; xprt_clear_connected(lower_xprt); xs_sock_reset_connection_flags(lower_xprt); xs_stream_reset_connect(lower_transport); mutex_unlock(&lower_transport->recv_mutex); } if (!xprt_bound(upper_xprt)) return -ENOTCONN; xs_set_memalloc(upper_xprt); if (!xprt_test_and_set_connected(upper_xprt)) { upper_xprt->connect_cookie++; clear_bit(XPRT_SOCK_CONNECTING, &upper_transport->sock_state); xprt_clear_connecting(upper_xprt); upper_xprt->stat.connect_count++; upper_xprt->stat.connect_time += (long)jiffies - upper_xprt->stat.connect_start; xs_run_error_worker(upper_transport, XPRT_SOCK_WAKE_PENDING); } return 0; } /** * xs_tls_handshake_done - TLS handshake completion handler * @data: address of xprt to wake * @status: status of handshake * @peerid: serial number of key containing the remote's identity * */ static void xs_tls_handshake_done(void *data, int status, key_serial_t peerid) { struct rpc_xprt *lower_xprt = data; struct sock_xprt *lower_transport = container_of(lower_xprt, struct sock_xprt, xprt); lower_transport->xprt_err = status ? -EACCES : 0; complete(&lower_transport->handshake_done); xprt_put(lower_xprt); } static int xs_tls_handshake_sync(struct rpc_xprt *lower_xprt, struct xprtsec_parms *xprtsec) { struct sock_xprt *lower_transport = container_of(lower_xprt, struct sock_xprt, xprt); struct tls_handshake_args args = { .ta_sock = lower_transport->sock, .ta_done = xs_tls_handshake_done, .ta_data = xprt_get(lower_xprt), .ta_peername = lower_xprt->servername, }; struct sock *sk = lower_transport->inet; int rc; init_completion(&lower_transport->handshake_done); set_bit(XPRT_SOCK_IGNORE_RECV, &lower_transport->sock_state); lower_transport->xprt_err = -ETIMEDOUT; switch (xprtsec->policy) { case RPC_XPRTSEC_TLS_ANON: rc = tls_client_hello_anon(&args, GFP_KERNEL); if (rc) goto out_put_xprt; break; case RPC_XPRTSEC_TLS_X509: args.ta_my_cert = xprtsec->cert_serial; args.ta_my_privkey = xprtsec->privkey_serial; rc = tls_client_hello_x509(&args, GFP_KERNEL); if (rc) goto out_put_xprt; break; default: rc = -EACCES; goto out_put_xprt; } rc = wait_for_completion_interruptible_timeout(&lower_transport->handshake_done, XS_TLS_HANDSHAKE_TO); if (rc <= 0) { if (!tls_handshake_cancel(sk)) { if (rc == 0) rc = -ETIMEDOUT; goto out_put_xprt; } } rc = lower_transport->xprt_err; out: xs_stream_reset_connect(lower_transport); clear_bit(XPRT_SOCK_IGNORE_RECV, &lower_transport->sock_state); return rc; out_put_xprt: xprt_put(lower_xprt); goto out; } /** * xs_tcp_tls_setup_socket - establish a TLS session on a TCP socket * @work: queued work item * * Invoked by a work queue tasklet. * * For RPC-with-TLS, there is a two-stage connection process. * * The "upper-layer xprt" is visible to the RPC consumer. Once it has * been marked connected, the consumer knows that a TCP connection and * a TLS session have been established. * * A "lower-layer xprt", created in this function, handles the mechanics * of connecting the TCP socket, performing the RPC_AUTH_TLS probe, and * then driving the TLS handshake. Once all that is complete, the upper * layer xprt is marked connected. */ static void xs_tcp_tls_setup_socket(struct work_struct *work) { struct sock_xprt *upper_transport = container_of(work, struct sock_xprt, connect_worker.work); struct rpc_clnt *upper_clnt = upper_transport->clnt; struct rpc_xprt *upper_xprt = &upper_transport->xprt; struct rpc_create_args args = { .net = upper_xprt->xprt_net, .protocol = upper_xprt->prot, .address = (struct sockaddr *)&upper_xprt->addr, .addrsize = upper_xprt->addrlen, .timeout = upper_clnt->cl_timeout, .servername = upper_xprt->servername, .program = upper_clnt->cl_program, .prognumber = upper_clnt->cl_prog, .version = upper_clnt->cl_vers, .authflavor = RPC_AUTH_TLS, .cred = upper_clnt->cl_cred, .xprtsec = { .policy = RPC_XPRTSEC_NONE, }, .stats = upper_clnt->cl_stats, }; unsigned int pflags = current->flags; struct rpc_clnt *lower_clnt; struct rpc_xprt *lower_xprt; int status; if (atomic_read(&upper_xprt->swapper)) current->flags |= PF_MEMALLOC; xs_stream_start_connect(upper_transport); /* This implicitly sends an RPC_AUTH_TLS probe */ lower_clnt = rpc_create(&args); if (IS_ERR(lower_clnt)) { trace_rpc_tls_unavailable(upper_clnt, upper_xprt); clear_bit(XPRT_SOCK_CONNECTING, &upper_transport->sock_state); xprt_clear_connecting(upper_xprt); xprt_wake_pending_tasks(upper_xprt, PTR_ERR(lower_clnt)); xs_run_error_worker(upper_transport, XPRT_SOCK_WAKE_PENDING); goto out_unlock; } /* RPC_AUTH_TLS probe was successful. Try a TLS handshake on * the lower xprt. */ rcu_read_lock(); lower_xprt = rcu_dereference(lower_clnt->cl_xprt); rcu_read_unlock(); if (wait_on_bit_lock(&lower_xprt->state, XPRT_LOCKED, TASK_KILLABLE)) goto out_unlock; status = xs_tls_handshake_sync(lower_xprt, &upper_xprt->xprtsec); if (status) { trace_rpc_tls_not_started(upper_clnt, upper_xprt); goto out_close; } status = xs_tcp_tls_finish_connecting(lower_xprt, upper_transport); if (status) goto out_close; xprt_release_write(lower_xprt, NULL); trace_rpc_socket_connect(upper_xprt, upper_transport->sock, 0); if (!xprt_test_and_set_connected(upper_xprt)) { upper_xprt->connect_cookie++; clear_bit(XPRT_SOCK_CONNECTING, &upper_transport->sock_state); xprt_clear_connecting(upper_xprt); upper_xprt->stat.connect_count++; upper_xprt->stat.connect_time += (long)jiffies - upper_xprt->stat.connect_start; xs_run_error_worker(upper_transport, XPRT_SOCK_WAKE_PENDING); } rpc_shutdown_client(lower_clnt); out_unlock: current_restore_flags(pflags, PF_MEMALLOC); upper_transport->clnt = NULL; xprt_unlock_connect(upper_xprt, upper_transport); return; out_close: xprt_release_write(lower_xprt, NULL); rpc_shutdown_client(lower_clnt); /* xprt_force_disconnect() wakes tasks with a fixed tk_status code. * Wake them first here to ensure they get our tk_status code. */ xprt_wake_pending_tasks(upper_xprt, status); xs_tcp_force_close(upper_xprt); xprt_clear_connecting(upper_xprt); goto out_unlock; } /** * xs_connect - connect a socket to a remote endpoint * @xprt: pointer to transport structure * @task: address of RPC task that manages state of connect request * * TCP: If the remote end dropped the connection, delay reconnecting. * * UDP socket connects are synchronous, but we use a work queue anyway * to guarantee that even unprivileged user processes can set up a * socket on a privileged port. * * If a UDP socket connect fails, the delay behavior here prevents * retry floods (hard mounts). */ static void xs_connect(struct rpc_xprt *xprt, struct rpc_task *task) { struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); unsigned long delay = 0; WARN_ON_ONCE(!xprt_lock_connect(xprt, task, transport)); if (transport->sock != NULL) { dprintk("RPC: xs_connect delayed xprt %p for %lu " "seconds\n", xprt, xprt->reestablish_timeout / HZ); delay = xprt_reconnect_delay(xprt); xprt_reconnect_backoff(xprt, XS_TCP_INIT_REEST_TO); } else dprintk("RPC: xs_connect scheduled xprt %p\n", xprt); transport->clnt = task->tk_client; queue_delayed_work(xprtiod_workqueue, &transport->connect_worker, delay); } static void xs_wake_disconnect(struct sock_xprt *transport) { if (test_and_clear_bit(XPRT_SOCK_WAKE_DISCONNECT, &transport->sock_state)) xs_tcp_force_close(&transport->xprt); } static void xs_wake_write(struct sock_xprt *transport) { if (test_and_clear_bit(XPRT_SOCK_WAKE_WRITE, &transport->sock_state)) xprt_write_space(&transport->xprt); } static void xs_wake_error(struct sock_xprt *transport) { int sockerr; if (!test_bit(XPRT_SOCK_WAKE_ERROR, &transport->sock_state)) return; mutex_lock(&transport->recv_mutex); if (transport->sock == NULL) goto out; if (!test_and_clear_bit(XPRT_SOCK_WAKE_ERROR, &transport->sock_state)) goto out; sockerr = xchg(&transport->xprt_err, 0); if (sockerr < 0) xprt_wake_pending_tasks(&transport->xprt, sockerr); out: mutex_unlock(&transport->recv_mutex); } static void xs_wake_pending(struct sock_xprt *transport) { if (test_and_clear_bit(XPRT_SOCK_WAKE_PENDING, &transport->sock_state)) xprt_wake_pending_tasks(&transport->xprt, -EAGAIN); } static void xs_error_handle(struct work_struct *work) { struct sock_xprt *transport = container_of(work, struct sock_xprt, error_worker); xs_wake_disconnect(transport); xs_wake_write(transport); xs_wake_error(transport); xs_wake_pending(transport); } /** * xs_local_print_stats - display AF_LOCAL socket-specific stats * @xprt: rpc_xprt struct containing statistics * @seq: output file * */ static void xs_local_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) { long idle_time = 0; if (xprt_connected(xprt)) idle_time = (long)(jiffies - xprt->last_used) / HZ; seq_printf(seq, "\txprt:\tlocal %lu %lu %lu %ld %lu %lu %lu " "%llu %llu %lu %llu %llu\n", xprt->stat.bind_count, xprt->stat.connect_count, xprt->stat.connect_time / HZ, idle_time, xprt->stat.sends, xprt->stat.recvs, xprt->stat.bad_xids, xprt->stat.req_u, xprt->stat.bklog_u, xprt->stat.max_slots, xprt->stat.sending_u, xprt->stat.pending_u); } /** * xs_udp_print_stats - display UDP socket-specific stats * @xprt: rpc_xprt struct containing statistics * @seq: output file * */ static void xs_udp_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) { struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); seq_printf(seq, "\txprt:\tudp %u %lu %lu %lu %lu %llu %llu " "%lu %llu %llu\n", transport->srcport, xprt->stat.bind_count, xprt->stat.sends, xprt->stat.recvs, xprt->stat.bad_xids, xprt->stat.req_u, xprt->stat.bklog_u, xprt->stat.max_slots, xprt->stat.sending_u, xprt->stat.pending_u); } /** * xs_tcp_print_stats - display TCP socket-specific stats * @xprt: rpc_xprt struct containing statistics * @seq: output file * */ static void xs_tcp_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) { struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); long idle_time = 0; if (xprt_connected(xprt)) idle_time = (long)(jiffies - xprt->last_used) / HZ; seq_printf(seq, "\txprt:\ttcp %u %lu %lu %lu %ld %lu %lu %lu " "%llu %llu %lu %llu %llu\n", transport->srcport, xprt->stat.bind_count, xprt->stat.connect_count, xprt->stat.connect_time / HZ, idle_time, xprt->stat.sends, xprt->stat.recvs, xprt->stat.bad_xids, xprt->stat.req_u, xprt->stat.bklog_u, xprt->stat.max_slots, xprt->stat.sending_u, xprt->stat.pending_u); } /* * Allocate a bunch of pages for a scratch buffer for the rpc code. The reason * we allocate pages instead doing a kmalloc like rpc_malloc is because we want * to use the server side send routines. */ static int bc_malloc(struct rpc_task *task) { struct rpc_rqst *rqst = task->tk_rqstp; size_t size = rqst->rq_callsize; struct page *page; struct rpc_buffer *buf; if (size > PAGE_SIZE - sizeof(struct rpc_buffer)) { WARN_ONCE(1, "xprtsock: large bc buffer request (size %zu)\n", size); return -EINVAL; } page = alloc_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); if (!page) return -ENOMEM; buf = page_address(page); buf->len = PAGE_SIZE; rqst->rq_buffer = buf->data; rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize; return 0; } /* * Free the space allocated in the bc_alloc routine */ static void bc_free(struct rpc_task *task) { void *buffer = task->tk_rqstp->rq_buffer; struct rpc_buffer *buf; buf = container_of(buffer, struct rpc_buffer, data); free_page((unsigned long)buf); } static int bc_sendto(struct rpc_rqst *req) { struct xdr_buf *xdr = &req->rq_snd_buf; struct sock_xprt *transport = container_of(req->rq_xprt, struct sock_xprt, xprt); struct msghdr msg = { .msg_flags = 0, }; rpc_fraghdr marker = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT | (u32)xdr->len); unsigned int sent = 0; int err; req->rq_xtime = ktime_get(); err = xdr_alloc_bvec(xdr, rpc_task_gfp_mask()); if (err < 0) return err; err = xprt_sock_sendmsg(transport->sock, &msg, xdr, 0, marker, &sent); xdr_free_bvec(xdr); if (err < 0 || sent != (xdr->len + sizeof(marker))) return -EAGAIN; return sent; } /** * bc_send_request - Send a backchannel Call on a TCP socket * @req: rpc_rqst containing Call message to be sent * * xpt_mutex ensures @rqstp's whole message is written to the socket * without interruption. * * Return values: * %0 if the message was sent successfully * %ENOTCONN if the message was not sent */ static int bc_send_request(struct rpc_rqst *req) { struct svc_xprt *xprt; int len; /* * Get the server socket associated with this callback xprt */ xprt = req->rq_xprt->bc_xprt; /* * Grab the mutex to serialize data as the connection is shared * with the fore channel */ mutex_lock(&xprt->xpt_mutex); if (test_bit(XPT_DEAD, &xprt->xpt_flags)) len = -ENOTCONN; else len = bc_sendto(req); mutex_unlock(&xprt->xpt_mutex); if (len > 0) len = 0; return len; } /* * The close routine. Since this is client initiated, we do nothing */ static void bc_close(struct rpc_xprt *xprt) { xprt_disconnect_done(xprt); } /* * The xprt destroy routine. Again, because this connection is client * initiated, we do nothing */ static void bc_destroy(struct rpc_xprt *xprt) { dprintk("RPC: bc_destroy xprt %p\n", xprt); xs_xprt_free(xprt); module_put(THIS_MODULE); } static const struct rpc_xprt_ops xs_local_ops = { .reserve_xprt = xprt_reserve_xprt, .release_xprt = xprt_release_xprt, .alloc_slot = xprt_alloc_slot, .free_slot = xprt_free_slot, .rpcbind = xs_local_rpcbind, .set_port = xs_local_set_port, .connect = xs_local_connect, .buf_alloc = rpc_malloc, .buf_free = rpc_free, .prepare_request = xs_stream_prepare_request, .send_request = xs_local_send_request, .wait_for_reply_request = xprt_wait_for_reply_request_def, .close = xs_close, .destroy = xs_destroy, .print_stats = xs_local_print_stats, .enable_swap = xs_enable_swap, .disable_swap = xs_disable_swap, }; static const struct rpc_xprt_ops xs_udp_ops = { .set_buffer_size = xs_udp_set_buffer_size, .reserve_xprt = xprt_reserve_xprt_cong, .release_xprt = xprt_release_xprt_cong, .alloc_slot = xprt_alloc_slot, .free_slot = xprt_free_slot, .rpcbind = rpcb_getport_async, .set_port = xs_set_port, .connect = xs_connect, .get_srcaddr = xs_sock_srcaddr, .get_srcport = xs_sock_srcport, .buf_alloc = rpc_malloc, .buf_free = rpc_free, .send_request = xs_udp_send_request, .wait_for_reply_request = xprt_wait_for_reply_request_rtt, .timer = xs_udp_timer, .release_request = xprt_release_rqst_cong, .close = xs_close, .destroy = xs_destroy, .print_stats = xs_udp_print_stats, .enable_swap = xs_enable_swap, .disable_swap = xs_disable_swap, .inject_disconnect = xs_inject_disconnect, }; static const struct rpc_xprt_ops xs_tcp_ops = { .reserve_xprt = xprt_reserve_xprt, .release_xprt = xprt_release_xprt, .alloc_slot = xprt_alloc_slot, .free_slot = xprt_free_slot, .rpcbind = rpcb_getport_async, .set_port = xs_set_port, .connect = xs_connect, .get_srcaddr = xs_sock_srcaddr, .get_srcport = xs_sock_srcport, .buf_alloc = rpc_malloc, .buf_free = rpc_free, .prepare_request = xs_stream_prepare_request, .send_request = xs_tcp_send_request, .wait_for_reply_request = xprt_wait_for_reply_request_def, .close = xs_tcp_shutdown, .destroy = xs_destroy, .set_connect_timeout = xs_tcp_set_connect_timeout, .print_stats = xs_tcp_print_stats, .enable_swap = xs_enable_swap, .disable_swap = xs_disable_swap, .inject_disconnect = xs_inject_disconnect, #ifdef CONFIG_SUNRPC_BACKCHANNEL .bc_setup = xprt_setup_bc, .bc_maxpayload = xs_tcp_bc_maxpayload, .bc_num_slots = xprt_bc_max_slots, .bc_free_rqst = xprt_free_bc_rqst, .bc_destroy = xprt_destroy_bc, #endif }; /* * The rpc_xprt_ops for the server backchannel */ static const struct rpc_xprt_ops bc_tcp_ops = { .reserve_xprt = xprt_reserve_xprt, .release_xprt = xprt_release_xprt, .alloc_slot = xprt_alloc_slot, .free_slot = xprt_free_slot, .buf_alloc = bc_malloc, .buf_free = bc_free, .send_request = bc_send_request, .wait_for_reply_request = xprt_wait_for_reply_request_def, .close = bc_close, .destroy = bc_destroy, .print_stats = xs_tcp_print_stats, .enable_swap = xs_enable_swap, .disable_swap = xs_disable_swap, .inject_disconnect = xs_inject_disconnect, }; static int xs_init_anyaddr(const int family, struct sockaddr *sap) { static const struct sockaddr_in sin = { .sin_family = AF_INET, .sin_addr.s_addr = htonl(INADDR_ANY), }; static const struct sockaddr_in6 sin6 = { .sin6_family = AF_INET6, .sin6_addr = IN6ADDR_ANY_INIT, }; switch (family) { case AF_LOCAL: break; case AF_INET: memcpy(sap, &sin, sizeof(sin)); break; case AF_INET6: memcpy(sap, &sin6, sizeof(sin6)); break; default: dprintk("RPC: %s: Bad address family\n", __func__); return -EAFNOSUPPORT; } return 0; } static struct rpc_xprt *xs_setup_xprt(struct xprt_create *args, unsigned int slot_table_size, unsigned int max_slot_table_size) { struct rpc_xprt *xprt; struct sock_xprt *new; if (args->addrlen > sizeof(xprt->addr)) { dprintk("RPC: xs_setup_xprt: address too large\n"); return ERR_PTR(-EBADF); } xprt = xprt_alloc(args->net, sizeof(*new), slot_table_size, max_slot_table_size); if (xprt == NULL) { dprintk("RPC: xs_setup_xprt: couldn't allocate " "rpc_xprt\n"); return ERR_PTR(-ENOMEM); } new = container_of(xprt, struct sock_xprt, xprt); mutex_init(&new->recv_mutex); memcpy(&xprt->addr, args->dstaddr, args->addrlen); xprt->addrlen = args->addrlen; if (args->srcaddr) memcpy(&new->srcaddr, args->srcaddr, args->addrlen); else { int err; err = xs_init_anyaddr(args->dstaddr->sa_family, (struct sockaddr *)&new->srcaddr); if (err != 0) { xprt_free(xprt); return ERR_PTR(err); } } return xprt; } static const struct rpc_timeout xs_local_default_timeout = { .to_initval = 10 * HZ, .to_maxval = 10 * HZ, .to_retries = 2, }; /** * xs_setup_local - Set up transport to use an AF_LOCAL socket * @args: rpc transport creation arguments * * AF_LOCAL is a "tpi_cots_ord" transport, just like TCP */ static struct rpc_xprt *xs_setup_local(struct xprt_create *args) { struct sockaddr_un *sun = (struct sockaddr_un *)args->dstaddr; struct sock_xprt *transport; struct rpc_xprt *xprt; struct rpc_xprt *ret; xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, xprt_max_tcp_slot_table_entries); if (IS_ERR(xprt)) return xprt; transport = container_of(xprt, struct sock_xprt, xprt); xprt->prot = 0; xprt->xprt_class = &xs_local_transport; xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; xprt->bind_timeout = XS_BIND_TO; xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; xprt->idle_timeout = XS_IDLE_DISC_TO; xprt->ops = &xs_local_ops; xprt->timeout = &xs_local_default_timeout; INIT_WORK(&transport->recv_worker, xs_stream_data_receive_workfn); INIT_WORK(&transport->error_worker, xs_error_handle); INIT_DELAYED_WORK(&transport->connect_worker, xs_dummy_setup_socket); switch (sun->sun_family) { case AF_LOCAL: if (sun->sun_path[0] != '/' && sun->sun_path[0] != '\0') { dprintk("RPC: bad AF_LOCAL address: %s\n", sun->sun_path); ret = ERR_PTR(-EINVAL); goto out_err; } xprt_set_bound(xprt); xs_format_peer_addresses(xprt, "local", RPCBIND_NETID_LOCAL); break; default: ret = ERR_PTR(-EAFNOSUPPORT); goto out_err; } dprintk("RPC: set up xprt to %s via AF_LOCAL\n", xprt->address_strings[RPC_DISPLAY_ADDR]); if (try_module_get(THIS_MODULE)) return xprt; ret = ERR_PTR(-EINVAL); out_err: xs_xprt_free(xprt); return ret; } static const struct rpc_timeout xs_udp_default_timeout = { .to_initval = 5 * HZ, .to_maxval = 30 * HZ, .to_increment = 5 * HZ, .to_retries = 5, }; /** * xs_setup_udp - Set up transport to use a UDP socket * @args: rpc transport creation arguments * */ static struct rpc_xprt *xs_setup_udp(struct xprt_create *args) { struct sockaddr *addr = args->dstaddr; struct rpc_xprt *xprt; struct sock_xprt *transport; struct rpc_xprt *ret; xprt = xs_setup_xprt(args, xprt_udp_slot_table_entries, xprt_udp_slot_table_entries); if (IS_ERR(xprt)) return xprt; transport = container_of(xprt, struct sock_xprt, xprt); xprt->prot = IPPROTO_UDP; xprt->xprt_class = &xs_udp_transport; /* XXX: header size can vary due to auth type, IPv6, etc. */ xprt->max_payload = (1U << 16) - (MAX_HEADER << 3); xprt->bind_timeout = XS_BIND_TO; xprt->reestablish_timeout = XS_UDP_REEST_TO; xprt->idle_timeout = XS_IDLE_DISC_TO; xprt->ops = &xs_udp_ops; xprt->timeout = &xs_udp_default_timeout; INIT_WORK(&transport->recv_worker, xs_udp_data_receive_workfn); INIT_WORK(&transport->error_worker, xs_error_handle); INIT_DELAYED_WORK(&transport->connect_worker, xs_udp_setup_socket); switch (addr->sa_family) { case AF_INET: if (((struct sockaddr_in *)addr)->sin_port != htons(0)) xprt_set_bound(xprt); xs_format_peer_addresses(xprt, "udp", RPCBIND_NETID_UDP); break; case AF_INET6: if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0)) xprt_set_bound(xprt); xs_format_peer_addresses(xprt, "udp", RPCBIND_NETID_UDP6); break; default: ret = ERR_PTR(-EAFNOSUPPORT); goto out_err; } if (xprt_bound(xprt)) dprintk("RPC: set up xprt to %s (port %s) via %s\n", xprt->address_strings[RPC_DISPLAY_ADDR], xprt->address_strings[RPC_DISPLAY_PORT], xprt->address_strings[RPC_DISPLAY_PROTO]); else dprintk("RPC: set up xprt to %s (autobind) via %s\n", xprt->address_strings[RPC_DISPLAY_ADDR], xprt->address_strings[RPC_DISPLAY_PROTO]); if (try_module_get(THIS_MODULE)) return xprt; ret = ERR_PTR(-EINVAL); out_err: xs_xprt_free(xprt); return ret; } static const struct rpc_timeout xs_tcp_default_timeout = { .to_initval = 60 * HZ, .to_maxval = 60 * HZ, .to_retries = 2, }; /** * xs_setup_tcp - Set up transport to use a TCP socket * @args: rpc transport creation arguments * */ static struct rpc_xprt *xs_setup_tcp(struct xprt_create *args) { struct sockaddr *addr = args->dstaddr; struct rpc_xprt *xprt; struct sock_xprt *transport; struct rpc_xprt *ret; unsigned int max_slot_table_size = xprt_max_tcp_slot_table_entries; if (args->flags & XPRT_CREATE_INFINITE_SLOTS) max_slot_table_size = RPC_MAX_SLOT_TABLE_LIMIT; xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, max_slot_table_size); if (IS_ERR(xprt)) return xprt; transport = container_of(xprt, struct sock_xprt, xprt); xprt->prot = IPPROTO_TCP; xprt->xprt_class = &xs_tcp_transport; xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; xprt->bind_timeout = XS_BIND_TO; xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; xprt->idle_timeout = XS_IDLE_DISC_TO; xprt->ops = &xs_tcp_ops; xprt->timeout = &xs_tcp_default_timeout; xprt->max_reconnect_timeout = xprt->timeout->to_maxval; if (args->reconnect_timeout) xprt->max_reconnect_timeout = args->reconnect_timeout; xprt->connect_timeout = xprt->timeout->to_initval * (xprt->timeout->to_retries + 1); if (args->connect_timeout) xs_tcp_do_set_connect_timeout(xprt, args->connect_timeout); INIT_WORK(&transport->recv_worker, xs_stream_data_receive_workfn); INIT_WORK(&transport->error_worker, xs_error_handle); INIT_DELAYED_WORK(&transport->connect_worker, xs_tcp_setup_socket); switch (addr->sa_family) { case AF_INET: if (((struct sockaddr_in *)addr)->sin_port != htons(0)) xprt_set_bound(xprt); xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP); break; case AF_INET6: if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0)) xprt_set_bound(xprt); xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP6); break; default: ret = ERR_PTR(-EAFNOSUPPORT); goto out_err; } if (xprt_bound(xprt)) dprintk("RPC: set up xprt to %s (port %s) via %s\n", xprt->address_strings[RPC_DISPLAY_ADDR], xprt->address_strings[RPC_DISPLAY_PORT], xprt->address_strings[RPC_DISPLAY_PROTO]); else dprintk("RPC: set up xprt to %s (autobind) via %s\n", xprt->address_strings[RPC_DISPLAY_ADDR], xprt->address_strings[RPC_DISPLAY_PROTO]); if (try_module_get(THIS_MODULE)) return xprt; ret = ERR_PTR(-EINVAL); out_err: xs_xprt_free(xprt); return ret; } /** * xs_setup_tcp_tls - Set up transport to use a TCP with TLS * @args: rpc transport creation arguments * */ static struct rpc_xprt *xs_setup_tcp_tls(struct xprt_create *args) { struct sockaddr *addr = args->dstaddr; struct rpc_xprt *xprt; struct sock_xprt *transport; struct rpc_xprt *ret; unsigned int max_slot_table_size = xprt_max_tcp_slot_table_entries; if (args->flags & XPRT_CREATE_INFINITE_SLOTS) max_slot_table_size = RPC_MAX_SLOT_TABLE_LIMIT; xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, max_slot_table_size); if (IS_ERR(xprt)) return xprt; transport = container_of(xprt, struct sock_xprt, xprt); xprt->prot = IPPROTO_TCP; xprt->xprt_class = &xs_tcp_transport; xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; xprt->bind_timeout = XS_BIND_TO; xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; xprt->idle_timeout = XS_IDLE_DISC_TO; xprt->ops = &xs_tcp_ops; xprt->timeout = &xs_tcp_default_timeout; xprt->max_reconnect_timeout = xprt->timeout->to_maxval; xprt->connect_timeout = xprt->timeout->to_initval * (xprt->timeout->to_retries + 1); INIT_WORK(&transport->recv_worker, xs_stream_data_receive_workfn); INIT_WORK(&transport->error_worker, xs_error_handle); switch (args->xprtsec.policy) { case RPC_XPRTSEC_TLS_ANON: case RPC_XPRTSEC_TLS_X509: xprt->xprtsec = args->xprtsec; INIT_DELAYED_WORK(&transport->connect_worker, xs_tcp_tls_setup_socket); break; default: ret = ERR_PTR(-EACCES); goto out_err; } switch (addr->sa_family) { case AF_INET: if (((struct sockaddr_in *)addr)->sin_port != htons(0)) xprt_set_bound(xprt); xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP); break; case AF_INET6: if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0)) xprt_set_bound(xprt); xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP6); break; default: ret = ERR_PTR(-EAFNOSUPPORT); goto out_err; } if (xprt_bound(xprt)) dprintk("RPC: set up xprt to %s (port %s) via %s\n", xprt->address_strings[RPC_DISPLAY_ADDR], xprt->address_strings[RPC_DISPLAY_PORT], xprt->address_strings[RPC_DISPLAY_PROTO]); else dprintk("RPC: set up xprt to %s (autobind) via %s\n", xprt->address_strings[RPC_DISPLAY_ADDR], xprt->address_strings[RPC_DISPLAY_PROTO]); if (try_module_get(THIS_MODULE)) return xprt; ret = ERR_PTR(-EINVAL); out_err: xs_xprt_free(xprt); return ret; } /** * xs_setup_bc_tcp - Set up transport to use a TCP backchannel socket * @args: rpc transport creation arguments * */ static struct rpc_xprt *xs_setup_bc_tcp(struct xprt_create *args) { struct sockaddr *addr = args->dstaddr; struct rpc_xprt *xprt; struct sock_xprt *transport; struct svc_sock *bc_sock; struct rpc_xprt *ret; xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, xprt_tcp_slot_table_entries); if (IS_ERR(xprt)) return xprt; transport = container_of(xprt, struct sock_xprt, xprt); xprt->prot = IPPROTO_TCP; xprt->xprt_class = &xs_bc_tcp_transport; xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; xprt->timeout = &xs_tcp_default_timeout; /* backchannel */ xprt_set_bound(xprt); xprt->bind_timeout = 0; xprt->reestablish_timeout = 0; xprt->idle_timeout = 0; xprt->ops = &bc_tcp_ops; switch (addr->sa_family) { case AF_INET: xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP); break; case AF_INET6: xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP6); break; default: ret = ERR_PTR(-EAFNOSUPPORT); goto out_err; } dprintk("RPC: set up xprt to %s (port %s) via %s\n", xprt->address_strings[RPC_DISPLAY_ADDR], xprt->address_strings[RPC_DISPLAY_PORT], xprt->address_strings[RPC_DISPLAY_PROTO]); /* * Once we've associated a backchannel xprt with a connection, * we want to keep it around as long as the connection lasts, * in case we need to start using it for a backchannel again; * this reference won't be dropped until bc_xprt is destroyed. */ xprt_get(xprt); args->bc_xprt->xpt_bc_xprt = xprt; xprt->bc_xprt = args->bc_xprt; bc_sock = container_of(args->bc_xprt, struct svc_sock, sk_xprt); transport->sock = bc_sock->sk_sock; transport->inet = bc_sock->sk_sk; /* * Since we don't want connections for the backchannel, we set * the xprt status to connected */ xprt_set_connected(xprt); if (try_module_get(THIS_MODULE)) return xprt; args->bc_xprt->xpt_bc_xprt = NULL; args->bc_xprt->xpt_bc_xps = NULL; xprt_put(xprt); ret = ERR_PTR(-EINVAL); out_err: xs_xprt_free(xprt); return ret; } static struct xprt_class xs_local_transport = { .list = LIST_HEAD_INIT(xs_local_transport.list), .name = "named UNIX socket", .owner = THIS_MODULE, .ident = XPRT_TRANSPORT_LOCAL, .setup = xs_setup_local, .netid = { "" }, }; static struct xprt_class xs_udp_transport = { .list = LIST_HEAD_INIT(xs_udp_transport.list), .name = "udp", .owner = THIS_MODULE, .ident = XPRT_TRANSPORT_UDP, .setup = xs_setup_udp, .netid = { "udp", "udp6", "" }, }; static struct xprt_class xs_tcp_transport = { .list = LIST_HEAD_INIT(xs_tcp_transport.list), .name = "tcp", .owner = THIS_MODULE, .ident = XPRT_TRANSPORT_TCP, .setup = xs_setup_tcp, .netid = { "tcp", "tcp6", "" }, }; static struct xprt_class xs_tcp_tls_transport = { .list = LIST_HEAD_INIT(xs_tcp_tls_transport.list), .name = "tcp-with-tls", .owner = THIS_MODULE, .ident = XPRT_TRANSPORT_TCP_TLS, .setup = xs_setup_tcp_tls, .netid = { "tcp", "tcp6", "" }, }; static struct xprt_class xs_bc_tcp_transport = { .list = LIST_HEAD_INIT(xs_bc_tcp_transport.list), .name = "tcp NFSv4.1 backchannel", .owner = THIS_MODULE, .ident = XPRT_TRANSPORT_BC_TCP, .setup = xs_setup_bc_tcp, .netid = { "" }, }; /** * init_socket_xprt - set up xprtsock's sysctls, register with RPC client * */ int init_socket_xprt(void) { if (!sunrpc_table_header) sunrpc_table_header = register_sysctl("sunrpc", xs_tunables_table); xprt_register_transport(&xs_local_transport); xprt_register_transport(&xs_udp_transport); xprt_register_transport(&xs_tcp_transport); xprt_register_transport(&xs_tcp_tls_transport); xprt_register_transport(&xs_bc_tcp_transport); return 0; } /** * cleanup_socket_xprt - remove xprtsock's sysctls, unregister * */ void cleanup_socket_xprt(void) { if (sunrpc_table_header) { unregister_sysctl_table(sunrpc_table_header); sunrpc_table_header = NULL; } xprt_unregister_transport(&xs_local_transport); xprt_unregister_transport(&xs_udp_transport); xprt_unregister_transport(&xs_tcp_transport); xprt_unregister_transport(&xs_tcp_tls_transport); xprt_unregister_transport(&xs_bc_tcp_transport); } static int param_set_portnr(const char *val, const struct kernel_param *kp) { return param_set_uint_minmax(val, kp, RPC_MIN_RESVPORT, RPC_MAX_RESVPORT); } static const struct kernel_param_ops param_ops_portnr = { .set = param_set_portnr, .get = param_get_uint, }; #define param_check_portnr(name, p) \ __param_check(name, p, unsigned int); module_param_named(min_resvport, xprt_min_resvport, portnr, 0644); module_param_named(max_resvport, xprt_max_resvport, portnr, 0644); static int param_set_slot_table_size(const char *val, const struct kernel_param *kp) { return param_set_uint_minmax(val, kp, RPC_MIN_SLOT_TABLE, RPC_MAX_SLOT_TABLE); } static const struct kernel_param_ops param_ops_slot_table_size = { .set = param_set_slot_table_size, .get = param_get_uint, }; #define param_check_slot_table_size(name, p) \ __param_check(name, p, unsigned int); static int param_set_max_slot_table_size(const char *val, const struct kernel_param *kp) { return param_set_uint_minmax(val, kp, RPC_MIN_SLOT_TABLE, RPC_MAX_SLOT_TABLE_LIMIT); } static const struct kernel_param_ops param_ops_max_slot_table_size = { .set = param_set_max_slot_table_size, .get = param_get_uint, }; #define param_check_max_slot_table_size(name, p) \ __param_check(name, p, unsigned int); module_param_named(tcp_slot_table_entries, xprt_tcp_slot_table_entries, slot_table_size, 0644); module_param_named(tcp_max_slot_table_entries, xprt_max_tcp_slot_table_entries, max_slot_table_size, 0644); module_param_named(udp_slot_table_entries, xprt_udp_slot_table_entries, slot_table_size, 0644);