/* * COPYRIGHT (c) 2008 * The Regents of the University of Michigan * ALL RIGHTS RESERVED * * Permission is granted to use, copy, create derivative works * and redistribute this software and such derivative works * for any purpose, so long as the name of The University of * Michigan is not used in any advertising or publicity * pertaining to the use of distribution of this software * without specific, written prior authorization. If the * above copyright notice or any other identification of the * University of Michigan is included in any copy of any * portion of this software, then the disclaimer below must * also be included. * * THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION * FROM THE UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY * PURPOSE, AND WITHOUT WARRANTY BY THE UNIVERSITY OF * MICHIGAN OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING * WITHOUT LIMITATION THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE * REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE LIABLE * FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCIDENTAL, OR * CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM ARISING * OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN * IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF * SUCH DAMAGES. */ /* * Copyright (C) 1998 by the FundsXpress, INC. * * All rights reserved. * * Export of this software from the United States of America may require * a specific license from the United States Government. It is the * responsibility of any person or organization contemplating export to * obtain such a license before exporting. * * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and * distribute this software and its documentation for any purpose and * without fee is hereby granted, provided that the above copyright * notice appear in all copies and that both that copyright notice and * this permission notice appear in supporting documentation, and that * the name of FundsXpress. not be used in advertising or publicity pertaining * to distribution of the software without specific, written prior * permission. FundsXpress makes no representations about the suitability of * this software for any purpose. It is provided "as is" without express * or implied warranty. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. */ #include <crypto/skcipher.h> #include <linux/err.h> #include <linux/types.h> #include <linux/sunrpc/gss_krb5.h> #include <linux/sunrpc/xdr.h> #include <linux/lcm.h> #include <crypto/hash.h> #include <kunit/visibility.h> #include "gss_krb5_internal.h" #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) # define RPCDBG_FACILITY RPCDBG_AUTH #endif /** * krb5_nfold - n-fold function * @inbits: number of bits in @in * @in: buffer containing input to fold * @outbits: number of bits in the output buffer * @out: buffer to hold the result * * This is the n-fold function as described in rfc3961, sec 5.1 * Taken from MIT Kerberos and modified. */ VISIBLE_IF_KUNIT void krb5_nfold(u32 inbits, const u8 *in, u32 outbits, u8 *out) { unsigned long ulcm; int byte, i, msbit; /* the code below is more readable if I make these bytes instead of bits */ inbits >>= 3; outbits >>= 3; /* first compute lcm(n,k) */ ulcm = lcm(inbits, outbits); /* now do the real work */ memset(out, 0, outbits); byte = 0; /* this will end up cycling through k lcm(k,n)/k times, which is correct */ for (i = ulcm-1; i >= 0; i--) { /* compute the msbit in k which gets added into this byte */ msbit = ( /* first, start with the msbit in the first, * unrotated byte */ ((inbits << 3) - 1) /* then, for each byte, shift to the right * for each repetition */ + (((inbits << 3) + 13) * (i/inbits)) /* last, pick out the correct byte within * that shifted repetition */ + ((inbits - (i % inbits)) << 3) ) % (inbits << 3); /* pull out the byte value itself */ byte += (((in[((inbits - 1) - (msbit >> 3)) % inbits] << 8)| (in[((inbits) - (msbit >> 3)) % inbits])) >> ((msbit & 7) + 1)) & 0xff; /* do the addition */ byte += out[i % outbits]; out[i % outbits] = byte & 0xff; /* keep around the carry bit, if any */ byte >>= 8; } /* if there's a carry bit left over, add it back in */ if (byte) { for (i = outbits - 1; i >= 0; i--) { /* do the addition */ byte += out[i]; out[i] = byte & 0xff; /* keep around the carry bit, if any */ byte >>= 8; } } } EXPORT_SYMBOL_IF_KUNIT(krb5_nfold); /* * This is the DK (derive_key) function as described in rfc3961, sec 5.1 * Taken from MIT Kerberos and modified. */ static int krb5_DK(const struct gss_krb5_enctype *gk5e, const struct xdr_netobj *inkey, u8 *rawkey, const struct xdr_netobj *in_constant, gfp_t gfp_mask) { size_t blocksize, keybytes, keylength, n; unsigned char *inblockdata, *outblockdata; struct xdr_netobj inblock, outblock; struct crypto_sync_skcipher *cipher; int ret = -EINVAL; keybytes = gk5e->keybytes; keylength = gk5e->keylength; if (inkey->len != keylength) goto err_return; cipher = crypto_alloc_sync_skcipher(gk5e->encrypt_name, 0, 0); if (IS_ERR(cipher)) goto err_return; blocksize = crypto_sync_skcipher_blocksize(cipher); if (crypto_sync_skcipher_setkey(cipher, inkey->data, inkey->len)) goto err_return; ret = -ENOMEM; inblockdata = kmalloc(blocksize, gfp_mask); if (inblockdata == NULL) goto err_free_cipher; outblockdata = kmalloc(blocksize, gfp_mask); if (outblockdata == NULL) goto err_free_in; inblock.data = (char *) inblockdata; inblock.len = blocksize; outblock.data = (char *) outblockdata; outblock.len = blocksize; /* initialize the input block */ if (in_constant->len == inblock.len) { memcpy(inblock.data, in_constant->data, inblock.len); } else { krb5_nfold(in_constant->len * 8, in_constant->data, inblock.len * 8, inblock.data); } /* loop encrypting the blocks until enough key bytes are generated */ n = 0; while (n < keybytes) { krb5_encrypt(cipher, NULL, inblock.data, outblock.data, inblock.len); if ((keybytes - n) <= outblock.len) { memcpy(rawkey + n, outblock.data, (keybytes - n)); break; } memcpy(rawkey + n, outblock.data, outblock.len); memcpy(inblock.data, outblock.data, outblock.len); n += outblock.len; } ret = 0; kfree_sensitive(outblockdata); err_free_in: kfree_sensitive(inblockdata); err_free_cipher: crypto_free_sync_skcipher(cipher); err_return: return ret; } #define smask(step) ((1<<step)-1) #define pstep(x, step) (((x)&smask(step))^(((x)>>step)&smask(step))) #define parity_char(x) pstep(pstep(pstep((x), 4), 2), 1) static void mit_des_fixup_key_parity(u8 key[8]) { int i; for (i = 0; i < 8; i++) { key[i] &= 0xfe; key[i] |= 1^parity_char(key[i]); } } static int krb5_random_to_key_v1(const struct gss_krb5_enctype *gk5e, struct xdr_netobj *randombits, struct xdr_netobj *key) { int i, ret = -EINVAL; if (key->len != 24) { dprintk("%s: key->len is %d\n", __func__, key->len); goto err_out; } if (randombits->len != 21) { dprintk("%s: randombits->len is %d\n", __func__, randombits->len); goto err_out; } /* take the seven bytes, move them around into the top 7 bits of the 8 key bytes, then compute the parity bits. Do this three times. */ for (i = 0; i < 3; i++) { memcpy(key->data + i*8, randombits->data + i*7, 7); key->data[i*8+7] = (((key->data[i*8]&1)<<1) | ((key->data[i*8+1]&1)<<2) | ((key->data[i*8+2]&1)<<3) | ((key->data[i*8+3]&1)<<4) | ((key->data[i*8+4]&1)<<5) | ((key->data[i*8+5]&1)<<6) | ((key->data[i*8+6]&1)<<7)); mit_des_fixup_key_parity(key->data + i*8); } ret = 0; err_out: return ret; } /** * krb5_derive_key_v1 - Derive a subkey for an RFC 3961 enctype * @gk5e: Kerberos 5 enctype profile * @inkey: base protocol key * @outkey: OUT: derived key * @label: subkey usage label * @gfp_mask: memory allocation control flags * * Caller sets @outkey->len to the desired length of the derived key. * * On success, returns 0 and fills in @outkey. A negative errno value * is returned on failure. */ int krb5_derive_key_v1(const struct gss_krb5_enctype *gk5e, const struct xdr_netobj *inkey, struct xdr_netobj *outkey, const struct xdr_netobj *label, gfp_t gfp_mask) { struct xdr_netobj inblock; int ret; inblock.len = gk5e->keybytes; inblock.data = kmalloc(inblock.len, gfp_mask); if (!inblock.data) return -ENOMEM; ret = krb5_DK(gk5e, inkey, inblock.data, label, gfp_mask); if (!ret) ret = krb5_random_to_key_v1(gk5e, &inblock, outkey); kfree_sensitive(inblock.data); return ret; } /* * This is the identity function, with some sanity checking. */ static int krb5_random_to_key_v2(const struct gss_krb5_enctype *gk5e, struct xdr_netobj *randombits, struct xdr_netobj *key) { int ret = -EINVAL; if (key->len != 16 && key->len != 32) { dprintk("%s: key->len is %d\n", __func__, key->len); goto err_out; } if (randombits->len != 16 && randombits->len != 32) { dprintk("%s: randombits->len is %d\n", __func__, randombits->len); goto err_out; } if (randombits->len != key->len) { dprintk("%s: randombits->len is %d, key->len is %d\n", __func__, randombits->len, key->len); goto err_out; } memcpy(key->data, randombits->data, key->len); ret = 0; err_out: return ret; } /** * krb5_derive_key_v2 - Derive a subkey for an RFC 3962 enctype * @gk5e: Kerberos 5 enctype profile * @inkey: base protocol key * @outkey: OUT: derived key * @label: subkey usage label * @gfp_mask: memory allocation control flags * * Caller sets @outkey->len to the desired length of the derived key. * * On success, returns 0 and fills in @outkey. A negative errno value * is returned on failure. */ int krb5_derive_key_v2(const struct gss_krb5_enctype *gk5e, const struct xdr_netobj *inkey, struct xdr_netobj *outkey, const struct xdr_netobj *label, gfp_t gfp_mask) { struct xdr_netobj inblock; int ret; inblock.len = gk5e->keybytes; inblock.data = kmalloc(inblock.len, gfp_mask); if (!inblock.data) return -ENOMEM; ret = krb5_DK(gk5e, inkey, inblock.data, label, gfp_mask); if (!ret) ret = krb5_random_to_key_v2(gk5e, &inblock, outkey); kfree_sensitive(inblock.data); return ret; } /* * K(i) = CMAC(key, K(i-1) | i | constant | 0x00 | k) * * i: A block counter is used with a length of 4 bytes, represented * in big-endian order. * * constant: The label input to the KDF is the usage constant supplied * to the key derivation function * * k: The length of the output key in bits, represented as a 4-byte * string in big-endian order. * * Caller fills in K(i-1) in @step, and receives the result K(i) * in the same buffer. */ static int krb5_cmac_Ki(struct crypto_shash *tfm, const struct xdr_netobj *constant, u32 outlen, u32 count, struct xdr_netobj *step) { __be32 k = cpu_to_be32(outlen * 8); SHASH_DESC_ON_STACK(desc, tfm); __be32 i = cpu_to_be32(count); u8 zero = 0; int ret; desc->tfm = tfm; ret = crypto_shash_init(desc); if (ret) goto out_err; ret = crypto_shash_update(desc, step->data, step->len); if (ret) goto out_err; ret = crypto_shash_update(desc, (u8 *)&i, sizeof(i)); if (ret) goto out_err; ret = crypto_shash_update(desc, constant->data, constant->len); if (ret) goto out_err; ret = crypto_shash_update(desc, &zero, sizeof(zero)); if (ret) goto out_err; ret = crypto_shash_update(desc, (u8 *)&k, sizeof(k)); if (ret) goto out_err; ret = crypto_shash_final(desc, step->data); if (ret) goto out_err; out_err: shash_desc_zero(desc); return ret; } /** * krb5_kdf_feedback_cmac - Derive a subkey for a Camellia/CMAC-based enctype * @gk5e: Kerberos 5 enctype parameters * @inkey: base protocol key * @outkey: OUT: derived key * @constant: subkey usage label * @gfp_mask: memory allocation control flags * * RFC 6803 Section 3: * * "We use a key derivation function from the family specified in * [SP800-108], Section 5.2, 'KDF in Feedback Mode'." * * n = ceiling(k / 128) * K(0) = zeros * K(i) = CMAC(key, K(i-1) | i | constant | 0x00 | k) * DR(key, constant) = k-truncate(K(1) | K(2) | ... | K(n)) * KDF-FEEDBACK-CMAC(key, constant) = random-to-key(DR(key, constant)) * * Caller sets @outkey->len to the desired length of the derived key (k). * * On success, returns 0 and fills in @outkey. A negative errno value * is returned on failure. */ int krb5_kdf_feedback_cmac(const struct gss_krb5_enctype *gk5e, const struct xdr_netobj *inkey, struct xdr_netobj *outkey, const struct xdr_netobj *constant, gfp_t gfp_mask) { struct xdr_netobj step = { .data = NULL }; struct xdr_netobj DR = { .data = NULL }; unsigned int blocksize, offset; struct crypto_shash *tfm; int n, count, ret; /* * This implementation assumes the CMAC used for an enctype's * key derivation is the same as the CMAC used for its * checksumming. This happens to be true for enctypes that * are currently supported by this implementation. */ tfm = crypto_alloc_shash(gk5e->cksum_name, 0, 0); if (IS_ERR(tfm)) { ret = PTR_ERR(tfm); goto out; } ret = crypto_shash_setkey(tfm, inkey->data, inkey->len); if (ret) goto out_free_tfm; blocksize = crypto_shash_digestsize(tfm); n = (outkey->len + blocksize - 1) / blocksize; /* K(0) is all zeroes */ ret = -ENOMEM; step.len = blocksize; step.data = kzalloc(step.len, gfp_mask); if (!step.data) goto out_free_tfm; DR.len = blocksize * n; DR.data = kmalloc(DR.len, gfp_mask); if (!DR.data) goto out_free_tfm; /* XXX: Does not handle partial-block key sizes */ for (offset = 0, count = 1; count <= n; count++) { ret = krb5_cmac_Ki(tfm, constant, outkey->len, count, &step); if (ret) goto out_free_tfm; memcpy(DR.data + offset, step.data, blocksize); offset += blocksize; } /* k-truncate and random-to-key */ memcpy(outkey->data, DR.data, outkey->len); ret = 0; out_free_tfm: crypto_free_shash(tfm); out: kfree_sensitive(step.data); kfree_sensitive(DR.data); return ret; } /* * K1 = HMAC-SHA(key, 0x00000001 | label | 0x00 | k) * * key: The source of entropy from which subsequent keys are derived. * * label: An octet string describing the intended usage of the * derived key. * * k: Length in bits of the key to be outputted, expressed in * big-endian binary representation in 4 bytes. */ static int krb5_hmac_K1(struct crypto_shash *tfm, const struct xdr_netobj *label, u32 outlen, struct xdr_netobj *K1) { __be32 k = cpu_to_be32(outlen * 8); SHASH_DESC_ON_STACK(desc, tfm); __be32 one = cpu_to_be32(1); u8 zero = 0; int ret; desc->tfm = tfm; ret = crypto_shash_init(desc); if (ret) goto out_err; ret = crypto_shash_update(desc, (u8 *)&one, sizeof(one)); if (ret) goto out_err; ret = crypto_shash_update(desc, label->data, label->len); if (ret) goto out_err; ret = crypto_shash_update(desc, &zero, sizeof(zero)); if (ret) goto out_err; ret = crypto_shash_update(desc, (u8 *)&k, sizeof(k)); if (ret) goto out_err; ret = crypto_shash_final(desc, K1->data); if (ret) goto out_err; out_err: shash_desc_zero(desc); return ret; } /** * krb5_kdf_hmac_sha2 - Derive a subkey for an AES/SHA2-based enctype * @gk5e: Kerberos 5 enctype policy parameters * @inkey: base protocol key * @outkey: OUT: derived key * @label: subkey usage label * @gfp_mask: memory allocation control flags * * RFC 8009 Section 3: * * "We use a key derivation function from Section 5.1 of [SP800-108], * which uses the HMAC algorithm as the PRF." * * function KDF-HMAC-SHA2(key, label, [context,] k): * k-truncate(K1) * * Caller sets @outkey->len to the desired length of the derived key. * * On success, returns 0 and fills in @outkey. A negative errno value * is returned on failure. */ int krb5_kdf_hmac_sha2(const struct gss_krb5_enctype *gk5e, const struct xdr_netobj *inkey, struct xdr_netobj *outkey, const struct xdr_netobj *label, gfp_t gfp_mask) { struct crypto_shash *tfm; struct xdr_netobj K1 = { .data = NULL, }; int ret; /* * This implementation assumes the HMAC used for an enctype's * key derivation is the same as the HMAC used for its * checksumming. This happens to be true for enctypes that * are currently supported by this implementation. */ tfm = crypto_alloc_shash(gk5e->cksum_name, 0, 0); if (IS_ERR(tfm)) { ret = PTR_ERR(tfm); goto out; } ret = crypto_shash_setkey(tfm, inkey->data, inkey->len); if (ret) goto out_free_tfm; K1.len = crypto_shash_digestsize(tfm); K1.data = kmalloc(K1.len, gfp_mask); if (!K1.data) { ret = -ENOMEM; goto out_free_tfm; } ret = krb5_hmac_K1(tfm, label, outkey->len, &K1); if (ret) goto out_free_tfm; /* k-truncate and random-to-key */ memcpy(outkey->data, K1.data, outkey->len); out_free_tfm: kfree_sensitive(K1.data); crypto_free_shash(tfm); out: return ret; }