// SPDX-License-Identifier: GPL-2.0-or-later /* Kerberos-based RxRPC security * * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include "ar-internal.h" #define RXKAD_VERSION 2 #define MAXKRB5TICKETLEN 1024 #define RXKAD_TKT_TYPE_KERBEROS_V5 256 #define ANAME_SZ 40 /* size of authentication name */ #define INST_SZ 40 /* size of principal's instance */ #define REALM_SZ 40 /* size of principal's auth domain */ #define SNAME_SZ 40 /* size of service name */ #define RXKAD_ALIGN 8 struct rxkad_level1_hdr { __be32 data_size; /* true data size (excluding padding) */ }; struct rxkad_level2_hdr { __be32 data_size; /* true data size (excluding padding) */ __be32 checksum; /* decrypted data checksum */ }; static int rxkad_prime_packet_security(struct rxrpc_connection *conn, struct crypto_sync_skcipher *ci); /* * this holds a pinned cipher so that keventd doesn't get called by the cipher * alloc routine, but since we have it to hand, we use it to decrypt RESPONSE * packets */ static struct crypto_sync_skcipher *rxkad_ci; static struct skcipher_request *rxkad_ci_req; static DEFINE_MUTEX(rxkad_ci_mutex); /* * Parse the information from a server key * * The data should be the 8-byte secret key. */ static int rxkad_preparse_server_key(struct key_preparsed_payload *prep) { struct crypto_skcipher *ci; if (prep->datalen != 8) return -EINVAL; memcpy(&prep->payload.data[2], prep->data, 8); ci = crypto_alloc_skcipher("pcbc(des)", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(ci)) { _leave(" = %ld", PTR_ERR(ci)); return PTR_ERR(ci); } if (crypto_skcipher_setkey(ci, prep->data, 8) < 0) BUG(); prep->payload.data[0] = ci; _leave(" = 0"); return 0; } static void rxkad_free_preparse_server_key(struct key_preparsed_payload *prep) { if (prep->payload.data[0]) crypto_free_skcipher(prep->payload.data[0]); } static void rxkad_destroy_server_key(struct key *key) { if (key->payload.data[0]) { crypto_free_skcipher(key->payload.data[0]); key->payload.data[0] = NULL; } } /* * initialise connection security */ static int rxkad_init_connection_security(struct rxrpc_connection *conn, struct rxrpc_key_token *token) { struct crypto_sync_skcipher *ci; int ret; _enter("{%d},{%x}", conn->debug_id, key_serial(conn->key)); conn->security_ix = token->security_index; ci = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0); if (IS_ERR(ci)) { _debug("no cipher"); ret = PTR_ERR(ci); goto error; } if (crypto_sync_skcipher_setkey(ci, token->kad->session_key, sizeof(token->kad->session_key)) < 0) BUG(); switch (conn->security_level) { case RXRPC_SECURITY_PLAIN: case RXRPC_SECURITY_AUTH: case RXRPC_SECURITY_ENCRYPT: break; default: ret = -EKEYREJECTED; goto error; } ret = rxkad_prime_packet_security(conn, ci); if (ret < 0) goto error_ci; conn->rxkad.cipher = ci; return 0; error_ci: crypto_free_sync_skcipher(ci); error: _leave(" = %d", ret); return ret; } /* * Work out how much data we can put in a packet. */ static int rxkad_how_much_data(struct rxrpc_call *call, size_t remain, size_t *_buf_size, size_t *_data_size, size_t *_offset) { size_t shdr, buf_size, chunk; switch (call->conn->security_level) { default: buf_size = chunk = min_t(size_t, remain, RXRPC_JUMBO_DATALEN); shdr = 0; goto out; case RXRPC_SECURITY_AUTH: shdr = sizeof(struct rxkad_level1_hdr); break; case RXRPC_SECURITY_ENCRYPT: shdr = sizeof(struct rxkad_level2_hdr); break; } buf_size = round_down(RXRPC_JUMBO_DATALEN, RXKAD_ALIGN); chunk = buf_size - shdr; if (remain < chunk) buf_size = round_up(shdr + remain, RXKAD_ALIGN); out: *_buf_size = buf_size; *_data_size = chunk; *_offset = shdr; return 0; } /* * prime the encryption state with the invariant parts of a connection's * description */ static int rxkad_prime_packet_security(struct rxrpc_connection *conn, struct crypto_sync_skcipher *ci) { struct skcipher_request *req; struct rxrpc_key_token *token; struct scatterlist sg; struct rxrpc_crypt iv; __be32 *tmpbuf; size_t tmpsize = 4 * sizeof(__be32); _enter(""); if (!conn->key) return 0; tmpbuf = kmalloc(tmpsize, GFP_KERNEL); if (!tmpbuf) return -ENOMEM; req = skcipher_request_alloc(&ci->base, GFP_NOFS); if (!req) { kfree(tmpbuf); return -ENOMEM; } token = conn->key->payload.data[0]; memcpy(&iv, token->kad->session_key, sizeof(iv)); tmpbuf[0] = htonl(conn->proto.epoch); tmpbuf[1] = htonl(conn->proto.cid); tmpbuf[2] = 0; tmpbuf[3] = htonl(conn->security_ix); sg_init_one(&sg, tmpbuf, tmpsize); skcipher_request_set_sync_tfm(req, ci); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, &sg, &sg, tmpsize, iv.x); crypto_skcipher_encrypt(req); skcipher_request_free(req); memcpy(&conn->rxkad.csum_iv, tmpbuf + 2, sizeof(conn->rxkad.csum_iv)); kfree(tmpbuf); _leave(" = 0"); return 0; } /* * Allocate and prepare the crypto request on a call. For any particular call, * this is called serially for the packets, so no lock should be necessary. */ static struct skcipher_request *rxkad_get_call_crypto(struct rxrpc_call *call) { struct crypto_skcipher *tfm = &call->conn->rxkad.cipher->base; return skcipher_request_alloc(tfm, GFP_NOFS); } /* * Clean up the crypto on a call. */ static void rxkad_free_call_crypto(struct rxrpc_call *call) { } /* * partially encrypt a packet (level 1 security) */ static int rxkad_secure_packet_auth(const struct rxrpc_call *call, struct rxrpc_txbuf *txb, struct skcipher_request *req) { struct rxkad_level1_hdr *hdr = (void *)txb->data; struct rxrpc_crypt iv; struct scatterlist sg; size_t pad; u16 check; _enter(""); check = txb->seq ^ call->call_id; hdr->data_size = htonl((u32)check << 16 | txb->len); txb->len += sizeof(struct rxkad_level1_hdr); pad = txb->len; pad = RXKAD_ALIGN - pad; pad &= RXKAD_ALIGN - 1; if (pad) { memset(txb->data + txb->offset, 0, pad); txb->len += pad; } /* start the encryption afresh */ memset(&iv, 0, sizeof(iv)); sg_init_one(&sg, txb->data, 8); skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x); crypto_skcipher_encrypt(req); skcipher_request_zero(req); _leave(" = 0"); return 0; } /* * wholly encrypt a packet (level 2 security) */ static int rxkad_secure_packet_encrypt(const struct rxrpc_call *call, struct rxrpc_txbuf *txb, struct skcipher_request *req) { const struct rxrpc_key_token *token; struct rxkad_level2_hdr *rxkhdr = (void *)txb->data; struct rxrpc_crypt iv; struct scatterlist sg; size_t pad; u16 check; int ret; _enter(""); check = txb->seq ^ call->call_id; rxkhdr->data_size = htonl(txb->len | (u32)check << 16); rxkhdr->checksum = 0; txb->len += sizeof(struct rxkad_level2_hdr); pad = txb->len; pad = RXKAD_ALIGN - pad; pad &= RXKAD_ALIGN - 1; if (pad) { memset(txb->data + txb->offset, 0, pad); txb->len += pad; } /* encrypt from the session key */ token = call->conn->key->payload.data[0]; memcpy(&iv, token->kad->session_key, sizeof(iv)); sg_init_one(&sg, txb->data, txb->len); skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, &sg, &sg, txb->len, iv.x); ret = crypto_skcipher_encrypt(req); skcipher_request_zero(req); return ret; } /* * checksum an RxRPC packet header */ static int rxkad_secure_packet(struct rxrpc_call *call, struct rxrpc_txbuf *txb) { struct skcipher_request *req; struct rxrpc_crypt iv; struct scatterlist sg; union { __be32 buf[2]; } crypto __aligned(8); u32 x, y; int ret; _enter("{%d{%x}},{#%u},%u,", call->debug_id, key_serial(call->conn->key), txb->seq, txb->len); if (!call->conn->rxkad.cipher) return 0; ret = key_validate(call->conn->key); if (ret < 0) return ret; req = rxkad_get_call_crypto(call); if (!req) return -ENOMEM; /* continue encrypting from where we left off */ memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv)); /* calculate the security checksum */ x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT); x |= txb->seq & 0x3fffffff; crypto.buf[0] = htonl(call->call_id); crypto.buf[1] = htonl(x); sg_init_one(&sg, crypto.buf, 8); skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x); crypto_skcipher_encrypt(req); skcipher_request_zero(req); y = ntohl(crypto.buf[1]); y = (y >> 16) & 0xffff; if (y == 0) y = 1; /* zero checksums are not permitted */ txb->wire.cksum = htons(y); switch (call->conn->security_level) { case RXRPC_SECURITY_PLAIN: ret = 0; break; case RXRPC_SECURITY_AUTH: ret = rxkad_secure_packet_auth(call, txb, req); break; case RXRPC_SECURITY_ENCRYPT: ret = rxkad_secure_packet_encrypt(call, txb, req); break; default: ret = -EPERM; break; } skcipher_request_free(req); _leave(" = %d [set %x]", ret, y); return ret; } /* * decrypt partial encryption on a packet (level 1 security) */ static int rxkad_verify_packet_1(struct rxrpc_call *call, struct sk_buff *skb, rxrpc_seq_t seq, struct skcipher_request *req) { struct rxkad_level1_hdr sechdr; struct rxrpc_skb_priv *sp = rxrpc_skb(skb); struct rxrpc_crypt iv; struct scatterlist sg[16]; u32 data_size, buf; u16 check; int ret; _enter(""); if (sp->len < 8) return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON, rxkad_abort_1_short_header); /* Decrypt the skbuff in-place. TODO: We really want to decrypt * directly into the target buffer. */ sg_init_table(sg, ARRAY_SIZE(sg)); ret = skb_to_sgvec(skb, sg, sp->offset, 8); if (unlikely(ret < 0)) return ret; /* start the decryption afresh */ memset(&iv, 0, sizeof(iv)); skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, sg, sg, 8, iv.x); crypto_skcipher_decrypt(req); skcipher_request_zero(req); /* Extract the decrypted packet length */ if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0) return rxrpc_abort_eproto(call, skb, RXKADDATALEN, rxkad_abort_1_short_encdata); sp->offset += sizeof(sechdr); sp->len -= sizeof(sechdr); buf = ntohl(sechdr.data_size); data_size = buf & 0xffff; check = buf >> 16; check ^= seq ^ call->call_id; check &= 0xffff; if (check != 0) return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON, rxkad_abort_1_short_check); if (data_size > sp->len) return rxrpc_abort_eproto(call, skb, RXKADDATALEN, rxkad_abort_1_short_data); sp->len = data_size; _leave(" = 0 [dlen=%x]", data_size); return 0; } /* * wholly decrypt a packet (level 2 security) */ static int rxkad_verify_packet_2(struct rxrpc_call *call, struct sk_buff *skb, rxrpc_seq_t seq, struct skcipher_request *req) { const struct rxrpc_key_token *token; struct rxkad_level2_hdr sechdr; struct rxrpc_skb_priv *sp = rxrpc_skb(skb); struct rxrpc_crypt iv; struct scatterlist _sg[4], *sg; u32 data_size, buf; u16 check; int nsg, ret; _enter(",{%d}", sp->len); if (sp->len < 8) return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON, rxkad_abort_2_short_header); /* Decrypt the skbuff in-place. TODO: We really want to decrypt * directly into the target buffer. */ sg = _sg; nsg = skb_shinfo(skb)->nr_frags + 1; if (nsg <= 4) { nsg = 4; } else { sg = kmalloc_array(nsg, sizeof(*sg), GFP_NOIO); if (!sg) return -ENOMEM; } sg_init_table(sg, nsg); ret = skb_to_sgvec(skb, sg, sp->offset, sp->len); if (unlikely(ret < 0)) { if (sg != _sg) kfree(sg); return ret; } /* decrypt from the session key */ token = call->conn->key->payload.data[0]; memcpy(&iv, token->kad->session_key, sizeof(iv)); skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, sg, sg, sp->len, iv.x); crypto_skcipher_decrypt(req); skcipher_request_zero(req); if (sg != _sg) kfree(sg); /* Extract the decrypted packet length */ if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0) return rxrpc_abort_eproto(call, skb, RXKADDATALEN, rxkad_abort_2_short_len); sp->offset += sizeof(sechdr); sp->len -= sizeof(sechdr); buf = ntohl(sechdr.data_size); data_size = buf & 0xffff; check = buf >> 16; check ^= seq ^ call->call_id; check &= 0xffff; if (check != 0) return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON, rxkad_abort_2_short_check); if (data_size > sp->len) return rxrpc_abort_eproto(call, skb, RXKADDATALEN, rxkad_abort_2_short_data); sp->len = data_size; _leave(" = 0 [dlen=%x]", data_size); return 0; } /* * Verify the security on a received packet and the subpackets therein. */ static int rxkad_verify_packet(struct rxrpc_call *call, struct sk_buff *skb) { struct rxrpc_skb_priv *sp = rxrpc_skb(skb); struct skcipher_request *req; struct rxrpc_crypt iv; struct scatterlist sg; union { __be32 buf[2]; } crypto __aligned(8); rxrpc_seq_t seq = sp->hdr.seq; int ret; u16 cksum; u32 x, y; _enter("{%d{%x}},{#%u}", call->debug_id, key_serial(call->conn->key), seq); if (!call->conn->rxkad.cipher) return 0; req = rxkad_get_call_crypto(call); if (!req) return -ENOMEM; /* continue encrypting from where we left off */ memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv)); /* validate the security checksum */ x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT); x |= seq & 0x3fffffff; crypto.buf[0] = htonl(call->call_id); crypto.buf[1] = htonl(x); sg_init_one(&sg, crypto.buf, 8); skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x); crypto_skcipher_encrypt(req); skcipher_request_zero(req); y = ntohl(crypto.buf[1]); cksum = (y >> 16) & 0xffff; if (cksum == 0) cksum = 1; /* zero checksums are not permitted */ if (cksum != sp->hdr.cksum) { ret = rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON, rxkad_abort_bad_checksum); goto out; } switch (call->conn->security_level) { case RXRPC_SECURITY_PLAIN: ret = 0; break; case RXRPC_SECURITY_AUTH: ret = rxkad_verify_packet_1(call, skb, seq, req); break; case RXRPC_SECURITY_ENCRYPT: ret = rxkad_verify_packet_2(call, skb, seq, req); break; default: ret = -ENOANO; break; } out: skcipher_request_free(req); return ret; } /* * issue a challenge */ static int rxkad_issue_challenge(struct rxrpc_connection *conn) { struct rxkad_challenge challenge; struct rxrpc_wire_header whdr; struct msghdr msg; struct kvec iov[2]; size_t len; u32 serial; int ret; _enter("{%d}", conn->debug_id); get_random_bytes(&conn->rxkad.nonce, sizeof(conn->rxkad.nonce)); challenge.version = htonl(2); challenge.nonce = htonl(conn->rxkad.nonce); challenge.min_level = htonl(0); challenge.__padding = 0; msg.msg_name = &conn->peer->srx.transport; msg.msg_namelen = conn->peer->srx.transport_len; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = 0; whdr.epoch = htonl(conn->proto.epoch); whdr.cid = htonl(conn->proto.cid); whdr.callNumber = 0; whdr.seq = 0; whdr.type = RXRPC_PACKET_TYPE_CHALLENGE; whdr.flags = conn->out_clientflag; whdr.userStatus = 0; whdr.securityIndex = conn->security_ix; whdr._rsvd = 0; whdr.serviceId = htons(conn->service_id); iov[0].iov_base = &whdr; iov[0].iov_len = sizeof(whdr); iov[1].iov_base = &challenge; iov[1].iov_len = sizeof(challenge); len = iov[0].iov_len + iov[1].iov_len; serial = rxrpc_get_next_serial(conn); whdr.serial = htonl(serial); ret = kernel_sendmsg(conn->local->socket, &msg, iov, 2, len); if (ret < 0) { trace_rxrpc_tx_fail(conn->debug_id, serial, ret, rxrpc_tx_point_rxkad_challenge); return -EAGAIN; } conn->peer->last_tx_at = ktime_get_seconds(); trace_rxrpc_tx_packet(conn->debug_id, &whdr, rxrpc_tx_point_rxkad_challenge); _leave(" = 0"); return 0; } /* * send a Kerberos security response */ static int rxkad_send_response(struct rxrpc_connection *conn, struct rxrpc_host_header *hdr, struct rxkad_response *resp, const struct rxkad_key *s2) { struct rxrpc_wire_header whdr; struct msghdr msg; struct kvec iov[3]; size_t len; u32 serial; int ret; _enter(""); msg.msg_name = &conn->peer->srx.transport; msg.msg_namelen = conn->peer->srx.transport_len; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = 0; memset(&whdr, 0, sizeof(whdr)); whdr.epoch = htonl(hdr->epoch); whdr.cid = htonl(hdr->cid); whdr.type = RXRPC_PACKET_TYPE_RESPONSE; whdr.flags = conn->out_clientflag; whdr.securityIndex = hdr->securityIndex; whdr.serviceId = htons(hdr->serviceId); iov[0].iov_base = &whdr; iov[0].iov_len = sizeof(whdr); iov[1].iov_base = resp; iov[1].iov_len = sizeof(*resp); iov[2].iov_base = (void *)s2->ticket; iov[2].iov_len = s2->ticket_len; len = iov[0].iov_len + iov[1].iov_len + iov[2].iov_len; serial = rxrpc_get_next_serial(conn); whdr.serial = htonl(serial); rxrpc_local_dont_fragment(conn->local, false); ret = kernel_sendmsg(conn->local->socket, &msg, iov, 3, len); rxrpc_local_dont_fragment(conn->local, true); if (ret < 0) { trace_rxrpc_tx_fail(conn->debug_id, serial, ret, rxrpc_tx_point_rxkad_response); return -EAGAIN; } conn->peer->last_tx_at = ktime_get_seconds(); _leave(" = 0"); return 0; } /* * calculate the response checksum */ static void rxkad_calc_response_checksum(struct rxkad_response *response) { u32 csum = 1000003; int loop; u8 *p = (u8 *) response; for (loop = sizeof(*response); loop > 0; loop--) csum = csum * 0x10204081 + *p++; response->encrypted.checksum = htonl(csum); } /* * encrypt the response packet */ static int rxkad_encrypt_response(struct rxrpc_connection *conn, struct rxkad_response *resp, const struct rxkad_key *s2) { struct skcipher_request *req; struct rxrpc_crypt iv; struct scatterlist sg[1]; req = skcipher_request_alloc(&conn->rxkad.cipher->base, GFP_NOFS); if (!req) return -ENOMEM; /* continue encrypting from where we left off */ memcpy(&iv, s2->session_key, sizeof(iv)); sg_init_table(sg, 1); sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted)); skcipher_request_set_sync_tfm(req, conn->rxkad.cipher); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x); crypto_skcipher_encrypt(req); skcipher_request_free(req); return 0; } /* * respond to a challenge packet */ static int rxkad_respond_to_challenge(struct rxrpc_connection *conn, struct sk_buff *skb) { const struct rxrpc_key_token *token; struct rxkad_challenge challenge; struct rxkad_response *resp; struct rxrpc_skb_priv *sp = rxrpc_skb(skb); u32 version, nonce, min_level; int ret = -EPROTO; _enter("{%d,%x}", conn->debug_id, key_serial(conn->key)); if (!conn->key) return rxrpc_abort_conn(conn, skb, RX_PROTOCOL_ERROR, -EPROTO, rxkad_abort_chall_no_key); ret = key_validate(conn->key); if (ret < 0) return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, ret, rxkad_abort_chall_key_expired); if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header), &challenge, sizeof(challenge)) < 0) return rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO, rxkad_abort_chall_short); version = ntohl(challenge.version); nonce = ntohl(challenge.nonce); min_level = ntohl(challenge.min_level); trace_rxrpc_rx_challenge(conn, sp->hdr.serial, version, nonce, min_level); if (version != RXKAD_VERSION) return rxrpc_abort_conn(conn, skb, RXKADINCONSISTENCY, -EPROTO, rxkad_abort_chall_version); if (conn->security_level < min_level) return rxrpc_abort_conn(conn, skb, RXKADLEVELFAIL, -EACCES, rxkad_abort_chall_level); token = conn->key->payload.data[0]; /* build the response packet */ resp = kzalloc(sizeof(struct rxkad_response), GFP_NOFS); if (!resp) return -ENOMEM; resp->version = htonl(RXKAD_VERSION); resp->encrypted.epoch = htonl(conn->proto.epoch); resp->encrypted.cid = htonl(conn->proto.cid); resp->encrypted.securityIndex = htonl(conn->security_ix); resp->encrypted.inc_nonce = htonl(nonce + 1); resp->encrypted.level = htonl(conn->security_level); resp->kvno = htonl(token->kad->kvno); resp->ticket_len = htonl(token->kad->ticket_len); resp->encrypted.call_id[0] = htonl(conn->channels[0].call_counter); resp->encrypted.call_id[1] = htonl(conn->channels[1].call_counter); resp->encrypted.call_id[2] = htonl(conn->channels[2].call_counter); resp->encrypted.call_id[3] = htonl(conn->channels[3].call_counter); /* calculate the response checksum and then do the encryption */ rxkad_calc_response_checksum(resp); ret = rxkad_encrypt_response(conn, resp, token->kad); if (ret == 0) ret = rxkad_send_response(conn, &sp->hdr, resp, token->kad); kfree(resp); return ret; } /* * decrypt the kerberos IV ticket in the response */ static int rxkad_decrypt_ticket(struct rxrpc_connection *conn, struct key *server_key, struct sk_buff *skb, void *ticket, size_t ticket_len, struct rxrpc_crypt *_session_key, time64_t *_expiry) { struct skcipher_request *req; struct rxrpc_crypt iv, key; struct scatterlist sg[1]; struct in_addr addr; unsigned int life; time64_t issue, now; bool little_endian; u8 *p, *q, *name, *end; _enter("{%d},{%x}", conn->debug_id, key_serial(server_key)); *_expiry = 0; ASSERT(server_key->payload.data[0] != NULL); ASSERTCMP((unsigned long) ticket & 7UL, ==, 0); memcpy(&iv, &server_key->payload.data[2], sizeof(iv)); req = skcipher_request_alloc(server_key->payload.data[0], GFP_NOFS); if (!req) return -ENOMEM; sg_init_one(&sg[0], ticket, ticket_len); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, sg, sg, ticket_len, iv.x); crypto_skcipher_decrypt(req); skcipher_request_free(req); p = ticket; end = p + ticket_len; #define Z(field, fieldl) \ ({ \ u8 *__str = p; \ q = memchr(p, 0, end - p); \ if (!q || q - p > field##_SZ) \ return rxrpc_abort_conn( \ conn, skb, RXKADBADTICKET, -EPROTO, \ rxkad_abort_resp_tkt_##fieldl); \ for (; p < q; p++) \ if (!isprint(*p)) \ return rxrpc_abort_conn( \ conn, skb, RXKADBADTICKET, -EPROTO, \ rxkad_abort_resp_tkt_##fieldl); \ p++; \ __str; \ }) /* extract the ticket flags */ _debug("KIV FLAGS: %x", *p); little_endian = *p & 1; p++; /* extract the authentication name */ name = Z(ANAME, aname); _debug("KIV ANAME: %s", name); /* extract the principal's instance */ name = Z(INST, inst); _debug("KIV INST : %s", name); /* extract the principal's authentication domain */ name = Z(REALM, realm); _debug("KIV REALM: %s", name); if (end - p < 4 + 8 + 4 + 2) return rxrpc_abort_conn(conn, skb, RXKADBADTICKET, -EPROTO, rxkad_abort_resp_tkt_short); /* get the IPv4 address of the entity that requested the ticket */ memcpy(&addr, p, sizeof(addr)); p += 4; _debug("KIV ADDR : %pI4", &addr); /* get the session key from the ticket */ memcpy(&key, p, sizeof(key)); p += 8; _debug("KIV KEY : %08x %08x", ntohl(key.n[0]), ntohl(key.n[1])); memcpy(_session_key, &key, sizeof(key)); /* get the ticket's lifetime */ life = *p++ * 5 * 60; _debug("KIV LIFE : %u", life); /* get the issue time of the ticket */ if (little_endian) { __le32 stamp; memcpy(&stamp, p, 4); issue = rxrpc_u32_to_time64(le32_to_cpu(stamp)); } else { __be32 stamp; memcpy(&stamp, p, 4); issue = rxrpc_u32_to_time64(be32_to_cpu(stamp)); } p += 4; now = ktime_get_real_seconds(); _debug("KIV ISSUE: %llx [%llx]", issue, now); /* check the ticket is in date */ if (issue > now) return rxrpc_abort_conn(conn, skb, RXKADNOAUTH, -EKEYREJECTED, rxkad_abort_resp_tkt_future); if (issue < now - life) return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, -EKEYEXPIRED, rxkad_abort_resp_tkt_expired); *_expiry = issue + life; /* get the service name */ name = Z(SNAME, sname); _debug("KIV SNAME: %s", name); /* get the service instance name */ name = Z(INST, sinst); _debug("KIV SINST: %s", name); return 0; } /* * decrypt the response packet */ static void rxkad_decrypt_response(struct rxrpc_connection *conn, struct rxkad_response *resp, const struct rxrpc_crypt *session_key) { struct skcipher_request *req = rxkad_ci_req; struct scatterlist sg[1]; struct rxrpc_crypt iv; _enter(",,%08x%08x", ntohl(session_key->n[0]), ntohl(session_key->n[1])); mutex_lock(&rxkad_ci_mutex); if (crypto_sync_skcipher_setkey(rxkad_ci, session_key->x, sizeof(*session_key)) < 0) BUG(); memcpy(&iv, session_key, sizeof(iv)); sg_init_table(sg, 1); sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted)); skcipher_request_set_sync_tfm(req, rxkad_ci); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x); crypto_skcipher_decrypt(req); skcipher_request_zero(req); mutex_unlock(&rxkad_ci_mutex); _leave(""); } /* * verify a response */ static int rxkad_verify_response(struct rxrpc_connection *conn, struct sk_buff *skb) { struct rxkad_response *response; struct rxrpc_skb_priv *sp = rxrpc_skb(skb); struct rxrpc_crypt session_key; struct key *server_key; time64_t expiry; void *ticket; u32 version, kvno, ticket_len, level; __be32 csum; int ret, i; _enter("{%d}", conn->debug_id); server_key = rxrpc_look_up_server_security(conn, skb, 0, 0); if (IS_ERR(server_key)) { ret = PTR_ERR(server_key); switch (ret) { case -ENOKEY: return rxrpc_abort_conn(conn, skb, RXKADUNKNOWNKEY, ret, rxkad_abort_resp_nokey); case -EKEYEXPIRED: return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, ret, rxkad_abort_resp_key_expired); default: return rxrpc_abort_conn(conn, skb, RXKADNOAUTH, ret, rxkad_abort_resp_key_rejected); } } ret = -ENOMEM; response = kzalloc(sizeof(struct rxkad_response), GFP_NOFS); if (!response) goto temporary_error; if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header), response, sizeof(*response)) < 0) { rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO, rxkad_abort_resp_short); goto protocol_error; } version = ntohl(response->version); ticket_len = ntohl(response->ticket_len); kvno = ntohl(response->kvno); trace_rxrpc_rx_response(conn, sp->hdr.serial, version, kvno, ticket_len); if (version != RXKAD_VERSION) { rxrpc_abort_conn(conn, skb, RXKADINCONSISTENCY, -EPROTO, rxkad_abort_resp_version); goto protocol_error; } if (ticket_len < 4 || ticket_len > MAXKRB5TICKETLEN) { rxrpc_abort_conn(conn, skb, RXKADTICKETLEN, -EPROTO, rxkad_abort_resp_tkt_len); goto protocol_error; } if (kvno >= RXKAD_TKT_TYPE_KERBEROS_V5) { rxrpc_abort_conn(conn, skb, RXKADUNKNOWNKEY, -EPROTO, rxkad_abort_resp_unknown_tkt); goto protocol_error; } /* extract the kerberos ticket and decrypt and decode it */ ret = -ENOMEM; ticket = kmalloc(ticket_len, GFP_NOFS); if (!ticket) goto temporary_error_free_resp; if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header) + sizeof(*response), ticket, ticket_len) < 0) { rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO, rxkad_abort_resp_short_tkt); goto protocol_error; } ret = rxkad_decrypt_ticket(conn, server_key, skb, ticket, ticket_len, &session_key, &expiry); if (ret < 0) goto temporary_error_free_ticket; /* use the session key from inside the ticket to decrypt the * response */ rxkad_decrypt_response(conn, response, &session_key); if (ntohl(response->encrypted.epoch) != conn->proto.epoch || ntohl(response->encrypted.cid) != conn->proto.cid || ntohl(response->encrypted.securityIndex) != conn->security_ix) { rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO, rxkad_abort_resp_bad_param); goto protocol_error_free; } csum = response->encrypted.checksum; response->encrypted.checksum = 0; rxkad_calc_response_checksum(response); if (response->encrypted.checksum != csum) { rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO, rxkad_abort_resp_bad_checksum); goto protocol_error_free; } for (i = 0; i < RXRPC_MAXCALLS; i++) { u32 call_id = ntohl(response->encrypted.call_id[i]); u32 counter = READ_ONCE(conn->channels[i].call_counter); if (call_id > INT_MAX) { rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO, rxkad_abort_resp_bad_callid); goto protocol_error_free; } if (call_id < counter) { rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO, rxkad_abort_resp_call_ctr); goto protocol_error_free; } if (call_id > counter) { if (conn->channels[i].call) { rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO, rxkad_abort_resp_call_state); goto protocol_error_free; } conn->channels[i].call_counter = call_id; } } if (ntohl(response->encrypted.inc_nonce) != conn->rxkad.nonce + 1) { rxrpc_abort_conn(conn, skb, RXKADOUTOFSEQUENCE, -EPROTO, rxkad_abort_resp_ooseq); goto protocol_error_free; } level = ntohl(response->encrypted.level); if (level > RXRPC_SECURITY_ENCRYPT) { rxrpc_abort_conn(conn, skb, RXKADLEVELFAIL, -EPROTO, rxkad_abort_resp_level); goto protocol_error_free; } conn->security_level = level; /* create a key to hold the security data and expiration time - after * this the connection security can be handled in exactly the same way * as for a client connection */ ret = rxrpc_get_server_data_key(conn, &session_key, expiry, kvno); if (ret < 0) goto temporary_error_free_ticket; kfree(ticket); kfree(response); _leave(" = 0"); return 0; protocol_error_free: kfree(ticket); protocol_error: kfree(response); key_put(server_key); return -EPROTO; temporary_error_free_ticket: kfree(ticket); temporary_error_free_resp: kfree(response); temporary_error: /* Ignore the response packet if we got a temporary error such as * ENOMEM. We just want to send the challenge again. Note that we * also come out this way if the ticket decryption fails. */ key_put(server_key); return ret; } /* * clear the connection security */ static void rxkad_clear(struct rxrpc_connection *conn) { _enter(""); if (conn->rxkad.cipher) crypto_free_sync_skcipher(conn->rxkad.cipher); } /* * Initialise the rxkad security service. */ static int rxkad_init(void) { struct crypto_sync_skcipher *tfm; struct skcipher_request *req; /* pin the cipher we need so that the crypto layer doesn't invoke * keventd to go get it */ tfm = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); req = skcipher_request_alloc(&tfm->base, GFP_KERNEL); if (!req) goto nomem_tfm; rxkad_ci_req = req; rxkad_ci = tfm; return 0; nomem_tfm: crypto_free_sync_skcipher(tfm); return -ENOMEM; } /* * Clean up the rxkad security service. */ static void rxkad_exit(void) { crypto_free_sync_skcipher(rxkad_ci); skcipher_request_free(rxkad_ci_req); } /* * RxRPC Kerberos-based security */ const struct rxrpc_security rxkad = { .name = "rxkad", .security_index = RXRPC_SECURITY_RXKAD, .no_key_abort = RXKADUNKNOWNKEY, .init = rxkad_init, .exit = rxkad_exit, .preparse_server_key = rxkad_preparse_server_key, .free_preparse_server_key = rxkad_free_preparse_server_key, .destroy_server_key = rxkad_destroy_server_key, .init_connection_security = rxkad_init_connection_security, .how_much_data = rxkad_how_much_data, .secure_packet = rxkad_secure_packet, .verify_packet = rxkad_verify_packet, .free_call_crypto = rxkad_free_call_crypto, .issue_challenge = rxkad_issue_challenge, .respond_to_challenge = rxkad_respond_to_challenge, .verify_response = rxkad_verify_response, .clear = rxkad_clear, };