// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2007-2014 Nicira, Inc. */ #include "flow.h" #include "datapath.h" #include "flow_netlink.h" #include <linux/uaccess.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/if_ether.h> #include <linux/if_vlan.h> #include <net/llc_pdu.h> #include <linux/kernel.h> #include <linux/jhash.h> #include <linux/jiffies.h> #include <linux/llc.h> #include <linux/module.h> #include <linux/in.h> #include <linux/rcupdate.h> #include <linux/cpumask.h> #include <linux/if_arp.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/sctp.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/icmp.h> #include <linux/icmpv6.h> #include <linux/rculist.h> #include <linux/sort.h> #include <net/ip.h> #include <net/ipv6.h> #include <net/ndisc.h> #define TBL_MIN_BUCKETS 1024 #define MASK_ARRAY_SIZE_MIN 16 #define REHASH_INTERVAL (10 * 60 * HZ) #define MC_DEFAULT_HASH_ENTRIES 256 #define MC_HASH_SHIFT 8 #define MC_HASH_SEGS ((sizeof(uint32_t) * 8) / MC_HASH_SHIFT) static struct kmem_cache *flow_cache; struct kmem_cache *flow_stats_cache __read_mostly; static u16 range_n_bytes(const struct sw_flow_key_range *range) { return range->end - range->start; } void ovs_flow_mask_key(struct sw_flow_key *dst, const struct sw_flow_key *src, bool full, const struct sw_flow_mask *mask) { int start = full ? 0 : mask->range.start; int len = full ? sizeof *dst : range_n_bytes(&mask->range); const long *m = (const long *)((const u8 *)&mask->key + start); const long *s = (const long *)((const u8 *)src + start); long *d = (long *)((u8 *)dst + start); int i; /* If 'full' is true then all of 'dst' is fully initialized. Otherwise, * if 'full' is false the memory outside of the 'mask->range' is left * uninitialized. This can be used as an optimization when further * operations on 'dst' only use contents within 'mask->range'. */ for (i = 0; i < len; i += sizeof(long)) *d++ = *s++ & *m++; } struct sw_flow *ovs_flow_alloc(void) { struct sw_flow *flow; struct sw_flow_stats *stats; flow = kmem_cache_zalloc(flow_cache, GFP_KERNEL); if (!flow) return ERR_PTR(-ENOMEM); flow->stats_last_writer = -1; flow->cpu_used_mask = (struct cpumask *)&flow->stats[nr_cpu_ids]; /* Initialize the default stat node. */ stats = kmem_cache_alloc_node(flow_stats_cache, GFP_KERNEL | __GFP_ZERO, node_online(0) ? 0 : NUMA_NO_NODE); if (!stats) goto err; spin_lock_init(&stats->lock); RCU_INIT_POINTER(flow->stats[0], stats); cpumask_set_cpu(0, flow->cpu_used_mask); return flow; err: kmem_cache_free(flow_cache, flow); return ERR_PTR(-ENOMEM); } int ovs_flow_tbl_count(const struct flow_table *table) { return table->count; } static void flow_free(struct sw_flow *flow) { int cpu; if (ovs_identifier_is_key(&flow->id)) kfree(flow->id.unmasked_key); if (flow->sf_acts) ovs_nla_free_flow_actions((struct sw_flow_actions __force *) flow->sf_acts); /* We open code this to make sure cpu 0 is always considered */ for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, flow->cpu_used_mask)) { if (flow->stats[cpu]) kmem_cache_free(flow_stats_cache, (struct sw_flow_stats __force *)flow->stats[cpu]); } kmem_cache_free(flow_cache, flow); } static void rcu_free_flow_callback(struct rcu_head *rcu) { struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu); flow_free(flow); } void ovs_flow_free(struct sw_flow *flow, bool deferred) { if (!flow) return; if (deferred) call_rcu(&flow->rcu, rcu_free_flow_callback); else flow_free(flow); } static void __table_instance_destroy(struct table_instance *ti) { kvfree(ti->buckets); kfree(ti); } static struct table_instance *table_instance_alloc(int new_size) { struct table_instance *ti = kmalloc(sizeof(*ti), GFP_KERNEL); int i; if (!ti) return NULL; ti->buckets = kvmalloc_array(new_size, sizeof(struct hlist_head), GFP_KERNEL); if (!ti->buckets) { kfree(ti); return NULL; } for (i = 0; i < new_size; i++) INIT_HLIST_HEAD(&ti->buckets[i]); ti->n_buckets = new_size; ti->node_ver = 0; get_random_bytes(&ti->hash_seed, sizeof(u32)); return ti; } static void __mask_array_destroy(struct mask_array *ma) { free_percpu(ma->masks_usage_stats); kfree(ma); } static void mask_array_rcu_cb(struct rcu_head *rcu) { struct mask_array *ma = container_of(rcu, struct mask_array, rcu); __mask_array_destroy(ma); } static void tbl_mask_array_reset_counters(struct mask_array *ma) { int i, cpu; /* As the per CPU counters are not atomic we can not go ahead and * reset them from another CPU. To be able to still have an approximate * zero based counter we store the value at reset, and subtract it * later when processing. */ for (i = 0; i < ma->max; i++) { ma->masks_usage_zero_cntr[i] = 0; for_each_possible_cpu(cpu) { struct mask_array_stats *stats; unsigned int start; u64 counter; stats = per_cpu_ptr(ma->masks_usage_stats, cpu); do { start = u64_stats_fetch_begin(&stats->syncp); counter = stats->usage_cntrs[i]; } while (u64_stats_fetch_retry(&stats->syncp, start)); ma->masks_usage_zero_cntr[i] += counter; } } } static struct mask_array *tbl_mask_array_alloc(int size) { struct mask_array *new; size = max(MASK_ARRAY_SIZE_MIN, size); new = kzalloc(sizeof(struct mask_array) + sizeof(struct sw_flow_mask *) * size + sizeof(u64) * size, GFP_KERNEL); if (!new) return NULL; new->masks_usage_zero_cntr = (u64 *)((u8 *)new + sizeof(struct mask_array) + sizeof(struct sw_flow_mask *) * size); new->masks_usage_stats = __alloc_percpu(sizeof(struct mask_array_stats) + sizeof(u64) * size, __alignof__(u64)); if (!new->masks_usage_stats) { kfree(new); return NULL; } new->count = 0; new->max = size; return new; } static int tbl_mask_array_realloc(struct flow_table *tbl, int size) { struct mask_array *old; struct mask_array *new; new = tbl_mask_array_alloc(size); if (!new) return -ENOMEM; old = ovsl_dereference(tbl->mask_array); if (old) { int i; for (i = 0; i < old->max; i++) { if (ovsl_dereference(old->masks[i])) new->masks[new->count++] = old->masks[i]; } call_rcu(&old->rcu, mask_array_rcu_cb); } rcu_assign_pointer(tbl->mask_array, new); return 0; } static int tbl_mask_array_add_mask(struct flow_table *tbl, struct sw_flow_mask *new) { struct mask_array *ma = ovsl_dereference(tbl->mask_array); int err, ma_count = READ_ONCE(ma->count); if (ma_count >= ma->max) { err = tbl_mask_array_realloc(tbl, ma->max + MASK_ARRAY_SIZE_MIN); if (err) return err; ma = ovsl_dereference(tbl->mask_array); } else { /* On every add or delete we need to reset the counters so * every new mask gets a fair chance of being prioritized. */ tbl_mask_array_reset_counters(ma); } BUG_ON(ovsl_dereference(ma->masks[ma_count])); rcu_assign_pointer(ma->masks[ma_count], new); WRITE_ONCE(ma->count, ma_count + 1); return 0; } static void tbl_mask_array_del_mask(struct flow_table *tbl, struct sw_flow_mask *mask) { struct mask_array *ma = ovsl_dereference(tbl->mask_array); int i, ma_count = READ_ONCE(ma->count); /* Remove the deleted mask pointers from the array */ for (i = 0; i < ma_count; i++) { if (mask == ovsl_dereference(ma->masks[i])) goto found; } BUG(); return; found: WRITE_ONCE(ma->count, ma_count - 1); rcu_assign_pointer(ma->masks[i], ma->masks[ma_count - 1]); RCU_INIT_POINTER(ma->masks[ma_count - 1], NULL); kfree_rcu(mask, rcu); /* Shrink the mask array if necessary. */ if (ma->max >= (MASK_ARRAY_SIZE_MIN * 2) && ma_count <= (ma->max / 3)) tbl_mask_array_realloc(tbl, ma->max / 2); else tbl_mask_array_reset_counters(ma); } /* Remove 'mask' from the mask list, if it is not needed any more. */ static void flow_mask_remove(struct flow_table *tbl, struct sw_flow_mask *mask) { if (mask) { /* ovs-lock is required to protect mask-refcount and * mask list. */ ASSERT_OVSL(); BUG_ON(!mask->ref_count); mask->ref_count--; if (!mask->ref_count) tbl_mask_array_del_mask(tbl, mask); } } static void __mask_cache_destroy(struct mask_cache *mc) { free_percpu(mc->mask_cache); kfree(mc); } static void mask_cache_rcu_cb(struct rcu_head *rcu) { struct mask_cache *mc = container_of(rcu, struct mask_cache, rcu); __mask_cache_destroy(mc); } static struct mask_cache *tbl_mask_cache_alloc(u32 size) { struct mask_cache_entry __percpu *cache = NULL; struct mask_cache *new; /* Only allow size to be 0, or a power of 2, and does not exceed * percpu allocation size. */ if ((!is_power_of_2(size) && size != 0) || (size * sizeof(struct mask_cache_entry)) > PCPU_MIN_UNIT_SIZE) return NULL; new = kzalloc(sizeof(*new), GFP_KERNEL); if (!new) return NULL; new->cache_size = size; if (new->cache_size > 0) { cache = __alloc_percpu(array_size(sizeof(struct mask_cache_entry), new->cache_size), __alignof__(struct mask_cache_entry)); if (!cache) { kfree(new); return NULL; } } new->mask_cache = cache; return new; } int ovs_flow_tbl_masks_cache_resize(struct flow_table *table, u32 size) { struct mask_cache *mc = rcu_dereference_ovsl(table->mask_cache); struct mask_cache *new; if (size == mc->cache_size) return 0; if ((!is_power_of_2(size) && size != 0) || (size * sizeof(struct mask_cache_entry)) > PCPU_MIN_UNIT_SIZE) return -EINVAL; new = tbl_mask_cache_alloc(size); if (!new) return -ENOMEM; rcu_assign_pointer(table->mask_cache, new); call_rcu(&mc->rcu, mask_cache_rcu_cb); return 0; } int ovs_flow_tbl_init(struct flow_table *table) { struct table_instance *ti, *ufid_ti; struct mask_cache *mc; struct mask_array *ma; mc = tbl_mask_cache_alloc(MC_DEFAULT_HASH_ENTRIES); if (!mc) return -ENOMEM; ma = tbl_mask_array_alloc(MASK_ARRAY_SIZE_MIN); if (!ma) goto free_mask_cache; ti = table_instance_alloc(TBL_MIN_BUCKETS); if (!ti) goto free_mask_array; ufid_ti = table_instance_alloc(TBL_MIN_BUCKETS); if (!ufid_ti) goto free_ti; rcu_assign_pointer(table->ti, ti); rcu_assign_pointer(table->ufid_ti, ufid_ti); rcu_assign_pointer(table->mask_array, ma); rcu_assign_pointer(table->mask_cache, mc); table->last_rehash = jiffies; table->count = 0; table->ufid_count = 0; return 0; free_ti: __table_instance_destroy(ti); free_mask_array: __mask_array_destroy(ma); free_mask_cache: __mask_cache_destroy(mc); return -ENOMEM; } static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu) { struct table_instance *ti; ti = container_of(rcu, struct table_instance, rcu); __table_instance_destroy(ti); } static void table_instance_flow_free(struct flow_table *table, struct table_instance *ti, struct table_instance *ufid_ti, struct sw_flow *flow) { hlist_del_rcu(&flow->flow_table.node[ti->node_ver]); table->count--; if (ovs_identifier_is_ufid(&flow->id)) { hlist_del_rcu(&flow->ufid_table.node[ufid_ti->node_ver]); table->ufid_count--; } flow_mask_remove(table, flow->mask); } /* Must be called with OVS mutex held. */ void table_instance_flow_flush(struct flow_table *table, struct table_instance *ti, struct table_instance *ufid_ti) { int i; for (i = 0; i < ti->n_buckets; i++) { struct hlist_head *head = &ti->buckets[i]; struct hlist_node *n; struct sw_flow *flow; hlist_for_each_entry_safe(flow, n, head, flow_table.node[ti->node_ver]) { table_instance_flow_free(table, ti, ufid_ti, flow); ovs_flow_free(flow, true); } } if (WARN_ON(table->count != 0 || table->ufid_count != 0)) { table->count = 0; table->ufid_count = 0; } } static void table_instance_destroy(struct table_instance *ti, struct table_instance *ufid_ti) { call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb); call_rcu(&ufid_ti->rcu, flow_tbl_destroy_rcu_cb); } /* No need for locking this function is called from RCU callback or * error path. */ void ovs_flow_tbl_destroy(struct flow_table *table) { struct table_instance *ti = rcu_dereference_raw(table->ti); struct table_instance *ufid_ti = rcu_dereference_raw(table->ufid_ti); struct mask_cache *mc = rcu_dereference_raw(table->mask_cache); struct mask_array *ma = rcu_dereference_raw(table->mask_array); call_rcu(&mc->rcu, mask_cache_rcu_cb); call_rcu(&ma->rcu, mask_array_rcu_cb); table_instance_destroy(ti, ufid_ti); } struct sw_flow *ovs_flow_tbl_dump_next(struct table_instance *ti, u32 *bucket, u32 *last) { struct sw_flow *flow; struct hlist_head *head; int ver; int i; ver = ti->node_ver; while (*bucket < ti->n_buckets) { i = 0; head = &ti->buckets[*bucket]; hlist_for_each_entry_rcu(flow, head, flow_table.node[ver]) { if (i < *last) { i++; continue; } *last = i + 1; return flow; } (*bucket)++; *last = 0; } return NULL; } static struct hlist_head *find_bucket(struct table_instance *ti, u32 hash) { hash = jhash_1word(hash, ti->hash_seed); return &ti->buckets[hash & (ti->n_buckets - 1)]; } static void table_instance_insert(struct table_instance *ti, struct sw_flow *flow) { struct hlist_head *head; head = find_bucket(ti, flow->flow_table.hash); hlist_add_head_rcu(&flow->flow_table.node[ti->node_ver], head); } static void ufid_table_instance_insert(struct table_instance *ti, struct sw_flow *flow) { struct hlist_head *head; head = find_bucket(ti, flow->ufid_table.hash); hlist_add_head_rcu(&flow->ufid_table.node[ti->node_ver], head); } static void flow_table_copy_flows(struct table_instance *old, struct table_instance *new, bool ufid) { int old_ver; int i; old_ver = old->node_ver; new->node_ver = !old_ver; /* Insert in new table. */ for (i = 0; i < old->n_buckets; i++) { struct sw_flow *flow; struct hlist_head *head = &old->buckets[i]; if (ufid) hlist_for_each_entry_rcu(flow, head, ufid_table.node[old_ver], lockdep_ovsl_is_held()) ufid_table_instance_insert(new, flow); else hlist_for_each_entry_rcu(flow, head, flow_table.node[old_ver], lockdep_ovsl_is_held()) table_instance_insert(new, flow); } } static struct table_instance *table_instance_rehash(struct table_instance *ti, int n_buckets, bool ufid) { struct table_instance *new_ti; new_ti = table_instance_alloc(n_buckets); if (!new_ti) return NULL; flow_table_copy_flows(ti, new_ti, ufid); return new_ti; } int ovs_flow_tbl_flush(struct flow_table *flow_table) { struct table_instance *old_ti, *new_ti; struct table_instance *old_ufid_ti, *new_ufid_ti; new_ti = table_instance_alloc(TBL_MIN_BUCKETS); if (!new_ti) return -ENOMEM; new_ufid_ti = table_instance_alloc(TBL_MIN_BUCKETS); if (!new_ufid_ti) goto err_free_ti; old_ti = ovsl_dereference(flow_table->ti); old_ufid_ti = ovsl_dereference(flow_table->ufid_ti); rcu_assign_pointer(flow_table->ti, new_ti); rcu_assign_pointer(flow_table->ufid_ti, new_ufid_ti); flow_table->last_rehash = jiffies; table_instance_flow_flush(flow_table, old_ti, old_ufid_ti); table_instance_destroy(old_ti, old_ufid_ti); return 0; err_free_ti: __table_instance_destroy(new_ti); return -ENOMEM; } static u32 flow_hash(const struct sw_flow_key *key, const struct sw_flow_key_range *range) { const u32 *hash_key = (const u32 *)((const u8 *)key + range->start); /* Make sure number of hash bytes are multiple of u32. */ int hash_u32s = range_n_bytes(range) >> 2; return jhash2(hash_key, hash_u32s, 0); } static int flow_key_start(const struct sw_flow_key *key) { if (key->tun_proto) return 0; else return rounddown(offsetof(struct sw_flow_key, phy), sizeof(long)); } static bool cmp_key(const struct sw_flow_key *key1, const struct sw_flow_key *key2, int key_start, int key_end) { const long *cp1 = (const long *)((const u8 *)key1 + key_start); const long *cp2 = (const long *)((const u8 *)key2 + key_start); int i; for (i = key_start; i < key_end; i += sizeof(long)) if (*cp1++ ^ *cp2++) return false; return true; } static bool flow_cmp_masked_key(const struct sw_flow *flow, const struct sw_flow_key *key, const struct sw_flow_key_range *range) { return cmp_key(&flow->key, key, range->start, range->end); } static bool ovs_flow_cmp_unmasked_key(const struct sw_flow *flow, const struct sw_flow_match *match) { struct sw_flow_key *key = match->key; int key_start = flow_key_start(key); int key_end = match->range.end; BUG_ON(ovs_identifier_is_ufid(&flow->id)); return cmp_key(flow->id.unmasked_key, key, key_start, key_end); } static struct sw_flow *masked_flow_lookup(struct table_instance *ti, const struct sw_flow_key *unmasked, const struct sw_flow_mask *mask, u32 *n_mask_hit) { struct sw_flow *flow; struct hlist_head *head; u32 hash; struct sw_flow_key masked_key; ovs_flow_mask_key(&masked_key, unmasked, false, mask); hash = flow_hash(&masked_key, &mask->range); head = find_bucket(ti, hash); (*n_mask_hit)++; hlist_for_each_entry_rcu(flow, head, flow_table.node[ti->node_ver], lockdep_ovsl_is_held()) { if (flow->mask == mask && flow->flow_table.hash == hash && flow_cmp_masked_key(flow, &masked_key, &mask->range)) return flow; } return NULL; } /* Flow lookup does full lookup on flow table. It starts with * mask from index passed in *index. * This function MUST be called with BH disabled due to the use * of CPU specific variables. */ static struct sw_flow *flow_lookup(struct flow_table *tbl, struct table_instance *ti, struct mask_array *ma, const struct sw_flow_key *key, u32 *n_mask_hit, u32 *n_cache_hit, u32 *index) { struct mask_array_stats *stats = this_cpu_ptr(ma->masks_usage_stats); struct sw_flow *flow; struct sw_flow_mask *mask; int i; if (likely(*index < ma->max)) { mask = rcu_dereference_ovsl(ma->masks[*index]); if (mask) { flow = masked_flow_lookup(ti, key, mask, n_mask_hit); if (flow) { u64_stats_update_begin(&stats->syncp); stats->usage_cntrs[*index]++; u64_stats_update_end(&stats->syncp); (*n_cache_hit)++; return flow; } } } for (i = 0; i < ma->max; i++) { if (i == *index) continue; mask = rcu_dereference_ovsl(ma->masks[i]); if (unlikely(!mask)) break; flow = masked_flow_lookup(ti, key, mask, n_mask_hit); if (flow) { /* Found */ *index = i; u64_stats_update_begin(&stats->syncp); stats->usage_cntrs[*index]++; u64_stats_update_end(&stats->syncp); return flow; } } return NULL; } /* * mask_cache maps flow to probable mask. This cache is not tightly * coupled cache, It means updates to mask list can result in inconsistent * cache entry in mask cache. * This is per cpu cache and is divided in MC_HASH_SEGS segments. * In case of a hash collision the entry is hashed in next segment. * */ struct sw_flow *ovs_flow_tbl_lookup_stats(struct flow_table *tbl, const struct sw_flow_key *key, u32 skb_hash, u32 *n_mask_hit, u32 *n_cache_hit) { struct mask_cache *mc = rcu_dereference(tbl->mask_cache); struct mask_array *ma = rcu_dereference(tbl->mask_array); struct table_instance *ti = rcu_dereference(tbl->ti); struct mask_cache_entry *entries, *ce; struct sw_flow *flow; u32 hash; int seg; *n_mask_hit = 0; *n_cache_hit = 0; if (unlikely(!skb_hash || mc->cache_size == 0)) { u32 mask_index = 0; u32 cache = 0; return flow_lookup(tbl, ti, ma, key, n_mask_hit, &cache, &mask_index); } /* Pre and post recirulation flows usually have the same skb_hash * value. To avoid hash collisions, rehash the 'skb_hash' with * 'recirc_id'. */ if (key->recirc_id) skb_hash = jhash_1word(skb_hash, key->recirc_id); ce = NULL; hash = skb_hash; entries = this_cpu_ptr(mc->mask_cache); /* Find the cache entry 'ce' to operate on. */ for (seg = 0; seg < MC_HASH_SEGS; seg++) { int index = hash & (mc->cache_size - 1); struct mask_cache_entry *e; e = &entries[index]; if (e->skb_hash == skb_hash) { flow = flow_lookup(tbl, ti, ma, key, n_mask_hit, n_cache_hit, &e->mask_index); if (!flow) e->skb_hash = 0; return flow; } if (!ce || e->skb_hash < ce->skb_hash) ce = e; /* A better replacement cache candidate. */ hash >>= MC_HASH_SHIFT; } /* Cache miss, do full lookup. */ flow = flow_lookup(tbl, ti, ma, key, n_mask_hit, n_cache_hit, &ce->mask_index); if (flow) ce->skb_hash = skb_hash; *n_cache_hit = 0; return flow; } struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *tbl, const struct sw_flow_key *key) { struct table_instance *ti = rcu_dereference_ovsl(tbl->ti); struct mask_array *ma = rcu_dereference_ovsl(tbl->mask_array); u32 __always_unused n_mask_hit; u32 __always_unused n_cache_hit; struct sw_flow *flow; u32 index = 0; /* This function gets called trough the netlink interface and therefore * is preemptible. However, flow_lookup() function needs to be called * with BH disabled due to CPU specific variables. */ local_bh_disable(); flow = flow_lookup(tbl, ti, ma, key, &n_mask_hit, &n_cache_hit, &index); local_bh_enable(); return flow; } struct sw_flow *ovs_flow_tbl_lookup_exact(struct flow_table *tbl, const struct sw_flow_match *match) { struct mask_array *ma = ovsl_dereference(tbl->mask_array); int i; /* Always called under ovs-mutex. */ for (i = 0; i < ma->max; i++) { struct table_instance *ti = rcu_dereference_ovsl(tbl->ti); u32 __always_unused n_mask_hit; struct sw_flow_mask *mask; struct sw_flow *flow; mask = ovsl_dereference(ma->masks[i]); if (!mask) continue; flow = masked_flow_lookup(ti, match->key, mask, &n_mask_hit); if (flow && ovs_identifier_is_key(&flow->id) && ovs_flow_cmp_unmasked_key(flow, match)) { return flow; } } return NULL; } static u32 ufid_hash(const struct sw_flow_id *sfid) { return jhash(sfid->ufid, sfid->ufid_len, 0); } static bool ovs_flow_cmp_ufid(const struct sw_flow *flow, const struct sw_flow_id *sfid) { if (flow->id.ufid_len != sfid->ufid_len) return false; return !memcmp(flow->id.ufid, sfid->ufid, sfid->ufid_len); } bool ovs_flow_cmp(const struct sw_flow *flow, const struct sw_flow_match *match) { if (ovs_identifier_is_ufid(&flow->id)) return flow_cmp_masked_key(flow, match->key, &match->range); return ovs_flow_cmp_unmasked_key(flow, match); } struct sw_flow *ovs_flow_tbl_lookup_ufid(struct flow_table *tbl, const struct sw_flow_id *ufid) { struct table_instance *ti = rcu_dereference_ovsl(tbl->ufid_ti); struct sw_flow *flow; struct hlist_head *head; u32 hash; hash = ufid_hash(ufid); head = find_bucket(ti, hash); hlist_for_each_entry_rcu(flow, head, ufid_table.node[ti->node_ver], lockdep_ovsl_is_held()) { if (flow->ufid_table.hash == hash && ovs_flow_cmp_ufid(flow, ufid)) return flow; } return NULL; } int ovs_flow_tbl_num_masks(const struct flow_table *table) { struct mask_array *ma = rcu_dereference_ovsl(table->mask_array); return READ_ONCE(ma->count); } u32 ovs_flow_tbl_masks_cache_size(const struct flow_table *table) { struct mask_cache *mc = rcu_dereference_ovsl(table->mask_cache); return READ_ONCE(mc->cache_size); } static struct table_instance *table_instance_expand(struct table_instance *ti, bool ufid) { return table_instance_rehash(ti, ti->n_buckets * 2, ufid); } /* Must be called with OVS mutex held. */ void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow) { struct table_instance *ti = ovsl_dereference(table->ti); struct table_instance *ufid_ti = ovsl_dereference(table->ufid_ti); BUG_ON(table->count == 0); table_instance_flow_free(table, ti, ufid_ti, flow); } static struct sw_flow_mask *mask_alloc(void) { struct sw_flow_mask *mask; mask = kmalloc(sizeof(*mask), GFP_KERNEL); if (mask) mask->ref_count = 1; return mask; } static bool mask_equal(const struct sw_flow_mask *a, const struct sw_flow_mask *b) { const u8 *a_ = (const u8 *)&a->key + a->range.start; const u8 *b_ = (const u8 *)&b->key + b->range.start; return (a->range.end == b->range.end) && (a->range.start == b->range.start) && (memcmp(a_, b_, range_n_bytes(&a->range)) == 0); } static struct sw_flow_mask *flow_mask_find(const struct flow_table *tbl, const struct sw_flow_mask *mask) { struct mask_array *ma; int i; ma = ovsl_dereference(tbl->mask_array); for (i = 0; i < ma->max; i++) { struct sw_flow_mask *t; t = ovsl_dereference(ma->masks[i]); if (t && mask_equal(mask, t)) return t; } return NULL; } /* Add 'mask' into the mask list, if it is not already there. */ static int flow_mask_insert(struct flow_table *tbl, struct sw_flow *flow, const struct sw_flow_mask *new) { struct sw_flow_mask *mask; mask = flow_mask_find(tbl, new); if (!mask) { /* Allocate a new mask if none exists. */ mask = mask_alloc(); if (!mask) return -ENOMEM; mask->key = new->key; mask->range = new->range; /* Add mask to mask-list. */ if (tbl_mask_array_add_mask(tbl, mask)) { kfree(mask); return -ENOMEM; } } else { BUG_ON(!mask->ref_count); mask->ref_count++; } flow->mask = mask; return 0; } /* Must be called with OVS mutex held. */ static void flow_key_insert(struct flow_table *table, struct sw_flow *flow) { struct table_instance *new_ti = NULL; struct table_instance *ti; flow->flow_table.hash = flow_hash(&flow->key, &flow->mask->range); ti = ovsl_dereference(table->ti); table_instance_insert(ti, flow); table->count++; /* Expand table, if necessary, to make room. */ if (table->count > ti->n_buckets) new_ti = table_instance_expand(ti, false); else if (time_after(jiffies, table->last_rehash + REHASH_INTERVAL)) new_ti = table_instance_rehash(ti, ti->n_buckets, false); if (new_ti) { rcu_assign_pointer(table->ti, new_ti); call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb); table->last_rehash = jiffies; } } /* Must be called with OVS mutex held. */ static void flow_ufid_insert(struct flow_table *table, struct sw_flow *flow) { struct table_instance *ti; flow->ufid_table.hash = ufid_hash(&flow->id); ti = ovsl_dereference(table->ufid_ti); ufid_table_instance_insert(ti, flow); table->ufid_count++; /* Expand table, if necessary, to make room. */ if (table->ufid_count > ti->n_buckets) { struct table_instance *new_ti; new_ti = table_instance_expand(ti, true); if (new_ti) { rcu_assign_pointer(table->ufid_ti, new_ti); call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb); } } } /* Must be called with OVS mutex held. */ int ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow, const struct sw_flow_mask *mask) { int err; err = flow_mask_insert(table, flow, mask); if (err) return err; flow_key_insert(table, flow); if (ovs_identifier_is_ufid(&flow->id)) flow_ufid_insert(table, flow); return 0; } static int compare_mask_and_count(const void *a, const void *b) { const struct mask_count *mc_a = a; const struct mask_count *mc_b = b; return (s64)mc_b->counter - (s64)mc_a->counter; } /* Must be called with OVS mutex held. */ void ovs_flow_masks_rebalance(struct flow_table *table) { struct mask_array *ma = rcu_dereference_ovsl(table->mask_array); struct mask_count *masks_and_count; struct mask_array *new; int masks_entries = 0; int i; /* Build array of all current entries with use counters. */ masks_and_count = kmalloc_array(ma->max, sizeof(*masks_and_count), GFP_KERNEL); if (!masks_and_count) return; for (i = 0; i < ma->max; i++) { struct sw_flow_mask *mask; int cpu; mask = rcu_dereference_ovsl(ma->masks[i]); if (unlikely(!mask)) break; masks_and_count[i].index = i; masks_and_count[i].counter = 0; for_each_possible_cpu(cpu) { struct mask_array_stats *stats; unsigned int start; u64 counter; stats = per_cpu_ptr(ma->masks_usage_stats, cpu); do { start = u64_stats_fetch_begin(&stats->syncp); counter = stats->usage_cntrs[i]; } while (u64_stats_fetch_retry(&stats->syncp, start)); masks_and_count[i].counter += counter; } /* Subtract the zero count value. */ masks_and_count[i].counter -= ma->masks_usage_zero_cntr[i]; /* Rather than calling tbl_mask_array_reset_counters() * below when no change is needed, do it inline here. */ ma->masks_usage_zero_cntr[i] += masks_and_count[i].counter; } if (i == 0) goto free_mask_entries; /* Sort the entries */ masks_entries = i; sort(masks_and_count, masks_entries, sizeof(*masks_and_count), compare_mask_and_count, NULL); /* If the order is the same, nothing to do... */ for (i = 0; i < masks_entries; i++) { if (i != masks_and_count[i].index) break; } if (i == masks_entries) goto free_mask_entries; /* Rebuilt the new list in order of usage. */ new = tbl_mask_array_alloc(ma->max); if (!new) goto free_mask_entries; for (i = 0; i < masks_entries; i++) { int index = masks_and_count[i].index; if (ovsl_dereference(ma->masks[index])) new->masks[new->count++] = ma->masks[index]; } rcu_assign_pointer(table->mask_array, new); call_rcu(&ma->rcu, mask_array_rcu_cb); free_mask_entries: kfree(masks_and_count); } /* Initializes the flow module. * Returns zero if successful or a negative error code. */ int ovs_flow_init(void) { BUILD_BUG_ON(__alignof__(struct sw_flow_key) % __alignof__(long)); BUILD_BUG_ON(sizeof(struct sw_flow_key) % sizeof(long)); flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow) + (nr_cpu_ids * sizeof(struct sw_flow_stats *)) + cpumask_size(), 0, 0, NULL); if (flow_cache == NULL) return -ENOMEM; flow_stats_cache = kmem_cache_create("sw_flow_stats", sizeof(struct sw_flow_stats), 0, SLAB_HWCACHE_ALIGN, NULL); if (flow_stats_cache == NULL) { kmem_cache_destroy(flow_cache); flow_cache = NULL; return -ENOMEM; } return 0; } /* Uninitializes the flow module. */ void ovs_flow_exit(void) { kmem_cache_destroy(flow_stats_cache); kmem_cache_destroy(flow_cache); }