// SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * PF_INET protocol family socket handler. * * Authors: Ross Biro * Fred N. van Kempen, * Florian La Roche, * Alan Cox, * * Changes (see also sock.c) * * piggy, * Karl Knutson : Socket protocol table * A.N.Kuznetsov : Socket death error in accept(). * John Richardson : Fix non blocking error in connect() * so sockets that fail to connect * don't return -EINPROGRESS. * Alan Cox : Asynchronous I/O support * Alan Cox : Keep correct socket pointer on sock * structures * when accept() ed * Alan Cox : Semantics of SO_LINGER aren't state * moved to close when you look carefully. * With this fixed and the accept bug fixed * some RPC stuff seems happier. * Niibe Yutaka : 4.4BSD style write async I/O * Alan Cox, * Tony Gale : Fixed reuse semantics. * Alan Cox : bind() shouldn't abort existing but dead * sockets. Stops FTP netin:.. I hope. * Alan Cox : bind() works correctly for RAW sockets. * Note that FreeBSD at least was broken * in this respect so be careful with * compatibility tests... * Alan Cox : routing cache support * Alan Cox : memzero the socket structure for * compactness. * Matt Day : nonblock connect error handler * Alan Cox : Allow large numbers of pending sockets * (eg for big web sites), but only if * specifically application requested. * Alan Cox : New buffering throughout IP. Used * dumbly. * Alan Cox : New buffering now used smartly. * Alan Cox : BSD rather than common sense * interpretation of listen. * Germano Caronni : Assorted small races. * Alan Cox : sendmsg/recvmsg basic support. * Alan Cox : Only sendmsg/recvmsg now supported. * Alan Cox : Locked down bind (see security list). * Alan Cox : Loosened bind a little. * Mike McLagan : ADD/DEL DLCI Ioctls * Willy Konynenberg : Transparent proxying support. * David S. Miller : New socket lookup architecture. * Some other random speedups. * Cyrus Durgin : Cleaned up file for kmod hacks. * Andi Kleen : Fix inet_stream_connect TCP race. */ #define pr_fmt(fmt) "IPv4: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_IP_MROUTE #include #endif #include #include #include /* The inetsw table contains everything that inet_create needs to * build a new socket. */ static struct list_head inetsw[SOCK_MAX]; static DEFINE_SPINLOCK(inetsw_lock); /* New destruction routine */ void inet_sock_destruct(struct sock *sk) { struct inet_sock *inet = inet_sk(sk); __skb_queue_purge(&sk->sk_receive_queue); __skb_queue_purge(&sk->sk_error_queue); sk_mem_reclaim_final(sk); if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { pr_err("Attempt to release TCP socket in state %d %p\n", sk->sk_state, sk); return; } if (!sock_flag(sk, SOCK_DEAD)) { pr_err("Attempt to release alive inet socket %p\n", sk); return; } WARN_ON_ONCE(atomic_read(&sk->sk_rmem_alloc)); WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); WARN_ON_ONCE(sk->sk_wmem_queued); WARN_ON_ONCE(sk_forward_alloc_get(sk)); kfree(rcu_dereference_protected(inet->inet_opt, 1)); dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1)); dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1)); } EXPORT_SYMBOL(inet_sock_destruct); /* * The routines beyond this point handle the behaviour of an AF_INET * socket object. Mostly it punts to the subprotocols of IP to do * the work. */ /* * Automatically bind an unbound socket. */ static int inet_autobind(struct sock *sk) { struct inet_sock *inet; /* We may need to bind the socket. */ lock_sock(sk); inet = inet_sk(sk); if (!inet->inet_num) { if (sk->sk_prot->get_port(sk, 0)) { release_sock(sk); return -EAGAIN; } inet->inet_sport = htons(inet->inet_num); } release_sock(sk); return 0; } int __inet_listen_sk(struct sock *sk, int backlog) { unsigned char old_state = sk->sk_state; int err, tcp_fastopen; if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) return -EINVAL; WRITE_ONCE(sk->sk_max_ack_backlog, backlog); /* Really, if the socket is already in listen state * we can only allow the backlog to be adjusted. */ if (old_state != TCP_LISTEN) { /* Enable TFO w/o requiring TCP_FASTOPEN socket option. * Note that only TCP sockets (SOCK_STREAM) will reach here. * Also fastopen backlog may already been set via the option * because the socket was in TCP_LISTEN state previously but * was shutdown() rather than close(). */ tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen); if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && (tcp_fastopen & TFO_SERVER_ENABLE) && !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { fastopen_queue_tune(sk, backlog); tcp_fastopen_init_key_once(sock_net(sk)); } err = inet_csk_listen_start(sk); if (err) return err; tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); } return 0; } /* * Move a socket into listening state. */ int inet_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; int err = -EINVAL; lock_sock(sk); if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) goto out; err = __inet_listen_sk(sk, backlog); out: release_sock(sk); return err; } EXPORT_SYMBOL(inet_listen); /* * Create an inet socket. */ static int inet_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; struct inet_protosw *answer; struct inet_sock *inet; struct proto *answer_prot; unsigned char answer_flags; int try_loading_module = 0; int err; if (protocol < 0 || protocol >= IPPROTO_MAX) return -EINVAL; sock->state = SS_UNCONNECTED; /* Look for the requested type/protocol pair. */ lookup_protocol: err = -ESOCKTNOSUPPORT; rcu_read_lock(); list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { err = 0; /* Check the non-wild match. */ if (protocol == answer->protocol) { if (protocol != IPPROTO_IP) break; } else { /* Check for the two wild cases. */ if (IPPROTO_IP == protocol) { protocol = answer->protocol; break; } if (IPPROTO_IP == answer->protocol) break; } err = -EPROTONOSUPPORT; } if (unlikely(err)) { if (try_loading_module < 2) { rcu_read_unlock(); /* * Be more specific, e.g. net-pf-2-proto-132-type-1 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) */ if (++try_loading_module == 1) request_module("net-pf-%d-proto-%d-type-%d", PF_INET, protocol, sock->type); /* * Fall back to generic, e.g. net-pf-2-proto-132 * (net-pf-PF_INET-proto-IPPROTO_SCTP) */ else request_module("net-pf-%d-proto-%d", PF_INET, protocol); goto lookup_protocol; } else goto out_rcu_unlock; } err = -EPERM; if (sock->type == SOCK_RAW && !kern && !ns_capable(net->user_ns, CAP_NET_RAW)) goto out_rcu_unlock; sock->ops = answer->ops; answer_prot = answer->prot; answer_flags = answer->flags; rcu_read_unlock(); WARN_ON(!answer_prot->slab); err = -ENOMEM; sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); if (!sk) goto out; err = 0; if (INET_PROTOSW_REUSE & answer_flags) sk->sk_reuse = SK_CAN_REUSE; if (INET_PROTOSW_ICSK & answer_flags) inet_init_csk_locks(sk); inet = inet_sk(sk); inet_assign_bit(IS_ICSK, sk, INET_PROTOSW_ICSK & answer_flags); inet_clear_bit(NODEFRAG, sk); if (SOCK_RAW == sock->type) { inet->inet_num = protocol; if (IPPROTO_RAW == protocol) inet_set_bit(HDRINCL, sk); } if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc)) inet->pmtudisc = IP_PMTUDISC_DONT; else inet->pmtudisc = IP_PMTUDISC_WANT; atomic_set(&inet->inet_id, 0); sock_init_data(sock, sk); sk->sk_destruct = inet_sock_destruct; sk->sk_protocol = protocol; sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; sk->sk_txrehash = READ_ONCE(net->core.sysctl_txrehash); inet->uc_ttl = -1; inet_set_bit(MC_LOOP, sk); inet->mc_ttl = 1; inet_set_bit(MC_ALL, sk); inet->mc_index = 0; inet->mc_list = NULL; inet->rcv_tos = 0; if (inet->inet_num) { /* It assumes that any protocol which allows * the user to assign a number at socket * creation time automatically * shares. */ inet->inet_sport = htons(inet->inet_num); /* Add to protocol hash chains. */ err = sk->sk_prot->hash(sk); if (err) { sk_common_release(sk); goto out; } } if (sk->sk_prot->init) { err = sk->sk_prot->init(sk); if (err) { sk_common_release(sk); goto out; } } if (!kern) { err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); if (err) { sk_common_release(sk); goto out; } } out: return err; out_rcu_unlock: rcu_read_unlock(); goto out; } /* * The peer socket should always be NULL (or else). When we call this * function we are destroying the object and from then on nobody * should refer to it. */ int inet_release(struct socket *sock) { struct sock *sk = sock->sk; if (sk) { long timeout; if (!sk->sk_kern_sock) BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk); /* Applications forget to leave groups before exiting */ ip_mc_drop_socket(sk); /* If linger is set, we don't return until the close * is complete. Otherwise we return immediately. The * actually closing is done the same either way. * * If the close is due to the process exiting, we never * linger.. */ timeout = 0; if (sock_flag(sk, SOCK_LINGER) && !(current->flags & PF_EXITING)) timeout = sk->sk_lingertime; sk->sk_prot->close(sk, timeout); sock->sk = NULL; } return 0; } EXPORT_SYMBOL(inet_release); int inet_bind_sk(struct sock *sk, struct sockaddr *uaddr, int addr_len) { u32 flags = BIND_WITH_LOCK; int err; /* If the socket has its own bind function then use it. (RAW) */ if (sk->sk_prot->bind) { return sk->sk_prot->bind(sk, uaddr, addr_len); } if (addr_len < sizeof(struct sockaddr_in)) return -EINVAL; /* BPF prog is run before any checks are done so that if the prog * changes context in a wrong way it will be caught. */ err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr, &addr_len, CGROUP_INET4_BIND, &flags); if (err) return err; return __inet_bind(sk, uaddr, addr_len, flags); } int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { return inet_bind_sk(sock->sk, uaddr, addr_len); } EXPORT_SYMBOL(inet_bind); int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, u32 flags) { struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; struct inet_sock *inet = inet_sk(sk); struct net *net = sock_net(sk); unsigned short snum; int chk_addr_ret; u32 tb_id = RT_TABLE_LOCAL; int err; if (addr->sin_family != AF_INET) { /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) * only if s_addr is INADDR_ANY. */ err = -EAFNOSUPPORT; if (addr->sin_family != AF_UNSPEC || addr->sin_addr.s_addr != htonl(INADDR_ANY)) goto out; } tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); /* Not specified by any standard per-se, however it breaks too * many applications when removed. It is unfortunate since * allowing applications to make a non-local bind solves * several problems with systems using dynamic addressing. * (ie. your servers still start up even if your ISDN link * is temporarily down) */ err = -EADDRNOTAVAIL; if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr, chk_addr_ret)) goto out; snum = ntohs(addr->sin_port); err = -EACCES; if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) && snum && inet_port_requires_bind_service(net, snum) && !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) goto out; /* We keep a pair of addresses. rcv_saddr is the one * used by hash lookups, and saddr is used for transmit. * * In the BSD API these are the same except where it * would be illegal to use them (multicast/broadcast) in * which case the sending device address is used. */ if (flags & BIND_WITH_LOCK) lock_sock(sk); /* Check these errors (active socket, double bind). */ err = -EINVAL; if (sk->sk_state != TCP_CLOSE || inet->inet_num) goto out_release_sock; inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) inet->inet_saddr = 0; /* Use device */ /* Make sure we are allowed to bind here. */ if (snum || !(inet_test_bit(BIND_ADDRESS_NO_PORT, sk) || (flags & BIND_FORCE_ADDRESS_NO_PORT))) { err = sk->sk_prot->get_port(sk, snum); if (err) { inet->inet_saddr = inet->inet_rcv_saddr = 0; goto out_release_sock; } if (!(flags & BIND_FROM_BPF)) { err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); if (err) { inet->inet_saddr = inet->inet_rcv_saddr = 0; if (sk->sk_prot->put_port) sk->sk_prot->put_port(sk); goto out_release_sock; } } } if (inet->inet_rcv_saddr) sk->sk_userlocks |= SOCK_BINDADDR_LOCK; if (snum) sk->sk_userlocks |= SOCK_BINDPORT_LOCK; inet->inet_sport = htons(inet->inet_num); inet->inet_daddr = 0; inet->inet_dport = 0; sk_dst_reset(sk); err = 0; out_release_sock: if (flags & BIND_WITH_LOCK) release_sock(sk); out: return err; } int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { struct sock *sk = sock->sk; const struct proto *prot; int err; if (addr_len < sizeof(uaddr->sa_family)) return -EINVAL; /* IPV6_ADDRFORM can change sk->sk_prot under us. */ prot = READ_ONCE(sk->sk_prot); if (uaddr->sa_family == AF_UNSPEC) return prot->disconnect(sk, flags); if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { err = prot->pre_connect(sk, uaddr, addr_len); if (err) return err; } if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk)) return -EAGAIN; return prot->connect(sk, uaddr, addr_len); } EXPORT_SYMBOL(inet_dgram_connect); static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) { DEFINE_WAIT_FUNC(wait, woken_wake_function); add_wait_queue(sk_sleep(sk), &wait); sk->sk_write_pending += writebias; /* Basic assumption: if someone sets sk->sk_err, he _must_ * change state of the socket from TCP_SYN_*. * Connect() does not allow to get error notifications * without closing the socket. */ while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { release_sock(sk); timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); lock_sock(sk); if (signal_pending(current) || !timeo) break; } remove_wait_queue(sk_sleep(sk), &wait); sk->sk_write_pending -= writebias; return timeo; } /* * Connect to a remote host. There is regrettably still a little * TCP 'magic' in here. */ int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags, int is_sendmsg) { struct sock *sk = sock->sk; int err; long timeo; /* * uaddr can be NULL and addr_len can be 0 if: * sk is a TCP fastopen active socket and * TCP_FASTOPEN_CONNECT sockopt is set and * we already have a valid cookie for this socket. * In this case, user can call write() after connect(). * write() will invoke tcp_sendmsg_fastopen() which calls * __inet_stream_connect(). */ if (uaddr) { if (addr_len < sizeof(uaddr->sa_family)) return -EINVAL; if (uaddr->sa_family == AF_UNSPEC) { sk->sk_disconnects++; err = sk->sk_prot->disconnect(sk, flags); sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; goto out; } } switch (sock->state) { default: err = -EINVAL; goto out; case SS_CONNECTED: err = -EISCONN; goto out; case SS_CONNECTING: if (inet_test_bit(DEFER_CONNECT, sk)) err = is_sendmsg ? -EINPROGRESS : -EISCONN; else err = -EALREADY; /* Fall out of switch with err, set for this state */ break; case SS_UNCONNECTED: err = -EISCONN; if (sk->sk_state != TCP_CLOSE) goto out; if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); if (err) goto out; } err = sk->sk_prot->connect(sk, uaddr, addr_len); if (err < 0) goto out; sock->state = SS_CONNECTING; if (!err && inet_test_bit(DEFER_CONNECT, sk)) goto out; /* Just entered SS_CONNECTING state; the only * difference is that return value in non-blocking * case is EINPROGRESS, rather than EALREADY. */ err = -EINPROGRESS; break; } timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { int writebias = (sk->sk_protocol == IPPROTO_TCP) && tcp_sk(sk)->fastopen_req && tcp_sk(sk)->fastopen_req->data ? 1 : 0; int dis = sk->sk_disconnects; /* Error code is set above */ if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) goto out; err = sock_intr_errno(timeo); if (signal_pending(current)) goto out; if (dis != sk->sk_disconnects) { err = -EPIPE; goto out; } } /* Connection was closed by RST, timeout, ICMP error * or another process disconnected us. */ if (sk->sk_state == TCP_CLOSE) goto sock_error; /* sk->sk_err may be not zero now, if RECVERR was ordered by user * and error was received after socket entered established state. * Hence, it is handled normally after connect() return successfully. */ sock->state = SS_CONNECTED; err = 0; out: return err; sock_error: err = sock_error(sk) ? : -ECONNABORTED; sock->state = SS_UNCONNECTED; sk->sk_disconnects++; if (sk->sk_prot->disconnect(sk, flags)) sock->state = SS_DISCONNECTING; goto out; } EXPORT_SYMBOL(__inet_stream_connect); int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { int err; lock_sock(sock->sk); err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); release_sock(sock->sk); return err; } EXPORT_SYMBOL(inet_stream_connect); void __inet_accept(struct socket *sock, struct socket *newsock, struct sock *newsk) { sock_rps_record_flow(newsk); WARN_ON(!((1 << newsk->sk_state) & (TCPF_ESTABLISHED | TCPF_SYN_RECV | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSING | TCPF_CLOSE_WAIT | TCPF_CLOSE))); if (test_bit(SOCK_SUPPORT_ZC, &sock->flags)) set_bit(SOCK_SUPPORT_ZC, &newsock->flags); sock_graft(newsk, newsock); newsock->state = SS_CONNECTED; } /* * Accept a pending connection. The TCP layer now gives BSD semantics. */ int inet_accept(struct socket *sock, struct socket *newsock, int flags, bool kern) { struct sock *sk1 = sock->sk, *sk2; int err = -EINVAL; /* IPV6_ADDRFORM can change sk->sk_prot under us. */ sk2 = READ_ONCE(sk1->sk_prot)->accept(sk1, flags, &err, kern); if (!sk2) return err; lock_sock(sk2); __inet_accept(sock, newsock, sk2); release_sock(sk2); return 0; } EXPORT_SYMBOL(inet_accept); /* * This does both peername and sockname. */ int inet_getname(struct socket *sock, struct sockaddr *uaddr, int peer) { struct sock *sk = sock->sk; struct inet_sock *inet = inet_sk(sk); DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); int sin_addr_len = sizeof(*sin); sin->sin_family = AF_INET; lock_sock(sk); if (peer) { if (!inet->inet_dport || (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && peer == 1)) { release_sock(sk); return -ENOTCONN; } sin->sin_port = inet->inet_dport; sin->sin_addr.s_addr = inet->inet_daddr; BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, &sin_addr_len, CGROUP_INET4_GETPEERNAME); } else { __be32 addr = inet->inet_rcv_saddr; if (!addr) addr = inet->inet_saddr; sin->sin_port = inet->inet_sport; sin->sin_addr.s_addr = addr; BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, &sin_addr_len, CGROUP_INET4_GETSOCKNAME); } release_sock(sk); memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); return sin_addr_len; } EXPORT_SYMBOL(inet_getname); int inet_send_prepare(struct sock *sk) { sock_rps_record_flow(sk); /* We may need to bind the socket. */ if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind && inet_autobind(sk)) return -EAGAIN; return 0; } EXPORT_SYMBOL_GPL(inet_send_prepare); int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) { struct sock *sk = sock->sk; if (unlikely(inet_send_prepare(sk))) return -EAGAIN; return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg, sk, msg, size); } EXPORT_SYMBOL(inet_sendmsg); void inet_splice_eof(struct socket *sock) { const struct proto *prot; struct sock *sk = sock->sk; if (unlikely(inet_send_prepare(sk))) return; /* IPV6_ADDRFORM can change sk->sk_prot under us. */ prot = READ_ONCE(sk->sk_prot); if (prot->splice_eof) prot->splice_eof(sock); } EXPORT_SYMBOL_GPL(inet_splice_eof); INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *, size_t, int, int *)); int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; int addr_len = 0; int err; if (likely(!(flags & MSG_ERRQUEUE))) sock_rps_record_flow(sk); err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg, sk, msg, size, flags, &addr_len); if (err >= 0) msg->msg_namelen = addr_len; return err; } EXPORT_SYMBOL(inet_recvmsg); int inet_shutdown(struct socket *sock, int how) { struct sock *sk = sock->sk; int err = 0; /* This should really check to make sure * the socket is a TCP socket. (WHY AC...) */ how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 1->2 bit 2 snds. 2->3 */ if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ return -EINVAL; lock_sock(sk); if (sock->state == SS_CONNECTING) { if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) sock->state = SS_DISCONNECTING; else sock->state = SS_CONNECTED; } switch (sk->sk_state) { case TCP_CLOSE: err = -ENOTCONN; /* Hack to wake up other listeners, who can poll for EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ fallthrough; default: WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | how); if (sk->sk_prot->shutdown) sk->sk_prot->shutdown(sk, how); break; /* Remaining two branches are temporary solution for missing * close() in multithreaded environment. It is _not_ a good idea, * but we have no choice until close() is repaired at VFS level. */ case TCP_LISTEN: if (!(how & RCV_SHUTDOWN)) break; fallthrough; case TCP_SYN_SENT: err = sk->sk_prot->disconnect(sk, O_NONBLOCK); sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; break; } /* Wake up anyone sleeping in poll. */ sk->sk_state_change(sk); release_sock(sk); return err; } EXPORT_SYMBOL(inet_shutdown); /* * ioctl() calls you can issue on an INET socket. Most of these are * device configuration and stuff and very rarely used. Some ioctls * pass on to the socket itself. * * NOTE: I like the idea of a module for the config stuff. ie ifconfig * loads the devconfigure module does its configuring and unloads it. * There's a good 20K of config code hanging around the kernel. */ int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk = sock->sk; int err = 0; struct net *net = sock_net(sk); void __user *p = (void __user *)arg; struct ifreq ifr; struct rtentry rt; switch (cmd) { case SIOCADDRT: case SIOCDELRT: if (copy_from_user(&rt, p, sizeof(struct rtentry))) return -EFAULT; err = ip_rt_ioctl(net, cmd, &rt); break; case SIOCRTMSG: err = -EINVAL; break; case SIOCDARP: case SIOCGARP: case SIOCSARP: err = arp_ioctl(net, cmd, (void __user *)arg); break; case SIOCGIFADDR: case SIOCGIFBRDADDR: case SIOCGIFNETMASK: case SIOCGIFDSTADDR: case SIOCGIFPFLAGS: if (get_user_ifreq(&ifr, NULL, p)) return -EFAULT; err = devinet_ioctl(net, cmd, &ifr); if (!err && put_user_ifreq(&ifr, p)) err = -EFAULT; break; case SIOCSIFADDR: case SIOCSIFBRDADDR: case SIOCSIFNETMASK: case SIOCSIFDSTADDR: case SIOCSIFPFLAGS: case SIOCSIFFLAGS: if (get_user_ifreq(&ifr, NULL, p)) return -EFAULT; err = devinet_ioctl(net, cmd, &ifr); break; default: if (sk->sk_prot->ioctl) err = sk_ioctl(sk, cmd, (void __user *)arg); else err = -ENOIOCTLCMD; break; } return err; } EXPORT_SYMBOL(inet_ioctl); #ifdef CONFIG_COMPAT static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd, struct compat_rtentry __user *ur) { compat_uptr_t rtdev; struct rtentry rt; if (copy_from_user(&rt.rt_dst, &ur->rt_dst, 3 * sizeof(struct sockaddr)) || get_user(rt.rt_flags, &ur->rt_flags) || get_user(rt.rt_metric, &ur->rt_metric) || get_user(rt.rt_mtu, &ur->rt_mtu) || get_user(rt.rt_window, &ur->rt_window) || get_user(rt.rt_irtt, &ur->rt_irtt) || get_user(rtdev, &ur->rt_dev)) return -EFAULT; rt.rt_dev = compat_ptr(rtdev); return ip_rt_ioctl(sock_net(sk), cmd, &rt); } static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { void __user *argp = compat_ptr(arg); struct sock *sk = sock->sk; switch (cmd) { case SIOCADDRT: case SIOCDELRT: return inet_compat_routing_ioctl(sk, cmd, argp); default: if (!sk->sk_prot->compat_ioctl) return -ENOIOCTLCMD; return sk->sk_prot->compat_ioctl(sk, cmd, arg); } } #endif /* CONFIG_COMPAT */ const struct proto_ops inet_stream_ops = { .family = PF_INET, .owner = THIS_MODULE, .release = inet_release, .bind = inet_bind, .connect = inet_stream_connect, .socketpair = sock_no_socketpair, .accept = inet_accept, .getname = inet_getname, .poll = tcp_poll, .ioctl = inet_ioctl, .gettstamp = sock_gettstamp, .listen = inet_listen, .shutdown = inet_shutdown, .setsockopt = sock_common_setsockopt, .getsockopt = sock_common_getsockopt, .sendmsg = inet_sendmsg, .recvmsg = inet_recvmsg, #ifdef CONFIG_MMU .mmap = tcp_mmap, #endif .splice_eof = inet_splice_eof, .splice_read = tcp_splice_read, .read_sock = tcp_read_sock, .read_skb = tcp_read_skb, .sendmsg_locked = tcp_sendmsg_locked, .peek_len = tcp_peek_len, #ifdef CONFIG_COMPAT .compat_ioctl = inet_compat_ioctl, #endif .set_rcvlowat = tcp_set_rcvlowat, }; EXPORT_SYMBOL(inet_stream_ops); const struct proto_ops inet_dgram_ops = { .family = PF_INET, .owner = THIS_MODULE, .release = inet_release, .bind = inet_bind, .connect = inet_dgram_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = inet_getname, .poll = udp_poll, .ioctl = inet_ioctl, .gettstamp = sock_gettstamp, .listen = sock_no_listen, .shutdown = inet_shutdown, .setsockopt = sock_common_setsockopt, .getsockopt = sock_common_getsockopt, .sendmsg = inet_sendmsg, .read_skb = udp_read_skb, .recvmsg = inet_recvmsg, .mmap = sock_no_mmap, .splice_eof = inet_splice_eof, .set_peek_off = sk_set_peek_off, #ifdef CONFIG_COMPAT .compat_ioctl = inet_compat_ioctl, #endif }; EXPORT_SYMBOL(inet_dgram_ops); /* * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without * udp_poll */ static const struct proto_ops inet_sockraw_ops = { .family = PF_INET, .owner = THIS_MODULE, .release = inet_release, .bind = inet_bind, .connect = inet_dgram_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = inet_getname, .poll = datagram_poll, .ioctl = inet_ioctl, .gettstamp = sock_gettstamp, .listen = sock_no_listen, .shutdown = inet_shutdown, .setsockopt = sock_common_setsockopt, .getsockopt = sock_common_getsockopt, .sendmsg = inet_sendmsg, .recvmsg = inet_recvmsg, .mmap = sock_no_mmap, .splice_eof = inet_splice_eof, #ifdef CONFIG_COMPAT .compat_ioctl = inet_compat_ioctl, #endif }; static const struct net_proto_family inet_family_ops = { .family = PF_INET, .create = inet_create, .owner = THIS_MODULE, }; /* Upon startup we insert all the elements in inetsw_array[] into * the linked list inetsw. */ static struct inet_protosw inetsw_array[] = { { .type = SOCK_STREAM, .protocol = IPPROTO_TCP, .prot = &tcp_prot, .ops = &inet_stream_ops, .flags = INET_PROTOSW_PERMANENT | INET_PROTOSW_ICSK, }, { .type = SOCK_DGRAM, .protocol = IPPROTO_UDP, .prot = &udp_prot, .ops = &inet_dgram_ops, .flags = INET_PROTOSW_PERMANENT, }, { .type = SOCK_DGRAM, .protocol = IPPROTO_ICMP, .prot = &ping_prot, .ops = &inet_sockraw_ops, .flags = INET_PROTOSW_REUSE, }, { .type = SOCK_RAW, .protocol = IPPROTO_IP, /* wild card */ .prot = &raw_prot, .ops = &inet_sockraw_ops, .flags = INET_PROTOSW_REUSE, } }; #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) void inet_register_protosw(struct inet_protosw *p) { struct list_head *lh; struct inet_protosw *answer; int protocol = p->protocol; struct list_head *last_perm; spin_lock_bh(&inetsw_lock); if (p->type >= SOCK_MAX) goto out_illegal; /* If we are trying to override a permanent protocol, bail. */ last_perm = &inetsw[p->type]; list_for_each(lh, &inetsw[p->type]) { answer = list_entry(lh, struct inet_protosw, list); /* Check only the non-wild match. */ if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) break; if (protocol == answer->protocol) goto out_permanent; last_perm = lh; } /* Add the new entry after the last permanent entry if any, so that * the new entry does not override a permanent entry when matched with * a wild-card protocol. But it is allowed to override any existing * non-permanent entry. This means that when we remove this entry, the * system automatically returns to the old behavior. */ list_add_rcu(&p->list, last_perm); out: spin_unlock_bh(&inetsw_lock); return; out_permanent: pr_err("Attempt to override permanent protocol %d\n", protocol); goto out; out_illegal: pr_err("Ignoring attempt to register invalid socket type %d\n", p->type); goto out; } EXPORT_SYMBOL(inet_register_protosw); void inet_unregister_protosw(struct inet_protosw *p) { if (INET_PROTOSW_PERMANENT & p->flags) { pr_err("Attempt to unregister permanent protocol %d\n", p->protocol); } else { spin_lock_bh(&inetsw_lock); list_del_rcu(&p->list); spin_unlock_bh(&inetsw_lock); synchronize_net(); } } EXPORT_SYMBOL(inet_unregister_protosw); static int inet_sk_reselect_saddr(struct sock *sk) { struct inet_sock *inet = inet_sk(sk); __be32 old_saddr = inet->inet_saddr; __be32 daddr = inet->inet_daddr; struct flowi4 *fl4; struct rtable *rt; __be32 new_saddr; struct ip_options_rcu *inet_opt; int err; inet_opt = rcu_dereference_protected(inet->inet_opt, lockdep_sock_is_held(sk)); if (inet_opt && inet_opt->opt.srr) daddr = inet_opt->opt.faddr; /* Query new route. */ fl4 = &inet->cork.fl.u.ip4; rt = ip_route_connect(fl4, daddr, 0, sk->sk_bound_dev_if, sk->sk_protocol, inet->inet_sport, inet->inet_dport, sk); if (IS_ERR(rt)) return PTR_ERR(rt); new_saddr = fl4->saddr; if (new_saddr == old_saddr) { sk_setup_caps(sk, &rt->dst); return 0; } err = inet_bhash2_update_saddr(sk, &new_saddr, AF_INET); if (err) { ip_rt_put(rt); return err; } sk_setup_caps(sk, &rt->dst); if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) { pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", __func__, &old_saddr, &new_saddr); } /* * XXX The only one ugly spot where we need to * XXX really change the sockets identity after * XXX it has entered the hashes. -DaveM * * Besides that, it does not check for connection * uniqueness. Wait for troubles. */ return __sk_prot_rehash(sk); } int inet_sk_rebuild_header(struct sock *sk) { struct inet_sock *inet = inet_sk(sk); struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); __be32 daddr; struct ip_options_rcu *inet_opt; struct flowi4 *fl4; int err; /* Route is OK, nothing to do. */ if (rt) return 0; /* Reroute. */ rcu_read_lock(); inet_opt = rcu_dereference(inet->inet_opt); daddr = inet->inet_daddr; if (inet_opt && inet_opt->opt.srr) daddr = inet_opt->opt.faddr; rcu_read_unlock(); fl4 = &inet->cork.fl.u.ip4; rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, inet->inet_dport, inet->inet_sport, sk->sk_protocol, RT_CONN_FLAGS(sk), sk->sk_bound_dev_if); if (!IS_ERR(rt)) { err = 0; sk_setup_caps(sk, &rt->dst); } else { err = PTR_ERR(rt); /* Routing failed... */ sk->sk_route_caps = 0; /* * Other protocols have to map its equivalent state to TCP_SYN_SENT. * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme */ if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) || sk->sk_state != TCP_SYN_SENT || (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || (err = inet_sk_reselect_saddr(sk)) != 0) WRITE_ONCE(sk->sk_err_soft, -err); } return err; } EXPORT_SYMBOL(inet_sk_rebuild_header); void inet_sk_set_state(struct sock *sk, int state) { trace_inet_sock_set_state(sk, sk->sk_state, state); sk->sk_state = state; } EXPORT_SYMBOL(inet_sk_set_state); void inet_sk_state_store(struct sock *sk, int newstate) { trace_inet_sock_set_state(sk, sk->sk_state, newstate); smp_store_release(&sk->sk_state, newstate); } struct sk_buff *inet_gso_segment(struct sk_buff *skb, netdev_features_t features) { bool udpfrag = false, fixedid = false, gso_partial, encap; struct sk_buff *segs = ERR_PTR(-EINVAL); const struct net_offload *ops; unsigned int offset = 0; struct iphdr *iph; int proto, tot_len; int nhoff; int ihl; int id; skb_reset_network_header(skb); nhoff = skb_network_header(skb) - skb_mac_header(skb); if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) goto out; iph = ip_hdr(skb); ihl = iph->ihl * 4; if (ihl < sizeof(*iph)) goto out; id = ntohs(iph->id); proto = iph->protocol; /* Warning: after this point, iph might be no longer valid */ if (unlikely(!pskb_may_pull(skb, ihl))) goto out; __skb_pull(skb, ihl); encap = SKB_GSO_CB(skb)->encap_level > 0; if (encap) features &= skb->dev->hw_enc_features; SKB_GSO_CB(skb)->encap_level += ihl; skb_reset_transport_header(skb); segs = ERR_PTR(-EPROTONOSUPPORT); if (!skb->encapsulation || encap) { udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); /* fixed ID is invalid if DF bit is not set */ if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) goto out; } ops = rcu_dereference(inet_offloads[proto]); if (likely(ops && ops->callbacks.gso_segment)) { segs = ops->callbacks.gso_segment(skb, features); if (!segs) skb->network_header = skb_mac_header(skb) + nhoff - skb->head; } if (IS_ERR_OR_NULL(segs)) goto out; gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); skb = segs; do { iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); if (udpfrag) { iph->frag_off = htons(offset >> 3); if (skb->next) iph->frag_off |= htons(IP_MF); offset += skb->len - nhoff - ihl; tot_len = skb->len - nhoff; } else if (skb_is_gso(skb)) { if (!fixedid) { iph->id = htons(id); id += skb_shinfo(skb)->gso_segs; } if (gso_partial) tot_len = skb_shinfo(skb)->gso_size + SKB_GSO_CB(skb)->data_offset + skb->head - (unsigned char *)iph; else tot_len = skb->len - nhoff; } else { if (!fixedid) iph->id = htons(id++); tot_len = skb->len - nhoff; } iph->tot_len = htons(tot_len); ip_send_check(iph); if (encap) skb_reset_inner_headers(skb); skb->network_header = (u8 *)iph - skb->head; skb_reset_mac_len(skb); } while ((skb = skb->next)); out: return segs; } static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, netdev_features_t features) { if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) return ERR_PTR(-EINVAL); return inet_gso_segment(skb, features); } struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) { const struct net_offload *ops; struct sk_buff *pp = NULL; const struct iphdr *iph; struct sk_buff *p; unsigned int hlen; unsigned int off; unsigned int id; int flush = 1; int proto; off = skb_gro_offset(skb); hlen = off + sizeof(*iph); iph = skb_gro_header(skb, hlen, off); if (unlikely(!iph)) goto out; proto = iph->protocol; ops = rcu_dereference(inet_offloads[proto]); if (!ops || !ops->callbacks.gro_receive) goto out; if (*(u8 *)iph != 0x45) goto out; if (ip_is_fragment(iph)) goto out; if (unlikely(ip_fast_csum((u8 *)iph, 5))) goto out; NAPI_GRO_CB(skb)->proto = proto; id = ntohl(*(__be32 *)&iph->id); flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); id >>= 16; list_for_each_entry(p, head, list) { struct iphdr *iph2; u16 flush_id; if (!NAPI_GRO_CB(p)->same_flow) continue; iph2 = (struct iphdr *)(p->data + off); /* The above works because, with the exception of the top * (inner most) layer, we only aggregate pkts with the same * hdr length so all the hdrs we'll need to verify will start * at the same offset. */ if ((iph->protocol ^ iph2->protocol) | ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { NAPI_GRO_CB(p)->same_flow = 0; continue; } /* All fields must match except length and checksum. */ NAPI_GRO_CB(p)->flush |= (iph->ttl ^ iph2->ttl) | (iph->tos ^ iph2->tos) | ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); NAPI_GRO_CB(p)->flush |= flush; /* We need to store of the IP ID check to be included later * when we can verify that this packet does in fact belong * to a given flow. */ flush_id = (u16)(id - ntohs(iph2->id)); /* This bit of code makes it much easier for us to identify * the cases where we are doing atomic vs non-atomic IP ID * checks. Specifically an atomic check can return IP ID * values 0 - 0xFFFF, while a non-atomic check can only * return 0 or 0xFFFF. */ if (!NAPI_GRO_CB(p)->is_atomic || !(iph->frag_off & htons(IP_DF))) { flush_id ^= NAPI_GRO_CB(p)->count; flush_id = flush_id ? 0xFFFF : 0; } /* If the previous IP ID value was based on an atomic * datagram we can overwrite the value and ignore it. */ if (NAPI_GRO_CB(skb)->is_atomic) NAPI_GRO_CB(p)->flush_id = flush_id; else NAPI_GRO_CB(p)->flush_id |= flush_id; } NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); NAPI_GRO_CB(skb)->flush |= flush; skb_set_network_header(skb, off); /* The above will be needed by the transport layer if there is one * immediately following this IP hdr. */ NAPI_GRO_CB(skb)->inner_network_offset = off; /* Note : No need to call skb_gro_postpull_rcsum() here, * as we already checked checksum over ipv4 header was 0 */ skb_gro_pull(skb, sizeof(*iph)); skb_set_transport_header(skb, skb_gro_offset(skb)); pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, ops->callbacks.gro_receive, head, skb); out: skb_gro_flush_final(skb, pp, flush); return pp; } static struct sk_buff *ipip_gro_receive(struct list_head *head, struct sk_buff *skb) { if (NAPI_GRO_CB(skb)->encap_mark) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } NAPI_GRO_CB(skb)->encap_mark = 1; return inet_gro_receive(head, skb); } #define SECONDS_PER_DAY 86400 /* inet_current_timestamp - Return IP network timestamp * * Return milliseconds since midnight in network byte order. */ __be32 inet_current_timestamp(void) { u32 secs; u32 msecs; struct timespec64 ts; ktime_get_real_ts64(&ts); /* Get secs since midnight. */ (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); /* Convert to msecs. */ msecs = secs * MSEC_PER_SEC; /* Convert nsec to msec. */ msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; /* Convert to network byte order. */ return htonl(msecs); } EXPORT_SYMBOL(inet_current_timestamp); int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) { unsigned int family = READ_ONCE(sk->sk_family); if (family == AF_INET) return ip_recv_error(sk, msg, len, addr_len); #if IS_ENABLED(CONFIG_IPV6) if (family == AF_INET6) return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); #endif return -EINVAL; } EXPORT_SYMBOL(inet_recv_error); int inet_gro_complete(struct sk_buff *skb, int nhoff) { struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); const struct net_offload *ops; __be16 totlen = iph->tot_len; int proto = iph->protocol; int err = -ENOSYS; if (skb->encapsulation) { skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); skb_set_inner_network_header(skb, nhoff); } iph_set_totlen(iph, skb->len - nhoff); csum_replace2(&iph->check, totlen, iph->tot_len); ops = rcu_dereference(inet_offloads[proto]); if (WARN_ON(!ops || !ops->callbacks.gro_complete)) goto out; /* Only need to add sizeof(*iph) to get to the next hdr below * because any hdr with option will have been flushed in * inet_gro_receive(). */ err = INDIRECT_CALL_2(ops->callbacks.gro_complete, tcp4_gro_complete, udp4_gro_complete, skb, nhoff + sizeof(*iph)); out: return err; } static int ipip_gro_complete(struct sk_buff *skb, int nhoff) { skb->encapsulation = 1; skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; return inet_gro_complete(skb, nhoff); } int inet_ctl_sock_create(struct sock **sk, unsigned short family, unsigned short type, unsigned char protocol, struct net *net) { struct socket *sock; int rc = sock_create_kern(net, family, type, protocol, &sock); if (rc == 0) { *sk = sock->sk; (*sk)->sk_allocation = GFP_ATOMIC; (*sk)->sk_use_task_frag = false; /* * Unhash it so that IP input processing does not even see it, * we do not wish this socket to see incoming packets. */ (*sk)->sk_prot->unhash(*sk); } return rc; } EXPORT_SYMBOL_GPL(inet_ctl_sock_create); unsigned long snmp_fold_field(void __percpu *mib, int offt) { unsigned long res = 0; int i; for_each_possible_cpu(i) res += snmp_get_cpu_field(mib, i, offt); return res; } EXPORT_SYMBOL_GPL(snmp_fold_field); #if BITS_PER_LONG==32 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, size_t syncp_offset) { void *bhptr; struct u64_stats_sync *syncp; u64 v; unsigned int start; bhptr = per_cpu_ptr(mib, cpu); syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); do { start = u64_stats_fetch_begin(syncp); v = *(((u64 *)bhptr) + offt); } while (u64_stats_fetch_retry(syncp, start)); return v; } EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) { u64 res = 0; int cpu; for_each_possible_cpu(cpu) { res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); } return res; } EXPORT_SYMBOL_GPL(snmp_fold_field64); #endif #ifdef CONFIG_IP_MULTICAST static const struct net_protocol igmp_protocol = { .handler = igmp_rcv, }; #endif static const struct net_protocol tcp_protocol = { .handler = tcp_v4_rcv, .err_handler = tcp_v4_err, .no_policy = 1, .icmp_strict_tag_validation = 1, }; static const struct net_protocol udp_protocol = { .handler = udp_rcv, .err_handler = udp_err, .no_policy = 1, }; static const struct net_protocol icmp_protocol = { .handler = icmp_rcv, .err_handler = icmp_err, .no_policy = 1, }; static __net_init int ipv4_mib_init_net(struct net *net) { int i; net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); if (!net->mib.tcp_statistics) goto err_tcp_mib; net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); if (!net->mib.ip_statistics) goto err_ip_mib; for_each_possible_cpu(i) { struct ipstats_mib *af_inet_stats; af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); u64_stats_init(&af_inet_stats->syncp); } net->mib.net_statistics = alloc_percpu(struct linux_mib); if (!net->mib.net_statistics) goto err_net_mib; net->mib.udp_statistics = alloc_percpu(struct udp_mib); if (!net->mib.udp_statistics) goto err_udp_mib; net->mib.udplite_statistics = alloc_percpu(struct udp_mib); if (!net->mib.udplite_statistics) goto err_udplite_mib; net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); if (!net->mib.icmp_statistics) goto err_icmp_mib; net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), GFP_KERNEL); if (!net->mib.icmpmsg_statistics) goto err_icmpmsg_mib; tcp_mib_init(net); return 0; err_icmpmsg_mib: free_percpu(net->mib.icmp_statistics); err_icmp_mib: free_percpu(net->mib.udplite_statistics); err_udplite_mib: free_percpu(net->mib.udp_statistics); err_udp_mib: free_percpu(net->mib.net_statistics); err_net_mib: free_percpu(net->mib.ip_statistics); err_ip_mib: free_percpu(net->mib.tcp_statistics); err_tcp_mib: return -ENOMEM; } static __net_exit void ipv4_mib_exit_net(struct net *net) { kfree(net->mib.icmpmsg_statistics); free_percpu(net->mib.icmp_statistics); free_percpu(net->mib.udplite_statistics); free_percpu(net->mib.udp_statistics); free_percpu(net->mib.net_statistics); free_percpu(net->mib.ip_statistics); free_percpu(net->mib.tcp_statistics); #ifdef CONFIG_MPTCP /* allocated on demand, see mptcp_init_sock() */ free_percpu(net->mib.mptcp_statistics); #endif } static __net_initdata struct pernet_operations ipv4_mib_ops = { .init = ipv4_mib_init_net, .exit = ipv4_mib_exit_net, }; static int __init init_ipv4_mibs(void) { return register_pernet_subsys(&ipv4_mib_ops); } static __net_init int inet_init_net(struct net *net) { /* * Set defaults for local port range */ seqlock_init(&net->ipv4.ip_local_ports.lock); net->ipv4.ip_local_ports.range[0] = 32768; net->ipv4.ip_local_ports.range[1] = 60999; seqlock_init(&net->ipv4.ping_group_range.lock); /* * Sane defaults - nobody may create ping sockets. * Boot scripts should set this to distro-specific group. */ net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); /* Default values for sysctl-controlled parameters. * We set them here, in case sysctl is not compiled. */ net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; net->ipv4.sysctl_ip_fwd_update_priority = 1; net->ipv4.sysctl_ip_dynaddr = 0; net->ipv4.sysctl_ip_early_demux = 1; net->ipv4.sysctl_udp_early_demux = 1; net->ipv4.sysctl_tcp_early_demux = 1; net->ipv4.sysctl_nexthop_compat_mode = 1; #ifdef CONFIG_SYSCTL net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; #endif /* Some igmp sysctl, whose values are always used */ net->ipv4.sysctl_igmp_max_memberships = 20; net->ipv4.sysctl_igmp_max_msf = 10; /* IGMP reports for link-local multicast groups are enabled by default */ net->ipv4.sysctl_igmp_llm_reports = 1; net->ipv4.sysctl_igmp_qrv = 2; net->ipv4.sysctl_fib_notify_on_flag_change = 0; return 0; } static __net_initdata struct pernet_operations af_inet_ops = { .init = inet_init_net, }; static int __init init_inet_pernet_ops(void) { return register_pernet_subsys(&af_inet_ops); } static int ipv4_proc_init(void); /* * IP protocol layer initialiser */ static struct packet_offload ip_packet_offload __read_mostly = { .type = cpu_to_be16(ETH_P_IP), .callbacks = { .gso_segment = inet_gso_segment, .gro_receive = inet_gro_receive, .gro_complete = inet_gro_complete, }, }; static const struct net_offload ipip_offload = { .callbacks = { .gso_segment = ipip_gso_segment, .gro_receive = ipip_gro_receive, .gro_complete = ipip_gro_complete, }, }; static int __init ipip_offload_init(void) { return inet_add_offload(&ipip_offload, IPPROTO_IPIP); } static int __init ipv4_offload_init(void) { /* * Add offloads */ if (udpv4_offload_init() < 0) pr_crit("%s: Cannot add UDP protocol offload\n", __func__); if (tcpv4_offload_init() < 0) pr_crit("%s: Cannot add TCP protocol offload\n", __func__); if (ipip_offload_init() < 0) pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); dev_add_offload(&ip_packet_offload); return 0; } fs_initcall(ipv4_offload_init); static struct packet_type ip_packet_type __read_mostly = { .type = cpu_to_be16(ETH_P_IP), .func = ip_rcv, .list_func = ip_list_rcv, }; static int __init inet_init(void) { struct inet_protosw *q; struct list_head *r; int rc; sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); raw_hashinfo_init(&raw_v4_hashinfo); rc = proto_register(&tcp_prot, 1); if (rc) goto out; rc = proto_register(&udp_prot, 1); if (rc) goto out_unregister_tcp_proto; rc = proto_register(&raw_prot, 1); if (rc) goto out_unregister_udp_proto; rc = proto_register(&ping_prot, 1); if (rc) goto out_unregister_raw_proto; /* * Tell SOCKET that we are alive... */ (void)sock_register(&inet_family_ops); #ifdef CONFIG_SYSCTL ip_static_sysctl_init(); #endif /* * Add all the base protocols. */ if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) pr_crit("%s: Cannot add ICMP protocol\n", __func__); if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) pr_crit("%s: Cannot add UDP protocol\n", __func__); if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) pr_crit("%s: Cannot add TCP protocol\n", __func__); #ifdef CONFIG_IP_MULTICAST if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) pr_crit("%s: Cannot add IGMP protocol\n", __func__); #endif /* Register the socket-side information for inet_create. */ for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) INIT_LIST_HEAD(r); for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) inet_register_protosw(q); /* * Set the ARP module up */ arp_init(); /* * Set the IP module up */ ip_init(); /* Initialise per-cpu ipv4 mibs */ if (init_ipv4_mibs()) panic("%s: Cannot init ipv4 mibs\n", __func__); /* Setup TCP slab cache for open requests. */ tcp_init(); /* Setup UDP memory threshold */ udp_init(); /* Add UDP-Lite (RFC 3828) */ udplite4_register(); raw_init(); ping_init(); /* * Set the ICMP layer up */ if (icmp_init() < 0) panic("Failed to create the ICMP control socket.\n"); /* * Initialise the multicast router */ #if defined(CONFIG_IP_MROUTE) if (ip_mr_init()) pr_crit("%s: Cannot init ipv4 mroute\n", __func__); #endif if (init_inet_pernet_ops()) pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); ipv4_proc_init(); ipfrag_init(); dev_add_pack(&ip_packet_type); ip_tunnel_core_init(); rc = 0; out: return rc; out_unregister_raw_proto: proto_unregister(&raw_prot); out_unregister_udp_proto: proto_unregister(&udp_prot); out_unregister_tcp_proto: proto_unregister(&tcp_prot); goto out; } fs_initcall(inet_init); /* ------------------------------------------------------------------------ */ #ifdef CONFIG_PROC_FS static int __init ipv4_proc_init(void) { int rc = 0; if (raw_proc_init()) goto out_raw; if (tcp4_proc_init()) goto out_tcp; if (udp4_proc_init()) goto out_udp; if (ping_proc_init()) goto out_ping; if (ip_misc_proc_init()) goto out_misc; out: return rc; out_misc: ping_proc_exit(); out_ping: udp4_proc_exit(); out_udp: tcp4_proc_exit(); out_tcp: raw_proc_exit(); out_raw: rc = -ENOMEM; goto out; } #else /* CONFIG_PROC_FS */ static int __init ipv4_proc_init(void) { return 0; } #endif /* CONFIG_PROC_FS */