// SPDX-License-Identifier: GPL-2.0 #include <linux/ceph/ceph_debug.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/ceph/libceph.h> #include <linux/ceph/osdmap.h> #include <linux/ceph/decode.h> #include <linux/crush/hash.h> #include <linux/crush/mapper.h> char *ceph_osdmap_state_str(char *str, int len, u32 state) { if (!len) return str; if ((state & CEPH_OSD_EXISTS) && (state & CEPH_OSD_UP)) snprintf(str, len, "exists, up"); else if (state & CEPH_OSD_EXISTS) snprintf(str, len, "exists"); else if (state & CEPH_OSD_UP) snprintf(str, len, "up"); else snprintf(str, len, "doesn't exist"); return str; } /* maps */ static int calc_bits_of(unsigned int t) { int b = 0; while (t) { t = t >> 1; b++; } return b; } /* * the foo_mask is the smallest value 2^n-1 that is >= foo. */ static void calc_pg_masks(struct ceph_pg_pool_info *pi) { pi->pg_num_mask = (1 << calc_bits_of(pi->pg_num-1)) - 1; pi->pgp_num_mask = (1 << calc_bits_of(pi->pgp_num-1)) - 1; } /* * decode crush map */ static int crush_decode_uniform_bucket(void **p, void *end, struct crush_bucket_uniform *b) { dout("crush_decode_uniform_bucket %p to %p\n", *p, end); ceph_decode_need(p, end, (1+b->h.size) * sizeof(u32), bad); b->item_weight = ceph_decode_32(p); return 0; bad: return -EINVAL; } static int crush_decode_list_bucket(void **p, void *end, struct crush_bucket_list *b) { int j; dout("crush_decode_list_bucket %p to %p\n", *p, end); b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS); if (b->item_weights == NULL) return -ENOMEM; b->sum_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS); if (b->sum_weights == NULL) return -ENOMEM; ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad); for (j = 0; j < b->h.size; j++) { b->item_weights[j] = ceph_decode_32(p); b->sum_weights[j] = ceph_decode_32(p); } return 0; bad: return -EINVAL; } static int crush_decode_tree_bucket(void **p, void *end, struct crush_bucket_tree *b) { int j; dout("crush_decode_tree_bucket %p to %p\n", *p, end); ceph_decode_8_safe(p, end, b->num_nodes, bad); b->node_weights = kcalloc(b->num_nodes, sizeof(u32), GFP_NOFS); if (b->node_weights == NULL) return -ENOMEM; ceph_decode_need(p, end, b->num_nodes * sizeof(u32), bad); for (j = 0; j < b->num_nodes; j++) b->node_weights[j] = ceph_decode_32(p); return 0; bad: return -EINVAL; } static int crush_decode_straw_bucket(void **p, void *end, struct crush_bucket_straw *b) { int j; dout("crush_decode_straw_bucket %p to %p\n", *p, end); b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS); if (b->item_weights == NULL) return -ENOMEM; b->straws = kcalloc(b->h.size, sizeof(u32), GFP_NOFS); if (b->straws == NULL) return -ENOMEM; ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad); for (j = 0; j < b->h.size; j++) { b->item_weights[j] = ceph_decode_32(p); b->straws[j] = ceph_decode_32(p); } return 0; bad: return -EINVAL; } static int crush_decode_straw2_bucket(void **p, void *end, struct crush_bucket_straw2 *b) { int j; dout("crush_decode_straw2_bucket %p to %p\n", *p, end); b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS); if (b->item_weights == NULL) return -ENOMEM; ceph_decode_need(p, end, b->h.size * sizeof(u32), bad); for (j = 0; j < b->h.size; j++) b->item_weights[j] = ceph_decode_32(p); return 0; bad: return -EINVAL; } struct crush_name_node { struct rb_node cn_node; int cn_id; char cn_name[]; }; static struct crush_name_node *alloc_crush_name(size_t name_len) { struct crush_name_node *cn; cn = kmalloc(sizeof(*cn) + name_len + 1, GFP_NOIO); if (!cn) return NULL; RB_CLEAR_NODE(&cn->cn_node); return cn; } static void free_crush_name(struct crush_name_node *cn) { WARN_ON(!RB_EMPTY_NODE(&cn->cn_node)); kfree(cn); } DEFINE_RB_FUNCS(crush_name, struct crush_name_node, cn_id, cn_node) static int decode_crush_names(void **p, void *end, struct rb_root *root) { u32 n; ceph_decode_32_safe(p, end, n, e_inval); while (n--) { struct crush_name_node *cn; int id; u32 name_len; ceph_decode_32_safe(p, end, id, e_inval); ceph_decode_32_safe(p, end, name_len, e_inval); ceph_decode_need(p, end, name_len, e_inval); cn = alloc_crush_name(name_len); if (!cn) return -ENOMEM; cn->cn_id = id; memcpy(cn->cn_name, *p, name_len); cn->cn_name[name_len] = '\0'; *p += name_len; if (!__insert_crush_name(root, cn)) { free_crush_name(cn); return -EEXIST; } } return 0; e_inval: return -EINVAL; } void clear_crush_names(struct rb_root *root) { while (!RB_EMPTY_ROOT(root)) { struct crush_name_node *cn = rb_entry(rb_first(root), struct crush_name_node, cn_node); erase_crush_name(root, cn); free_crush_name(cn); } } static struct crush_choose_arg_map *alloc_choose_arg_map(void) { struct crush_choose_arg_map *arg_map; arg_map = kzalloc(sizeof(*arg_map), GFP_NOIO); if (!arg_map) return NULL; RB_CLEAR_NODE(&arg_map->node); return arg_map; } static void free_choose_arg_map(struct crush_choose_arg_map *arg_map) { if (arg_map) { int i, j; WARN_ON(!RB_EMPTY_NODE(&arg_map->node)); for (i = 0; i < arg_map->size; i++) { struct crush_choose_arg *arg = &arg_map->args[i]; for (j = 0; j < arg->weight_set_size; j++) kfree(arg->weight_set[j].weights); kfree(arg->weight_set); kfree(arg->ids); } kfree(arg_map->args); kfree(arg_map); } } DEFINE_RB_FUNCS(choose_arg_map, struct crush_choose_arg_map, choose_args_index, node); void clear_choose_args(struct crush_map *c) { while (!RB_EMPTY_ROOT(&c->choose_args)) { struct crush_choose_arg_map *arg_map = rb_entry(rb_first(&c->choose_args), struct crush_choose_arg_map, node); erase_choose_arg_map(&c->choose_args, arg_map); free_choose_arg_map(arg_map); } } static u32 *decode_array_32_alloc(void **p, void *end, u32 *plen) { u32 *a = NULL; u32 len; int ret; ceph_decode_32_safe(p, end, len, e_inval); if (len) { u32 i; a = kmalloc_array(len, sizeof(u32), GFP_NOIO); if (!a) { ret = -ENOMEM; goto fail; } ceph_decode_need(p, end, len * sizeof(u32), e_inval); for (i = 0; i < len; i++) a[i] = ceph_decode_32(p); } *plen = len; return a; e_inval: ret = -EINVAL; fail: kfree(a); return ERR_PTR(ret); } /* * Assumes @arg is zero-initialized. */ static int decode_choose_arg(void **p, void *end, struct crush_choose_arg *arg) { int ret; ceph_decode_32_safe(p, end, arg->weight_set_size, e_inval); if (arg->weight_set_size) { u32 i; arg->weight_set = kmalloc_array(arg->weight_set_size, sizeof(*arg->weight_set), GFP_NOIO); if (!arg->weight_set) return -ENOMEM; for (i = 0; i < arg->weight_set_size; i++) { struct crush_weight_set *w = &arg->weight_set[i]; w->weights = decode_array_32_alloc(p, end, &w->size); if (IS_ERR(w->weights)) { ret = PTR_ERR(w->weights); w->weights = NULL; return ret; } } } arg->ids = decode_array_32_alloc(p, end, &arg->ids_size); if (IS_ERR(arg->ids)) { ret = PTR_ERR(arg->ids); arg->ids = NULL; return ret; } return 0; e_inval: return -EINVAL; } static int decode_choose_args(void **p, void *end, struct crush_map *c) { struct crush_choose_arg_map *arg_map = NULL; u32 num_choose_arg_maps, num_buckets; int ret; ceph_decode_32_safe(p, end, num_choose_arg_maps, e_inval); while (num_choose_arg_maps--) { arg_map = alloc_choose_arg_map(); if (!arg_map) { ret = -ENOMEM; goto fail; } ceph_decode_64_safe(p, end, arg_map->choose_args_index, e_inval); arg_map->size = c->max_buckets; arg_map->args = kcalloc(arg_map->size, sizeof(*arg_map->args), GFP_NOIO); if (!arg_map->args) { ret = -ENOMEM; goto fail; } ceph_decode_32_safe(p, end, num_buckets, e_inval); while (num_buckets--) { struct crush_choose_arg *arg; u32 bucket_index; ceph_decode_32_safe(p, end, bucket_index, e_inval); if (bucket_index >= arg_map->size) goto e_inval; arg = &arg_map->args[bucket_index]; ret = decode_choose_arg(p, end, arg); if (ret) goto fail; if (arg->ids_size && arg->ids_size != c->buckets[bucket_index]->size) goto e_inval; } insert_choose_arg_map(&c->choose_args, arg_map); } return 0; e_inval: ret = -EINVAL; fail: free_choose_arg_map(arg_map); return ret; } static void crush_finalize(struct crush_map *c) { __s32 b; /* Space for the array of pointers to per-bucket workspace */ c->working_size = sizeof(struct crush_work) + c->max_buckets * sizeof(struct crush_work_bucket *); for (b = 0; b < c->max_buckets; b++) { if (!c->buckets[b]) continue; switch (c->buckets[b]->alg) { default: /* * The base case, permutation variables and * the pointer to the permutation array. */ c->working_size += sizeof(struct crush_work_bucket); break; } /* Every bucket has a permutation array. */ c->working_size += c->buckets[b]->size * sizeof(__u32); } } static struct crush_map *crush_decode(void *pbyval, void *end) { struct crush_map *c; int err; int i, j; void **p = &pbyval; void *start = pbyval; u32 magic; dout("crush_decode %p to %p len %d\n", *p, end, (int)(end - *p)); c = kzalloc(sizeof(*c), GFP_NOFS); if (c == NULL) return ERR_PTR(-ENOMEM); c->type_names = RB_ROOT; c->names = RB_ROOT; c->choose_args = RB_ROOT; /* set tunables to default values */ c->choose_local_tries = 2; c->choose_local_fallback_tries = 5; c->choose_total_tries = 19; c->chooseleaf_descend_once = 0; ceph_decode_need(p, end, 4*sizeof(u32), bad); magic = ceph_decode_32(p); if (magic != CRUSH_MAGIC) { pr_err("crush_decode magic %x != current %x\n", (unsigned int)magic, (unsigned int)CRUSH_MAGIC); goto bad; } c->max_buckets = ceph_decode_32(p); c->max_rules = ceph_decode_32(p); c->max_devices = ceph_decode_32(p); c->buckets = kcalloc(c->max_buckets, sizeof(*c->buckets), GFP_NOFS); if (c->buckets == NULL) goto badmem; c->rules = kcalloc(c->max_rules, sizeof(*c->rules), GFP_NOFS); if (c->rules == NULL) goto badmem; /* buckets */ for (i = 0; i < c->max_buckets; i++) { int size = 0; u32 alg; struct crush_bucket *b; ceph_decode_32_safe(p, end, alg, bad); if (alg == 0) { c->buckets[i] = NULL; continue; } dout("crush_decode bucket %d off %x %p to %p\n", i, (int)(*p-start), *p, end); switch (alg) { case CRUSH_BUCKET_UNIFORM: size = sizeof(struct crush_bucket_uniform); break; case CRUSH_BUCKET_LIST: size = sizeof(struct crush_bucket_list); break; case CRUSH_BUCKET_TREE: size = sizeof(struct crush_bucket_tree); break; case CRUSH_BUCKET_STRAW: size = sizeof(struct crush_bucket_straw); break; case CRUSH_BUCKET_STRAW2: size = sizeof(struct crush_bucket_straw2); break; default: goto bad; } BUG_ON(size == 0); b = c->buckets[i] = kzalloc(size, GFP_NOFS); if (b == NULL) goto badmem; ceph_decode_need(p, end, 4*sizeof(u32), bad); b->id = ceph_decode_32(p); b->type = ceph_decode_16(p); b->alg = ceph_decode_8(p); b->hash = ceph_decode_8(p); b->weight = ceph_decode_32(p); b->size = ceph_decode_32(p); dout("crush_decode bucket size %d off %x %p to %p\n", b->size, (int)(*p-start), *p, end); b->items = kcalloc(b->size, sizeof(__s32), GFP_NOFS); if (b->items == NULL) goto badmem; ceph_decode_need(p, end, b->size*sizeof(u32), bad); for (j = 0; j < b->size; j++) b->items[j] = ceph_decode_32(p); switch (b->alg) { case CRUSH_BUCKET_UNIFORM: err = crush_decode_uniform_bucket(p, end, (struct crush_bucket_uniform *)b); if (err < 0) goto fail; break; case CRUSH_BUCKET_LIST: err = crush_decode_list_bucket(p, end, (struct crush_bucket_list *)b); if (err < 0) goto fail; break; case CRUSH_BUCKET_TREE: err = crush_decode_tree_bucket(p, end, (struct crush_bucket_tree *)b); if (err < 0) goto fail; break; case CRUSH_BUCKET_STRAW: err = crush_decode_straw_bucket(p, end, (struct crush_bucket_straw *)b); if (err < 0) goto fail; break; case CRUSH_BUCKET_STRAW2: err = crush_decode_straw2_bucket(p, end, (struct crush_bucket_straw2 *)b); if (err < 0) goto fail; break; } } /* rules */ dout("rule vec is %p\n", c->rules); for (i = 0; i < c->max_rules; i++) { u32 yes; struct crush_rule *r; ceph_decode_32_safe(p, end, yes, bad); if (!yes) { dout("crush_decode NO rule %d off %x %p to %p\n", i, (int)(*p-start), *p, end); c->rules[i] = NULL; continue; } dout("crush_decode rule %d off %x %p to %p\n", i, (int)(*p-start), *p, end); /* len */ ceph_decode_32_safe(p, end, yes, bad); #if BITS_PER_LONG == 32 if (yes > (ULONG_MAX - sizeof(*r)) / sizeof(struct crush_rule_step)) goto bad; #endif r = kmalloc(struct_size(r, steps, yes), GFP_NOFS); c->rules[i] = r; if (r == NULL) goto badmem; dout(" rule %d is at %p\n", i, r); r->len = yes; ceph_decode_copy_safe(p, end, &r->mask, 4, bad); /* 4 u8's */ ceph_decode_need(p, end, r->len*3*sizeof(u32), bad); for (j = 0; j < r->len; j++) { r->steps[j].op = ceph_decode_32(p); r->steps[j].arg1 = ceph_decode_32(p); r->steps[j].arg2 = ceph_decode_32(p); } } err = decode_crush_names(p, end, &c->type_names); if (err) goto fail; err = decode_crush_names(p, end, &c->names); if (err) goto fail; ceph_decode_skip_map(p, end, 32, string, bad); /* rule_name_map */ /* tunables */ ceph_decode_need(p, end, 3*sizeof(u32), done); c->choose_local_tries = ceph_decode_32(p); c->choose_local_fallback_tries = ceph_decode_32(p); c->choose_total_tries = ceph_decode_32(p); dout("crush decode tunable choose_local_tries = %d\n", c->choose_local_tries); dout("crush decode tunable choose_local_fallback_tries = %d\n", c->choose_local_fallback_tries); dout("crush decode tunable choose_total_tries = %d\n", c->choose_total_tries); ceph_decode_need(p, end, sizeof(u32), done); c->chooseleaf_descend_once = ceph_decode_32(p); dout("crush decode tunable chooseleaf_descend_once = %d\n", c->chooseleaf_descend_once); ceph_decode_need(p, end, sizeof(u8), done); c->chooseleaf_vary_r = ceph_decode_8(p); dout("crush decode tunable chooseleaf_vary_r = %d\n", c->chooseleaf_vary_r); /* skip straw_calc_version, allowed_bucket_algs */ ceph_decode_need(p, end, sizeof(u8) + sizeof(u32), done); *p += sizeof(u8) + sizeof(u32); ceph_decode_need(p, end, sizeof(u8), done); c->chooseleaf_stable = ceph_decode_8(p); dout("crush decode tunable chooseleaf_stable = %d\n", c->chooseleaf_stable); if (*p != end) { /* class_map */ ceph_decode_skip_map(p, end, 32, 32, bad); /* class_name */ ceph_decode_skip_map(p, end, 32, string, bad); /* class_bucket */ ceph_decode_skip_map_of_map(p, end, 32, 32, 32, bad); } if (*p != end) { err = decode_choose_args(p, end, c); if (err) goto fail; } done: crush_finalize(c); dout("crush_decode success\n"); return c; badmem: err = -ENOMEM; fail: dout("crush_decode fail %d\n", err); crush_destroy(c); return ERR_PTR(err); bad: err = -EINVAL; goto fail; } int ceph_pg_compare(const struct ceph_pg *lhs, const struct ceph_pg *rhs) { if (lhs->pool < rhs->pool) return -1; if (lhs->pool > rhs->pool) return 1; if (lhs->seed < rhs->seed) return -1; if (lhs->seed > rhs->seed) return 1; return 0; } int ceph_spg_compare(const struct ceph_spg *lhs, const struct ceph_spg *rhs) { int ret; ret = ceph_pg_compare(&lhs->pgid, &rhs->pgid); if (ret) return ret; if (lhs->shard < rhs->shard) return -1; if (lhs->shard > rhs->shard) return 1; return 0; } static struct ceph_pg_mapping *alloc_pg_mapping(size_t payload_len) { struct ceph_pg_mapping *pg; pg = kmalloc(sizeof(*pg) + payload_len, GFP_NOIO); if (!pg) return NULL; RB_CLEAR_NODE(&pg->node); return pg; } static void free_pg_mapping(struct ceph_pg_mapping *pg) { WARN_ON(!RB_EMPTY_NODE(&pg->node)); kfree(pg); } /* * rbtree of pg_mapping for handling pg_temp (explicit mapping of pgid * to a set of osds) and primary_temp (explicit primary setting) */ DEFINE_RB_FUNCS2(pg_mapping, struct ceph_pg_mapping, pgid, ceph_pg_compare, RB_BYPTR, const struct ceph_pg *, node) /* * rbtree of pg pool info */ DEFINE_RB_FUNCS(pg_pool, struct ceph_pg_pool_info, id, node) struct ceph_pg_pool_info *ceph_pg_pool_by_id(struct ceph_osdmap *map, u64 id) { return lookup_pg_pool(&map->pg_pools, id); } const char *ceph_pg_pool_name_by_id(struct ceph_osdmap *map, u64 id) { struct ceph_pg_pool_info *pi; if (id == CEPH_NOPOOL) return NULL; if (WARN_ON_ONCE(id > (u64) INT_MAX)) return NULL; pi = lookup_pg_pool(&map->pg_pools, id); return pi ? pi->name : NULL; } EXPORT_SYMBOL(ceph_pg_pool_name_by_id); int ceph_pg_poolid_by_name(struct ceph_osdmap *map, const char *name) { struct rb_node *rbp; for (rbp = rb_first(&map->pg_pools); rbp; rbp = rb_next(rbp)) { struct ceph_pg_pool_info *pi = rb_entry(rbp, struct ceph_pg_pool_info, node); if (pi->name && strcmp(pi->name, name) == 0) return pi->id; } return -ENOENT; } EXPORT_SYMBOL(ceph_pg_poolid_by_name); u64 ceph_pg_pool_flags(struct ceph_osdmap *map, u64 id) { struct ceph_pg_pool_info *pi; pi = lookup_pg_pool(&map->pg_pools, id); return pi ? pi->flags : 0; } EXPORT_SYMBOL(ceph_pg_pool_flags); static void __remove_pg_pool(struct rb_root *root, struct ceph_pg_pool_info *pi) { erase_pg_pool(root, pi); kfree(pi->name); kfree(pi); } static int decode_pool(void **p, void *end, struct ceph_pg_pool_info *pi) { u8 ev, cv; unsigned len, num; void *pool_end; ceph_decode_need(p, end, 2 + 4, bad); ev = ceph_decode_8(p); /* encoding version */ cv = ceph_decode_8(p); /* compat version */ if (ev < 5) { pr_warn("got v %d < 5 cv %d of ceph_pg_pool\n", ev, cv); return -EINVAL; } if (cv > 9) { pr_warn("got v %d cv %d > 9 of ceph_pg_pool\n", ev, cv); return -EINVAL; } len = ceph_decode_32(p); ceph_decode_need(p, end, len, bad); pool_end = *p + len; pi->type = ceph_decode_8(p); pi->size = ceph_decode_8(p); pi->crush_ruleset = ceph_decode_8(p); pi->object_hash = ceph_decode_8(p); pi->pg_num = ceph_decode_32(p); pi->pgp_num = ceph_decode_32(p); *p += 4 + 4; /* skip lpg* */ *p += 4; /* skip last_change */ *p += 8 + 4; /* skip snap_seq, snap_epoch */ /* skip snaps */ num = ceph_decode_32(p); while (num--) { *p += 8; /* snapid key */ *p += 1 + 1; /* versions */ len = ceph_decode_32(p); *p += len; } /* skip removed_snaps */ num = ceph_decode_32(p); *p += num * (8 + 8); *p += 8; /* skip auid */ pi->flags = ceph_decode_64(p); *p += 4; /* skip crash_replay_interval */ if (ev >= 7) pi->min_size = ceph_decode_8(p); else pi->min_size = pi->size - pi->size / 2; if (ev >= 8) *p += 8 + 8; /* skip quota_max_* */ if (ev >= 9) { /* skip tiers */ num = ceph_decode_32(p); *p += num * 8; *p += 8; /* skip tier_of */ *p += 1; /* skip cache_mode */ pi->read_tier = ceph_decode_64(p); pi->write_tier = ceph_decode_64(p); } else { pi->read_tier = -1; pi->write_tier = -1; } if (ev >= 10) { /* skip properties */ num = ceph_decode_32(p); while (num--) { len = ceph_decode_32(p); *p += len; /* key */ len = ceph_decode_32(p); *p += len; /* val */ } } if (ev >= 11) { /* skip hit_set_params */ *p += 1 + 1; /* versions */ len = ceph_decode_32(p); *p += len; *p += 4; /* skip hit_set_period */ *p += 4; /* skip hit_set_count */ } if (ev >= 12) *p += 4; /* skip stripe_width */ if (ev >= 13) { *p += 8; /* skip target_max_bytes */ *p += 8; /* skip target_max_objects */ *p += 4; /* skip cache_target_dirty_ratio_micro */ *p += 4; /* skip cache_target_full_ratio_micro */ *p += 4; /* skip cache_min_flush_age */ *p += 4; /* skip cache_min_evict_age */ } if (ev >= 14) { /* skip erasure_code_profile */ len = ceph_decode_32(p); *p += len; } /* * last_force_op_resend_preluminous, will be overridden if the * map was encoded with RESEND_ON_SPLIT */ if (ev >= 15) pi->last_force_request_resend = ceph_decode_32(p); else pi->last_force_request_resend = 0; if (ev >= 16) *p += 4; /* skip min_read_recency_for_promote */ if (ev >= 17) *p += 8; /* skip expected_num_objects */ if (ev >= 19) *p += 4; /* skip cache_target_dirty_high_ratio_micro */ if (ev >= 20) *p += 4; /* skip min_write_recency_for_promote */ if (ev >= 21) *p += 1; /* skip use_gmt_hitset */ if (ev >= 22) *p += 1; /* skip fast_read */ if (ev >= 23) { *p += 4; /* skip hit_set_grade_decay_rate */ *p += 4; /* skip hit_set_search_last_n */ } if (ev >= 24) { /* skip opts */ *p += 1 + 1; /* versions */ len = ceph_decode_32(p); *p += len; } if (ev >= 25) pi->last_force_request_resend = ceph_decode_32(p); /* ignore the rest */ *p = pool_end; calc_pg_masks(pi); return 0; bad: return -EINVAL; } static int decode_pool_names(void **p, void *end, struct ceph_osdmap *map) { struct ceph_pg_pool_info *pi; u32 num, len; u64 pool; ceph_decode_32_safe(p, end, num, bad); dout(" %d pool names\n", num); while (num--) { ceph_decode_64_safe(p, end, pool, bad); ceph_decode_32_safe(p, end, len, bad); dout(" pool %llu len %d\n", pool, len); ceph_decode_need(p, end, len, bad); pi = lookup_pg_pool(&map->pg_pools, pool); if (pi) { char *name = kstrndup(*p, len, GFP_NOFS); if (!name) return -ENOMEM; kfree(pi->name); pi->name = name; dout(" name is %s\n", pi->name); } *p += len; } return 0; bad: return -EINVAL; } /* * CRUSH workspaces * * workspace_manager framework borrowed from fs/btrfs/compression.c. * Two simplifications: there is only one type of workspace and there * is always at least one workspace. */ static struct crush_work *alloc_workspace(const struct crush_map *c) { struct crush_work *work; size_t work_size; WARN_ON(!c->working_size); work_size = crush_work_size(c, CEPH_PG_MAX_SIZE); dout("%s work_size %zu bytes\n", __func__, work_size); work = kvmalloc(work_size, GFP_NOIO); if (!work) return NULL; INIT_LIST_HEAD(&work->item); crush_init_workspace(c, work); return work; } static void free_workspace(struct crush_work *work) { WARN_ON(!list_empty(&work->item)); kvfree(work); } static void init_workspace_manager(struct workspace_manager *wsm) { INIT_LIST_HEAD(&wsm->idle_ws); spin_lock_init(&wsm->ws_lock); atomic_set(&wsm->total_ws, 0); wsm->free_ws = 0; init_waitqueue_head(&wsm->ws_wait); } static void add_initial_workspace(struct workspace_manager *wsm, struct crush_work *work) { WARN_ON(!list_empty(&wsm->idle_ws)); list_add(&work->item, &wsm->idle_ws); atomic_set(&wsm->total_ws, 1); wsm->free_ws = 1; } static void cleanup_workspace_manager(struct workspace_manager *wsm) { struct crush_work *work; while (!list_empty(&wsm->idle_ws)) { work = list_first_entry(&wsm->idle_ws, struct crush_work, item); list_del_init(&work->item); free_workspace(work); } atomic_set(&wsm->total_ws, 0); wsm->free_ws = 0; } /* * Finds an available workspace or allocates a new one. If it's not * possible to allocate a new one, waits until there is one. */ static struct crush_work *get_workspace(struct workspace_manager *wsm, const struct crush_map *c) { struct crush_work *work; int cpus = num_online_cpus(); again: spin_lock(&wsm->ws_lock); if (!list_empty(&wsm->idle_ws)) { work = list_first_entry(&wsm->idle_ws, struct crush_work, item); list_del_init(&work->item); wsm->free_ws--; spin_unlock(&wsm->ws_lock); return work; } if (atomic_read(&wsm->total_ws) > cpus) { DEFINE_WAIT(wait); spin_unlock(&wsm->ws_lock); prepare_to_wait(&wsm->ws_wait, &wait, TASK_UNINTERRUPTIBLE); if (atomic_read(&wsm->total_ws) > cpus && !wsm->free_ws) schedule(); finish_wait(&wsm->ws_wait, &wait); goto again; } atomic_inc(&wsm->total_ws); spin_unlock(&wsm->ws_lock); work = alloc_workspace(c); if (!work) { atomic_dec(&wsm->total_ws); wake_up(&wsm->ws_wait); /* * Do not return the error but go back to waiting. We * have the initial workspace and the CRUSH computation * time is bounded so we will get it eventually. */ WARN_ON(atomic_read(&wsm->total_ws) < 1); goto again; } return work; } /* * Puts a workspace back on the list or frees it if we have enough * idle ones sitting around. */ static void put_workspace(struct workspace_manager *wsm, struct crush_work *work) { spin_lock(&wsm->ws_lock); if (wsm->free_ws <= num_online_cpus()) { list_add(&work->item, &wsm->idle_ws); wsm->free_ws++; spin_unlock(&wsm->ws_lock); goto wake; } spin_unlock(&wsm->ws_lock); free_workspace(work); atomic_dec(&wsm->total_ws); wake: if (wq_has_sleeper(&wsm->ws_wait)) wake_up(&wsm->ws_wait); } /* * osd map */ struct ceph_osdmap *ceph_osdmap_alloc(void) { struct ceph_osdmap *map; map = kzalloc(sizeof(*map), GFP_NOIO); if (!map) return NULL; map->pg_pools = RB_ROOT; map->pool_max = -1; map->pg_temp = RB_ROOT; map->primary_temp = RB_ROOT; map->pg_upmap = RB_ROOT; map->pg_upmap_items = RB_ROOT; init_workspace_manager(&map->crush_wsm); return map; } void ceph_osdmap_destroy(struct ceph_osdmap *map) { dout("osdmap_destroy %p\n", map); if (map->crush) crush_destroy(map->crush); cleanup_workspace_manager(&map->crush_wsm); while (!RB_EMPTY_ROOT(&map->pg_temp)) { struct ceph_pg_mapping *pg = rb_entry(rb_first(&map->pg_temp), struct ceph_pg_mapping, node); erase_pg_mapping(&map->pg_temp, pg); free_pg_mapping(pg); } while (!RB_EMPTY_ROOT(&map->primary_temp)) { struct ceph_pg_mapping *pg = rb_entry(rb_first(&map->primary_temp), struct ceph_pg_mapping, node); erase_pg_mapping(&map->primary_temp, pg); free_pg_mapping(pg); } while (!RB_EMPTY_ROOT(&map->pg_upmap)) { struct ceph_pg_mapping *pg = rb_entry(rb_first(&map->pg_upmap), struct ceph_pg_mapping, node); rb_erase(&pg->node, &map->pg_upmap); kfree(pg); } while (!RB_EMPTY_ROOT(&map->pg_upmap_items)) { struct ceph_pg_mapping *pg = rb_entry(rb_first(&map->pg_upmap_items), struct ceph_pg_mapping, node); rb_erase(&pg->node, &map->pg_upmap_items); kfree(pg); } while (!RB_EMPTY_ROOT(&map->pg_pools)) { struct ceph_pg_pool_info *pi = rb_entry(rb_first(&map->pg_pools), struct ceph_pg_pool_info, node); __remove_pg_pool(&map->pg_pools, pi); } kvfree(map->osd_state); kvfree(map->osd_weight); kvfree(map->osd_addr); kvfree(map->osd_primary_affinity); kfree(map); } /* * Adjust max_osd value, (re)allocate arrays. * * The new elements are properly initialized. */ static int osdmap_set_max_osd(struct ceph_osdmap *map, u32 max) { u32 *state; u32 *weight; struct ceph_entity_addr *addr; u32 to_copy; int i; dout("%s old %u new %u\n", __func__, map->max_osd, max); if (max == map->max_osd) return 0; state = kvmalloc(array_size(max, sizeof(*state)), GFP_NOFS); weight = kvmalloc(array_size(max, sizeof(*weight)), GFP_NOFS); addr = kvmalloc(array_size(max, sizeof(*addr)), GFP_NOFS); if (!state || !weight || !addr) { kvfree(state); kvfree(weight); kvfree(addr); return -ENOMEM; } to_copy = min(map->max_osd, max); if (map->osd_state) { memcpy(state, map->osd_state, to_copy * sizeof(*state)); memcpy(weight, map->osd_weight, to_copy * sizeof(*weight)); memcpy(addr, map->osd_addr, to_copy * sizeof(*addr)); kvfree(map->osd_state); kvfree(map->osd_weight); kvfree(map->osd_addr); } map->osd_state = state; map->osd_weight = weight; map->osd_addr = addr; for (i = map->max_osd; i < max; i++) { map->osd_state[i] = 0; map->osd_weight[i] = CEPH_OSD_OUT; memset(map->osd_addr + i, 0, sizeof(*map->osd_addr)); } if (map->osd_primary_affinity) { u32 *affinity; affinity = kvmalloc(array_size(max, sizeof(*affinity)), GFP_NOFS); if (!affinity) return -ENOMEM; memcpy(affinity, map->osd_primary_affinity, to_copy * sizeof(*affinity)); kvfree(map->osd_primary_affinity); map->osd_primary_affinity = affinity; for (i = map->max_osd; i < max; i++) map->osd_primary_affinity[i] = CEPH_OSD_DEFAULT_PRIMARY_AFFINITY; } map->max_osd = max; return 0; } static int osdmap_set_crush(struct ceph_osdmap *map, struct crush_map *crush) { struct crush_work *work; if (IS_ERR(crush)) return PTR_ERR(crush); work = alloc_workspace(crush); if (!work) { crush_destroy(crush); return -ENOMEM; } if (map->crush) crush_destroy(map->crush); cleanup_workspace_manager(&map->crush_wsm); map->crush = crush; add_initial_workspace(&map->crush_wsm, work); return 0; } #define OSDMAP_WRAPPER_COMPAT_VER 7 #define OSDMAP_CLIENT_DATA_COMPAT_VER 1 /* * Return 0 or error. On success, *v is set to 0 for old (v6) osdmaps, * to struct_v of the client_data section for new (v7 and above) * osdmaps. */ static int get_osdmap_client_data_v(void **p, void *end, const char *prefix, u8 *v) { u8 struct_v; ceph_decode_8_safe(p, end, struct_v, e_inval); if (struct_v >= 7) { u8 struct_compat; ceph_decode_8_safe(p, end, struct_compat, e_inval); if (struct_compat > OSDMAP_WRAPPER_COMPAT_VER) { pr_warn("got v %d cv %d > %d of %s ceph_osdmap\n", struct_v, struct_compat, OSDMAP_WRAPPER_COMPAT_VER, prefix); return -EINVAL; } *p += 4; /* ignore wrapper struct_len */ ceph_decode_8_safe(p, end, struct_v, e_inval); ceph_decode_8_safe(p, end, struct_compat, e_inval); if (struct_compat > OSDMAP_CLIENT_DATA_COMPAT_VER) { pr_warn("got v %d cv %d > %d of %s ceph_osdmap client data\n", struct_v, struct_compat, OSDMAP_CLIENT_DATA_COMPAT_VER, prefix); return -EINVAL; } *p += 4; /* ignore client data struct_len */ } else { u16 version; *p -= 1; ceph_decode_16_safe(p, end, version, e_inval); if (version < 6) { pr_warn("got v %d < 6 of %s ceph_osdmap\n", version, prefix); return -EINVAL; } /* old osdmap encoding */ struct_v = 0; } *v = struct_v; return 0; e_inval: return -EINVAL; } static int __decode_pools(void **p, void *end, struct ceph_osdmap *map, bool incremental) { u32 n; ceph_decode_32_safe(p, end, n, e_inval); while (n--) { struct ceph_pg_pool_info *pi; u64 pool; int ret; ceph_decode_64_safe(p, end, pool, e_inval); pi = lookup_pg_pool(&map->pg_pools, pool); if (!incremental || !pi) { pi = kzalloc(sizeof(*pi), GFP_NOFS); if (!pi) return -ENOMEM; RB_CLEAR_NODE(&pi->node); pi->id = pool; if (!__insert_pg_pool(&map->pg_pools, pi)) { kfree(pi); return -EEXIST; } } ret = decode_pool(p, end, pi); if (ret) return ret; } return 0; e_inval: return -EINVAL; } static int decode_pools(void **p, void *end, struct ceph_osdmap *map) { return __decode_pools(p, end, map, false); } static int decode_new_pools(void **p, void *end, struct ceph_osdmap *map) { return __decode_pools(p, end, map, true); } typedef struct ceph_pg_mapping *(*decode_mapping_fn_t)(void **, void *, bool); static int decode_pg_mapping(void **p, void *end, struct rb_root *mapping_root, decode_mapping_fn_t fn, bool incremental) { u32 n; WARN_ON(!incremental && !fn); ceph_decode_32_safe(p, end, n, e_inval); while (n--) { struct ceph_pg_mapping *pg; struct ceph_pg pgid; int ret; ret = ceph_decode_pgid(p, end, &pgid); if (ret) return ret; pg = lookup_pg_mapping(mapping_root, &pgid); if (pg) { WARN_ON(!incremental); erase_pg_mapping(mapping_root, pg); free_pg_mapping(pg); } if (fn) { pg = fn(p, end, incremental); if (IS_ERR(pg)) return PTR_ERR(pg); if (pg) { pg->pgid = pgid; /* struct */ insert_pg_mapping(mapping_root, pg); } } } return 0; e_inval: return -EINVAL; } static struct ceph_pg_mapping *__decode_pg_temp(void **p, void *end, bool incremental) { struct ceph_pg_mapping *pg; u32 len, i; ceph_decode_32_safe(p, end, len, e_inval); if (len == 0 && incremental) return NULL; /* new_pg_temp: [] to remove */ if (len > (SIZE_MAX - sizeof(*pg)) / sizeof(u32)) return ERR_PTR(-EINVAL); ceph_decode_need(p, end, len * sizeof(u32), e_inval); pg = alloc_pg_mapping(len * sizeof(u32)); if (!pg) return ERR_PTR(-ENOMEM); pg->pg_temp.len = len; for (i = 0; i < len; i++) pg->pg_temp.osds[i] = ceph_decode_32(p); return pg; e_inval: return ERR_PTR(-EINVAL); } static int decode_pg_temp(void **p, void *end, struct ceph_osdmap *map) { return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp, false); } static int decode_new_pg_temp(void **p, void *end, struct ceph_osdmap *map) { return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp, true); } static struct ceph_pg_mapping *__decode_primary_temp(void **p, void *end, bool incremental) { struct ceph_pg_mapping *pg; u32 osd; ceph_decode_32_safe(p, end, osd, e_inval); if (osd == (u32)-1 && incremental) return NULL; /* new_primary_temp: -1 to remove */ pg = alloc_pg_mapping(0); if (!pg) return ERR_PTR(-ENOMEM); pg->primary_temp.osd = osd; return pg; e_inval: return ERR_PTR(-EINVAL); } static int decode_primary_temp(void **p, void *end, struct ceph_osdmap *map) { return decode_pg_mapping(p, end, &map->primary_temp, __decode_primary_temp, false); } static int decode_new_primary_temp(void **p, void *end, struct ceph_osdmap *map) { return decode_pg_mapping(p, end, &map->primary_temp, __decode_primary_temp, true); } u32 ceph_get_primary_affinity(struct ceph_osdmap *map, int osd) { BUG_ON(osd >= map->max_osd); if (!map->osd_primary_affinity) return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY; return map->osd_primary_affinity[osd]; } static int set_primary_affinity(struct ceph_osdmap *map, int osd, u32 aff) { BUG_ON(osd >= map->max_osd); if (!map->osd_primary_affinity) { int i; map->osd_primary_affinity = kvmalloc( array_size(map->max_osd, sizeof(*map->osd_primary_affinity)), GFP_NOFS); if (!map->osd_primary_affinity) return -ENOMEM; for (i = 0; i < map->max_osd; i++) map->osd_primary_affinity[i] = CEPH_OSD_DEFAULT_PRIMARY_AFFINITY; } map->osd_primary_affinity[osd] = aff; return 0; } static int decode_primary_affinity(void **p, void *end, struct ceph_osdmap *map) { u32 len, i; ceph_decode_32_safe(p, end, len, e_inval); if (len == 0) { kvfree(map->osd_primary_affinity); map->osd_primary_affinity = NULL; return 0; } if (len != map->max_osd) goto e_inval; ceph_decode_need(p, end, map->max_osd*sizeof(u32), e_inval); for (i = 0; i < map->max_osd; i++) { int ret; ret = set_primary_affinity(map, i, ceph_decode_32(p)); if (ret) return ret; } return 0; e_inval: return -EINVAL; } static int decode_new_primary_affinity(void **p, void *end, struct ceph_osdmap *map) { u32 n; ceph_decode_32_safe(p, end, n, e_inval); while (n--) { u32 osd, aff; int ret; ceph_decode_32_safe(p, end, osd, e_inval); ceph_decode_32_safe(p, end, aff, e_inval); ret = set_primary_affinity(map, osd, aff); if (ret) return ret; pr_info("osd%d primary-affinity 0x%x\n", osd, aff); } return 0; e_inval: return -EINVAL; } static struct ceph_pg_mapping *__decode_pg_upmap(void **p, void *end, bool __unused) { return __decode_pg_temp(p, end, false); } static int decode_pg_upmap(void **p, void *end, struct ceph_osdmap *map) { return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap, false); } static int decode_new_pg_upmap(void **p, void *end, struct ceph_osdmap *map) { return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap, true); } static int decode_old_pg_upmap(void **p, void *end, struct ceph_osdmap *map) { return decode_pg_mapping(p, end, &map->pg_upmap, NULL, true); } static struct ceph_pg_mapping *__decode_pg_upmap_items(void **p, void *end, bool __unused) { struct ceph_pg_mapping *pg; u32 len, i; ceph_decode_32_safe(p, end, len, e_inval); if (len > (SIZE_MAX - sizeof(*pg)) / (2 * sizeof(u32))) return ERR_PTR(-EINVAL); ceph_decode_need(p, end, 2 * len * sizeof(u32), e_inval); pg = alloc_pg_mapping(2 * len * sizeof(u32)); if (!pg) return ERR_PTR(-ENOMEM); pg->pg_upmap_items.len = len; for (i = 0; i < len; i++) { pg->pg_upmap_items.from_to[i][0] = ceph_decode_32(p); pg->pg_upmap_items.from_to[i][1] = ceph_decode_32(p); } return pg; e_inval: return ERR_PTR(-EINVAL); } static int decode_pg_upmap_items(void **p, void *end, struct ceph_osdmap *map) { return decode_pg_mapping(p, end, &map->pg_upmap_items, __decode_pg_upmap_items, false); } static int decode_new_pg_upmap_items(void **p, void *end, struct ceph_osdmap *map) { return decode_pg_mapping(p, end, &map->pg_upmap_items, __decode_pg_upmap_items, true); } static int decode_old_pg_upmap_items(void **p, void *end, struct ceph_osdmap *map) { return decode_pg_mapping(p, end, &map->pg_upmap_items, NULL, true); } /* * decode a full map. */ static int osdmap_decode(void **p, void *end, bool msgr2, struct ceph_osdmap *map) { u8 struct_v; u32 epoch = 0; void *start = *p; u32 max; u32 len, i; int err; dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p)); err = get_osdmap_client_data_v(p, end, "full", &struct_v); if (err) goto bad; /* fsid, epoch, created, modified */ ceph_decode_need(p, end, sizeof(map->fsid) + sizeof(u32) + sizeof(map->created) + sizeof(map->modified), e_inval); ceph_decode_copy(p, &map->fsid, sizeof(map->fsid)); epoch = map->epoch = ceph_decode_32(p); ceph_decode_copy(p, &map->created, sizeof(map->created)); ceph_decode_copy(p, &map->modified, sizeof(map->modified)); /* pools */ err = decode_pools(p, end, map); if (err) goto bad; /* pool_name */ err = decode_pool_names(p, end, map); if (err) goto bad; ceph_decode_32_safe(p, end, map->pool_max, e_inval); ceph_decode_32_safe(p, end, map->flags, e_inval); /* max_osd */ ceph_decode_32_safe(p, end, max, e_inval); /* (re)alloc osd arrays */ err = osdmap_set_max_osd(map, max); if (err) goto bad; /* osd_state, osd_weight, osd_addrs->client_addr */ ceph_decode_need(p, end, 3*sizeof(u32) + map->max_osd*(struct_v >= 5 ? sizeof(u32) : sizeof(u8)) + sizeof(*map->osd_weight), e_inval); if (ceph_decode_32(p) != map->max_osd) goto e_inval; if (struct_v >= 5) { for (i = 0; i < map->max_osd; i++) map->osd_state[i] = ceph_decode_32(p); } else { for (i = 0; i < map->max_osd; i++) map->osd_state[i] = ceph_decode_8(p); } if (ceph_decode_32(p) != map->max_osd) goto e_inval; for (i = 0; i < map->max_osd; i++) map->osd_weight[i] = ceph_decode_32(p); if (ceph_decode_32(p) != map->max_osd) goto e_inval; for (i = 0; i < map->max_osd; i++) { struct ceph_entity_addr *addr = &map->osd_addr[i]; if (struct_v >= 8) err = ceph_decode_entity_addrvec(p, end, msgr2, addr); else err = ceph_decode_entity_addr(p, end, addr); if (err) goto bad; dout("%s osd%d addr %s\n", __func__, i, ceph_pr_addr(addr)); } /* pg_temp */ err = decode_pg_temp(p, end, map); if (err) goto bad; /* primary_temp */ if (struct_v >= 1) { err = decode_primary_temp(p, end, map); if (err) goto bad; } /* primary_affinity */ if (struct_v >= 2) { err = decode_primary_affinity(p, end, map); if (err) goto bad; } else { WARN_ON(map->osd_primary_affinity); } /* crush */ ceph_decode_32_safe(p, end, len, e_inval); err = osdmap_set_crush(map, crush_decode(*p, min(*p + len, end))); if (err) goto bad; *p += len; if (struct_v >= 3) { /* erasure_code_profiles */ ceph_decode_skip_map_of_map(p, end, string, string, string, e_inval); } if (struct_v >= 4) { err = decode_pg_upmap(p, end, map); if (err) goto bad; err = decode_pg_upmap_items(p, end, map); if (err) goto bad; } else { WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap)); WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap_items)); } /* ignore the rest */ *p = end; dout("full osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd); return 0; e_inval: err = -EINVAL; bad: pr_err("corrupt full osdmap (%d) epoch %d off %d (%p of %p-%p)\n", err, epoch, (int)(*p - start), *p, start, end); print_hex_dump(KERN_DEBUG, "osdmap: ", DUMP_PREFIX_OFFSET, 16, 1, start, end - start, true); return err; } /* * Allocate and decode a full map. */ struct ceph_osdmap *ceph_osdmap_decode(void **p, void *end, bool msgr2) { struct ceph_osdmap *map; int ret; map = ceph_osdmap_alloc(); if (!map) return ERR_PTR(-ENOMEM); ret = osdmap_decode(p, end, msgr2, map); if (ret) { ceph_osdmap_destroy(map); return ERR_PTR(ret); } return map; } /* * Encoding order is (new_up_client, new_state, new_weight). Need to * apply in the (new_weight, new_state, new_up_client) order, because * an incremental map may look like e.g. * * new_up_client: { osd=6, addr=... } # set osd_state and addr * new_state: { osd=6, xorstate=EXISTS } # clear osd_state */ static int decode_new_up_state_weight(void **p, void *end, u8 struct_v, bool msgr2, struct ceph_osdmap *map) { void *new_up_client; void *new_state; void *new_weight_end; u32 len; int ret; int i; new_up_client = *p; ceph_decode_32_safe(p, end, len, e_inval); for (i = 0; i < len; ++i) { struct ceph_entity_addr addr; ceph_decode_skip_32(p, end, e_inval); if (struct_v >= 7) ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr); else ret = ceph_decode_entity_addr(p, end, &addr); if (ret) return ret; } new_state = *p; ceph_decode_32_safe(p, end, len, e_inval); len *= sizeof(u32) + (struct_v >= 5 ? sizeof(u32) : sizeof(u8)); ceph_decode_need(p, end, len, e_inval); *p += len; /* new_weight */ ceph_decode_32_safe(p, end, len, e_inval); while (len--) { s32 osd; u32 w; ceph_decode_need(p, end, 2*sizeof(u32), e_inval); osd = ceph_decode_32(p); w = ceph_decode_32(p); BUG_ON(osd >= map->max_osd); pr_info("osd%d weight 0x%x %s\n", osd, w, w == CEPH_OSD_IN ? "(in)" : (w == CEPH_OSD_OUT ? "(out)" : "")); map->osd_weight[osd] = w; /* * If we are marking in, set the EXISTS, and clear the * AUTOOUT and NEW bits. */ if (w) { map->osd_state[osd] |= CEPH_OSD_EXISTS; map->osd_state[osd] &= ~(CEPH_OSD_AUTOOUT | CEPH_OSD_NEW); } } new_weight_end = *p; /* new_state (up/down) */ *p = new_state; len = ceph_decode_32(p); while (len--) { s32 osd; u32 xorstate; osd = ceph_decode_32(p); if (struct_v >= 5) xorstate = ceph_decode_32(p); else xorstate = ceph_decode_8(p); if (xorstate == 0) xorstate = CEPH_OSD_UP; BUG_ON(osd >= map->max_osd); if ((map->osd_state[osd] & CEPH_OSD_UP) && (xorstate & CEPH_OSD_UP)) pr_info("osd%d down\n", osd); if ((map->osd_state[osd] & CEPH_OSD_EXISTS) && (xorstate & CEPH_OSD_EXISTS)) { pr_info("osd%d does not exist\n", osd); ret = set_primary_affinity(map, osd, CEPH_OSD_DEFAULT_PRIMARY_AFFINITY); if (ret) return ret; memset(map->osd_addr + osd, 0, sizeof(*map->osd_addr)); map->osd_state[osd] = 0; } else { map->osd_state[osd] ^= xorstate; } } /* new_up_client */ *p = new_up_client; len = ceph_decode_32(p); while (len--) { s32 osd; struct ceph_entity_addr addr; osd = ceph_decode_32(p); BUG_ON(osd >= map->max_osd); if (struct_v >= 7) ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr); else ret = ceph_decode_entity_addr(p, end, &addr); if (ret) return ret; dout("%s osd%d addr %s\n", __func__, osd, ceph_pr_addr(&addr)); pr_info("osd%d up\n", osd); map->osd_state[osd] |= CEPH_OSD_EXISTS | CEPH_OSD_UP; map->osd_addr[osd] = addr; } *p = new_weight_end; return 0; e_inval: return -EINVAL; } /* * decode and apply an incremental map update. */ struct ceph_osdmap *osdmap_apply_incremental(void **p, void *end, bool msgr2, struct ceph_osdmap *map) { struct ceph_fsid fsid; u32 epoch = 0; struct ceph_timespec modified; s32 len; u64 pool; __s64 new_pool_max; __s32 new_flags, max; void *start = *p; int err; u8 struct_v; dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p)); err = get_osdmap_client_data_v(p, end, "inc", &struct_v); if (err) goto bad; /* fsid, epoch, modified, new_pool_max, new_flags */ ceph_decode_need(p, end, sizeof(fsid) + sizeof(u32) + sizeof(modified) + sizeof(u64) + sizeof(u32), e_inval); ceph_decode_copy(p, &fsid, sizeof(fsid)); epoch = ceph_decode_32(p); BUG_ON(epoch != map->epoch+1); ceph_decode_copy(p, &modified, sizeof(modified)); new_pool_max = ceph_decode_64(p); new_flags = ceph_decode_32(p); /* full map? */ ceph_decode_32_safe(p, end, len, e_inval); if (len > 0) { dout("apply_incremental full map len %d, %p to %p\n", len, *p, end); return ceph_osdmap_decode(p, min(*p+len, end), msgr2); } /* new crush? */ ceph_decode_32_safe(p, end, len, e_inval); if (len > 0) { err = osdmap_set_crush(map, crush_decode(*p, min(*p + len, end))); if (err) goto bad; *p += len; } /* new flags? */ if (new_flags >= 0) map->flags = new_flags; if (new_pool_max >= 0) map->pool_max = new_pool_max; /* new max? */ ceph_decode_32_safe(p, end, max, e_inval); if (max >= 0) { err = osdmap_set_max_osd(map, max); if (err) goto bad; } map->epoch++; map->modified = modified; /* new_pools */ err = decode_new_pools(p, end, map); if (err) goto bad; /* new_pool_names */ err = decode_pool_names(p, end, map); if (err) goto bad; /* old_pool */ ceph_decode_32_safe(p, end, len, e_inval); while (len--) { struct ceph_pg_pool_info *pi; ceph_decode_64_safe(p, end, pool, e_inval); pi = lookup_pg_pool(&map->pg_pools, pool); if (pi) __remove_pg_pool(&map->pg_pools, pi); } /* new_up_client, new_state, new_weight */ err = decode_new_up_state_weight(p, end, struct_v, msgr2, map); if (err) goto bad; /* new_pg_temp */ err = decode_new_pg_temp(p, end, map); if (err) goto bad; /* new_primary_temp */ if (struct_v >= 1) { err = decode_new_primary_temp(p, end, map); if (err) goto bad; } /* new_primary_affinity */ if (struct_v >= 2) { err = decode_new_primary_affinity(p, end, map); if (err) goto bad; } if (struct_v >= 3) { /* new_erasure_code_profiles */ ceph_decode_skip_map_of_map(p, end, string, string, string, e_inval); /* old_erasure_code_profiles */ ceph_decode_skip_set(p, end, string, e_inval); } if (struct_v >= 4) { err = decode_new_pg_upmap(p, end, map); if (err) goto bad; err = decode_old_pg_upmap(p, end, map); if (err) goto bad; err = decode_new_pg_upmap_items(p, end, map); if (err) goto bad; err = decode_old_pg_upmap_items(p, end, map); if (err) goto bad; } /* ignore the rest */ *p = end; dout("inc osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd); return map; e_inval: err = -EINVAL; bad: pr_err("corrupt inc osdmap (%d) epoch %d off %d (%p of %p-%p)\n", err, epoch, (int)(*p - start), *p, start, end); print_hex_dump(KERN_DEBUG, "osdmap: ", DUMP_PREFIX_OFFSET, 16, 1, start, end - start, true); return ERR_PTR(err); } void ceph_oloc_copy(struct ceph_object_locator *dest, const struct ceph_object_locator *src) { ceph_oloc_destroy(dest); dest->pool = src->pool; if (src->pool_ns) dest->pool_ns = ceph_get_string(src->pool_ns); else dest->pool_ns = NULL; } EXPORT_SYMBOL(ceph_oloc_copy); void ceph_oloc_destroy(struct ceph_object_locator *oloc) { ceph_put_string(oloc->pool_ns); } EXPORT_SYMBOL(ceph_oloc_destroy); void ceph_oid_copy(struct ceph_object_id *dest, const struct ceph_object_id *src) { ceph_oid_destroy(dest); if (src->name != src->inline_name) { /* very rare, see ceph_object_id definition */ dest->name = kmalloc(src->name_len + 1, GFP_NOIO | __GFP_NOFAIL); } else { dest->name = dest->inline_name; } memcpy(dest->name, src->name, src->name_len + 1); dest->name_len = src->name_len; } EXPORT_SYMBOL(ceph_oid_copy); static __printf(2, 0) int oid_printf_vargs(struct ceph_object_id *oid, const char *fmt, va_list ap) { int len; WARN_ON(!ceph_oid_empty(oid)); len = vsnprintf(oid->inline_name, sizeof(oid->inline_name), fmt, ap); if (len >= sizeof(oid->inline_name)) return len; oid->name_len = len; return 0; } /* * If oid doesn't fit into inline buffer, BUG. */ void ceph_oid_printf(struct ceph_object_id *oid, const char *fmt, ...) { va_list ap; va_start(ap, fmt); BUG_ON(oid_printf_vargs(oid, fmt, ap)); va_end(ap); } EXPORT_SYMBOL(ceph_oid_printf); static __printf(3, 0) int oid_aprintf_vargs(struct ceph_object_id *oid, gfp_t gfp, const char *fmt, va_list ap) { va_list aq; int len; va_copy(aq, ap); len = oid_printf_vargs(oid, fmt, aq); va_end(aq); if (len) { char *external_name; external_name = kmalloc(len + 1, gfp); if (!external_name) return -ENOMEM; oid->name = external_name; WARN_ON(vsnprintf(oid->name, len + 1, fmt, ap) != len); oid->name_len = len; } return 0; } /* * If oid doesn't fit into inline buffer, allocate. */ int ceph_oid_aprintf(struct ceph_object_id *oid, gfp_t gfp, const char *fmt, ...) { va_list ap; int ret; va_start(ap, fmt); ret = oid_aprintf_vargs(oid, gfp, fmt, ap); va_end(ap); return ret; } EXPORT_SYMBOL(ceph_oid_aprintf); void ceph_oid_destroy(struct ceph_object_id *oid) { if (oid->name != oid->inline_name) kfree(oid->name); } EXPORT_SYMBOL(ceph_oid_destroy); /* * osds only */ static bool __osds_equal(const struct ceph_osds *lhs, const struct ceph_osds *rhs) { if (lhs->size == rhs->size && !memcmp(lhs->osds, rhs->osds, rhs->size * sizeof(rhs->osds[0]))) return true; return false; } /* * osds + primary */ static bool osds_equal(const struct ceph_osds *lhs, const struct ceph_osds *rhs) { if (__osds_equal(lhs, rhs) && lhs->primary == rhs->primary) return true; return false; } static bool osds_valid(const struct ceph_osds *set) { /* non-empty set */ if (set->size > 0 && set->primary >= 0) return true; /* empty can_shift_osds set */ if (!set->size && set->primary == -1) return true; /* empty !can_shift_osds set - all NONE */ if (set->size > 0 && set->primary == -1) { int i; for (i = 0; i < set->size; i++) { if (set->osds[i] != CRUSH_ITEM_NONE) break; } if (i == set->size) return true; } return false; } void ceph_osds_copy(struct ceph_osds *dest, const struct ceph_osds *src) { memcpy(dest->osds, src->osds, src->size * sizeof(src->osds[0])); dest->size = src->size; dest->primary = src->primary; } bool ceph_pg_is_split(const struct ceph_pg *pgid, u32 old_pg_num, u32 new_pg_num) { int old_bits = calc_bits_of(old_pg_num); int old_mask = (1 << old_bits) - 1; int n; WARN_ON(pgid->seed >= old_pg_num); if (new_pg_num <= old_pg_num) return false; for (n = 1; ; n++) { int next_bit = n << (old_bits - 1); u32 s = next_bit | pgid->seed; if (s < old_pg_num || s == pgid->seed) continue; if (s >= new_pg_num) break; s = ceph_stable_mod(s, old_pg_num, old_mask); if (s == pgid->seed) return true; } return false; } bool ceph_is_new_interval(const struct ceph_osds *old_acting, const struct ceph_osds *new_acting, const struct ceph_osds *old_up, const struct ceph_osds *new_up, int old_size, int new_size, int old_min_size, int new_min_size, u32 old_pg_num, u32 new_pg_num, bool old_sort_bitwise, bool new_sort_bitwise, bool old_recovery_deletes, bool new_recovery_deletes, const struct ceph_pg *pgid) { return !osds_equal(old_acting, new_acting) || !osds_equal(old_up, new_up) || old_size != new_size || old_min_size != new_min_size || ceph_pg_is_split(pgid, old_pg_num, new_pg_num) || old_sort_bitwise != new_sort_bitwise || old_recovery_deletes != new_recovery_deletes; } static int calc_pg_rank(int osd, const struct ceph_osds *acting) { int i; for (i = 0; i < acting->size; i++) { if (acting->osds[i] == osd) return i; } return -1; } static bool primary_changed(const struct ceph_osds *old_acting, const struct ceph_osds *new_acting) { if (!old_acting->size && !new_acting->size) return false; /* both still empty */ if (!old_acting->size ^ !new_acting->size) return true; /* was empty, now not, or vice versa */ if (old_acting->primary != new_acting->primary) return true; /* primary changed */ if (calc_pg_rank(old_acting->primary, old_acting) != calc_pg_rank(new_acting->primary, new_acting)) return true; return false; /* same primary (tho replicas may have changed) */ } bool ceph_osds_changed(const struct ceph_osds *old_acting, const struct ceph_osds *new_acting, bool any_change) { if (primary_changed(old_acting, new_acting)) return true; if (any_change && !__osds_equal(old_acting, new_acting)) return true; return false; } /* * Map an object into a PG. * * Should only be called with target_oid and target_oloc (as opposed to * base_oid and base_oloc), since tiering isn't taken into account. */ void __ceph_object_locator_to_pg(struct ceph_pg_pool_info *pi, const struct ceph_object_id *oid, const struct ceph_object_locator *oloc, struct ceph_pg *raw_pgid) { WARN_ON(pi->id != oloc->pool); if (!oloc->pool_ns) { raw_pgid->pool = oloc->pool; raw_pgid->seed = ceph_str_hash(pi->object_hash, oid->name, oid->name_len); dout("%s %s -> raw_pgid %llu.%x\n", __func__, oid->name, raw_pgid->pool, raw_pgid->seed); } else { char stack_buf[256]; char *buf = stack_buf; int nsl = oloc->pool_ns->len; size_t total = nsl + 1 + oid->name_len; if (total > sizeof(stack_buf)) buf = kmalloc(total, GFP_NOIO | __GFP_NOFAIL); memcpy(buf, oloc->pool_ns->str, nsl); buf[nsl] = '\037'; memcpy(buf + nsl + 1, oid->name, oid->name_len); raw_pgid->pool = oloc->pool; raw_pgid->seed = ceph_str_hash(pi->object_hash, buf, total); if (buf != stack_buf) kfree(buf); dout("%s %s ns %.*s -> raw_pgid %llu.%x\n", __func__, oid->name, nsl, oloc->pool_ns->str, raw_pgid->pool, raw_pgid->seed); } } int ceph_object_locator_to_pg(struct ceph_osdmap *osdmap, const struct ceph_object_id *oid, const struct ceph_object_locator *oloc, struct ceph_pg *raw_pgid) { struct ceph_pg_pool_info *pi; pi = ceph_pg_pool_by_id(osdmap, oloc->pool); if (!pi) return -ENOENT; __ceph_object_locator_to_pg(pi, oid, oloc, raw_pgid); return 0; } EXPORT_SYMBOL(ceph_object_locator_to_pg); /* * Map a raw PG (full precision ps) into an actual PG. */ static void raw_pg_to_pg(struct ceph_pg_pool_info *pi, const struct ceph_pg *raw_pgid, struct ceph_pg *pgid) { pgid->pool = raw_pgid->pool; pgid->seed = ceph_stable_mod(raw_pgid->seed, pi->pg_num, pi->pg_num_mask); } /* * Map a raw PG (full precision ps) into a placement ps (placement * seed). Include pool id in that value so that different pools don't * use the same seeds. */ static u32 raw_pg_to_pps(struct ceph_pg_pool_info *pi, const struct ceph_pg *raw_pgid) { if (pi->flags & CEPH_POOL_FLAG_HASHPSPOOL) { /* hash pool id and seed so that pool PGs do not overlap */ return crush_hash32_2(CRUSH_HASH_RJENKINS1, ceph_stable_mod(raw_pgid->seed, pi->pgp_num, pi->pgp_num_mask), raw_pgid->pool); } else { /* * legacy behavior: add ps and pool together. this is * not a great approach because the PGs from each pool * will overlap on top of each other: 0.5 == 1.4 == * 2.3 == ... */ return ceph_stable_mod(raw_pgid->seed, pi->pgp_num, pi->pgp_num_mask) + (unsigned)raw_pgid->pool; } } /* * Magic value used for a "default" fallback choose_args, used if the * crush_choose_arg_map passed to do_crush() does not exist. If this * also doesn't exist, fall back to canonical weights. */ #define CEPH_DEFAULT_CHOOSE_ARGS -1 static int do_crush(struct ceph_osdmap *map, int ruleno, int x, int *result, int result_max, const __u32 *weight, int weight_max, s64 choose_args_index) { struct crush_choose_arg_map *arg_map; struct crush_work *work; int r; BUG_ON(result_max > CEPH_PG_MAX_SIZE); arg_map = lookup_choose_arg_map(&map->crush->choose_args, choose_args_index); if (!arg_map) arg_map = lookup_choose_arg_map(&map->crush->choose_args, CEPH_DEFAULT_CHOOSE_ARGS); work = get_workspace(&map->crush_wsm, map->crush); r = crush_do_rule(map->crush, ruleno, x, result, result_max, weight, weight_max, work, arg_map ? arg_map->args : NULL); put_workspace(&map->crush_wsm, work); return r; } static void remove_nonexistent_osds(struct ceph_osdmap *osdmap, struct ceph_pg_pool_info *pi, struct ceph_osds *set) { int i; if (ceph_can_shift_osds(pi)) { int removed = 0; /* shift left */ for (i = 0; i < set->size; i++) { if (!ceph_osd_exists(osdmap, set->osds[i])) { removed++; continue; } if (removed) set->osds[i - removed] = set->osds[i]; } set->size -= removed; } else { /* set dne devices to NONE */ for (i = 0; i < set->size; i++) { if (!ceph_osd_exists(osdmap, set->osds[i])) set->osds[i] = CRUSH_ITEM_NONE; } } } /* * Calculate raw set (CRUSH output) for given PG and filter out * nonexistent OSDs. ->primary is undefined for a raw set. * * Placement seed (CRUSH input) is returned through @ppps. */ static void pg_to_raw_osds(struct ceph_osdmap *osdmap, struct ceph_pg_pool_info *pi, const struct ceph_pg *raw_pgid, struct ceph_osds *raw, u32 *ppps) { u32 pps = raw_pg_to_pps(pi, raw_pgid); int ruleno; int len; ceph_osds_init(raw); if (ppps) *ppps = pps; ruleno = crush_find_rule(osdmap->crush, pi->crush_ruleset, pi->type, pi->size); if (ruleno < 0) { pr_err("no crush rule: pool %lld ruleset %d type %d size %d\n", pi->id, pi->crush_ruleset, pi->type, pi->size); return; } if (pi->size > ARRAY_SIZE(raw->osds)) { pr_err_ratelimited("pool %lld ruleset %d type %d too wide: size %d > %zu\n", pi->id, pi->crush_ruleset, pi->type, pi->size, ARRAY_SIZE(raw->osds)); return; } len = do_crush(osdmap, ruleno, pps, raw->osds, pi->size, osdmap->osd_weight, osdmap->max_osd, pi->id); if (len < 0) { pr_err("error %d from crush rule %d: pool %lld ruleset %d type %d size %d\n", len, ruleno, pi->id, pi->crush_ruleset, pi->type, pi->size); return; } raw->size = len; remove_nonexistent_osds(osdmap, pi, raw); } /* apply pg_upmap[_items] mappings */ static void apply_upmap(struct ceph_osdmap *osdmap, const struct ceph_pg *pgid, struct ceph_osds *raw) { struct ceph_pg_mapping *pg; int i, j; pg = lookup_pg_mapping(&osdmap->pg_upmap, pgid); if (pg) { /* make sure targets aren't marked out */ for (i = 0; i < pg->pg_upmap.len; i++) { int osd = pg->pg_upmap.osds[i]; if (osd != CRUSH_ITEM_NONE && osd < osdmap->max_osd && osdmap->osd_weight[osd] == 0) { /* reject/ignore explicit mapping */ return; } } for (i = 0; i < pg->pg_upmap.len; i++) raw->osds[i] = pg->pg_upmap.osds[i]; raw->size = pg->pg_upmap.len; /* check and apply pg_upmap_items, if any */ } pg = lookup_pg_mapping(&osdmap->pg_upmap_items, pgid); if (pg) { /* * Note: this approach does not allow a bidirectional swap, * e.g., [[1,2],[2,1]] applied to [0,1,2] -> [0,2,1]. */ for (i = 0; i < pg->pg_upmap_items.len; i++) { int from = pg->pg_upmap_items.from_to[i][0]; int to = pg->pg_upmap_items.from_to[i][1]; int pos = -1; bool exists = false; /* make sure replacement doesn't already appear */ for (j = 0; j < raw->size; j++) { int osd = raw->osds[j]; if (osd == to) { exists = true; break; } /* ignore mapping if target is marked out */ if (osd == from && pos < 0 && !(to != CRUSH_ITEM_NONE && to < osdmap->max_osd && osdmap->osd_weight[to] == 0)) { pos = j; } } if (!exists && pos >= 0) raw->osds[pos] = to; } } } /* * Given raw set, calculate up set and up primary. By definition of an * up set, the result won't contain nonexistent or down OSDs. * * This is done in-place - on return @set is the up set. If it's * empty, ->primary will remain undefined. */ static void raw_to_up_osds(struct ceph_osdmap *osdmap, struct ceph_pg_pool_info *pi, struct ceph_osds *set) { int i; /* ->primary is undefined for a raw set */ BUG_ON(set->primary != -1); if (ceph_can_shift_osds(pi)) { int removed = 0; /* shift left */ for (i = 0; i < set->size; i++) { if (ceph_osd_is_down(osdmap, set->osds[i])) { removed++; continue; } if (removed) set->osds[i - removed] = set->osds[i]; } set->size -= removed; if (set->size > 0) set->primary = set->osds[0]; } else { /* set down/dne devices to NONE */ for (i = set->size - 1; i >= 0; i--) { if (ceph_osd_is_down(osdmap, set->osds[i])) set->osds[i] = CRUSH_ITEM_NONE; else set->primary = set->osds[i]; } } } static void apply_primary_affinity(struct ceph_osdmap *osdmap, struct ceph_pg_pool_info *pi, u32 pps, struct ceph_osds *up) { int i; int pos = -1; /* * Do we have any non-default primary_affinity values for these * osds? */ if (!osdmap->osd_primary_affinity) return; for (i = 0; i < up->size; i++) { int osd = up->osds[i]; if (osd != CRUSH_ITEM_NONE && osdmap->osd_primary_affinity[osd] != CEPH_OSD_DEFAULT_PRIMARY_AFFINITY) { break; } } if (i == up->size) return; /* * Pick the primary. Feed both the seed (for the pg) and the * osd into the hash/rng so that a proportional fraction of an * osd's pgs get rejected as primary. */ for (i = 0; i < up->size; i++) { int osd = up->osds[i]; u32 aff; if (osd == CRUSH_ITEM_NONE) continue; aff = osdmap->osd_primary_affinity[osd]; if (aff < CEPH_OSD_MAX_PRIMARY_AFFINITY && (crush_hash32_2(CRUSH_HASH_RJENKINS1, pps, osd) >> 16) >= aff) { /* * We chose not to use this primary. Note it * anyway as a fallback in case we don't pick * anyone else, but keep looking. */ if (pos < 0) pos = i; } else { pos = i; break; } } if (pos < 0) return; up->primary = up->osds[pos]; if (ceph_can_shift_osds(pi) && pos > 0) { /* move the new primary to the front */ for (i = pos; i > 0; i--) up->osds[i] = up->osds[i - 1]; up->osds[0] = up->primary; } } /* * Get pg_temp and primary_temp mappings for given PG. * * Note that a PG may have none, only pg_temp, only primary_temp or * both pg_temp and primary_temp mappings. This means @temp isn't * always a valid OSD set on return: in the "only primary_temp" case, * @temp will have its ->primary >= 0 but ->size == 0. */ static void get_temp_osds(struct ceph_osdmap *osdmap, struct ceph_pg_pool_info *pi, const struct ceph_pg *pgid, struct ceph_osds *temp) { struct ceph_pg_mapping *pg; int i; ceph_osds_init(temp); /* pg_temp? */ pg = lookup_pg_mapping(&osdmap->pg_temp, pgid); if (pg) { for (i = 0; i < pg->pg_temp.len; i++) { if (ceph_osd_is_down(osdmap, pg->pg_temp.osds[i])) { if (ceph_can_shift_osds(pi)) continue; temp->osds[temp->size++] = CRUSH_ITEM_NONE; } else { temp->osds[temp->size++] = pg->pg_temp.osds[i]; } } /* apply pg_temp's primary */ for (i = 0; i < temp->size; i++) { if (temp->osds[i] != CRUSH_ITEM_NONE) { temp->primary = temp->osds[i]; break; } } } /* primary_temp? */ pg = lookup_pg_mapping(&osdmap->primary_temp, pgid); if (pg) temp->primary = pg->primary_temp.osd; } /* * Map a PG to its acting set as well as its up set. * * Acting set is used for data mapping purposes, while up set can be * recorded for detecting interval changes and deciding whether to * resend a request. */ void ceph_pg_to_up_acting_osds(struct ceph_osdmap *osdmap, struct ceph_pg_pool_info *pi, const struct ceph_pg *raw_pgid, struct ceph_osds *up, struct ceph_osds *acting) { struct ceph_pg pgid; u32 pps; WARN_ON(pi->id != raw_pgid->pool); raw_pg_to_pg(pi, raw_pgid, &pgid); pg_to_raw_osds(osdmap, pi, raw_pgid, up, &pps); apply_upmap(osdmap, &pgid, up); raw_to_up_osds(osdmap, pi, up); apply_primary_affinity(osdmap, pi, pps, up); get_temp_osds(osdmap, pi, &pgid, acting); if (!acting->size) { memcpy(acting->osds, up->osds, up->size * sizeof(up->osds[0])); acting->size = up->size; if (acting->primary == -1) acting->primary = up->primary; } WARN_ON(!osds_valid(up) || !osds_valid(acting)); } bool ceph_pg_to_primary_shard(struct ceph_osdmap *osdmap, struct ceph_pg_pool_info *pi, const struct ceph_pg *raw_pgid, struct ceph_spg *spgid) { struct ceph_pg pgid; struct ceph_osds up, acting; int i; WARN_ON(pi->id != raw_pgid->pool); raw_pg_to_pg(pi, raw_pgid, &pgid); if (ceph_can_shift_osds(pi)) { spgid->pgid = pgid; /* struct */ spgid->shard = CEPH_SPG_NOSHARD; return true; } ceph_pg_to_up_acting_osds(osdmap, pi, &pgid, &up, &acting); for (i = 0; i < acting.size; i++) { if (acting.osds[i] == acting.primary) { spgid->pgid = pgid; /* struct */ spgid->shard = i; return true; } } return false; } /* * Return acting primary for given PG, or -1 if none. */ int ceph_pg_to_acting_primary(struct ceph_osdmap *osdmap, const struct ceph_pg *raw_pgid) { struct ceph_pg_pool_info *pi; struct ceph_osds up, acting; pi = ceph_pg_pool_by_id(osdmap, raw_pgid->pool); if (!pi) return -1; ceph_pg_to_up_acting_osds(osdmap, pi, raw_pgid, &up, &acting); return acting.primary; } EXPORT_SYMBOL(ceph_pg_to_acting_primary); static struct crush_loc_node *alloc_crush_loc(size_t type_name_len, size_t name_len) { struct crush_loc_node *loc; loc = kmalloc(sizeof(*loc) + type_name_len + name_len + 2, GFP_NOIO); if (!loc) return NULL; RB_CLEAR_NODE(&loc->cl_node); return loc; } static void free_crush_loc(struct crush_loc_node *loc) { WARN_ON(!RB_EMPTY_NODE(&loc->cl_node)); kfree(loc); } static int crush_loc_compare(const struct crush_loc *loc1, const struct crush_loc *loc2) { return strcmp(loc1->cl_type_name, loc2->cl_type_name) ?: strcmp(loc1->cl_name, loc2->cl_name); } DEFINE_RB_FUNCS2(crush_loc, struct crush_loc_node, cl_loc, crush_loc_compare, RB_BYPTR, const struct crush_loc *, cl_node) /* * Parses a set of <bucket type name>':'<bucket name> pairs separated * by '|', e.g. "rack:foo1|rack:foo2|datacenter:bar". * * Note that @crush_location is modified by strsep(). */ int ceph_parse_crush_location(char *crush_location, struct rb_root *locs) { struct crush_loc_node *loc; const char *type_name, *name, *colon; size_t type_name_len, name_len; dout("%s '%s'\n", __func__, crush_location); while ((type_name = strsep(&crush_location, "|"))) { colon = strchr(type_name, ':'); if (!colon) return -EINVAL; type_name_len = colon - type_name; if (type_name_len == 0) return -EINVAL; name = colon + 1; name_len = strlen(name); if (name_len == 0) return -EINVAL; loc = alloc_crush_loc(type_name_len, name_len); if (!loc) return -ENOMEM; loc->cl_loc.cl_type_name = loc->cl_data; memcpy(loc->cl_loc.cl_type_name, type_name, type_name_len); loc->cl_loc.cl_type_name[type_name_len] = '\0'; loc->cl_loc.cl_name = loc->cl_data + type_name_len + 1; memcpy(loc->cl_loc.cl_name, name, name_len); loc->cl_loc.cl_name[name_len] = '\0'; if (!__insert_crush_loc(locs, loc)) { free_crush_loc(loc); return -EEXIST; } dout("%s type_name '%s' name '%s'\n", __func__, loc->cl_loc.cl_type_name, loc->cl_loc.cl_name); } return 0; } int ceph_compare_crush_locs(struct rb_root *locs1, struct rb_root *locs2) { struct rb_node *n1 = rb_first(locs1); struct rb_node *n2 = rb_first(locs2); int ret; for ( ; n1 && n2; n1 = rb_next(n1), n2 = rb_next(n2)) { struct crush_loc_node *loc1 = rb_entry(n1, struct crush_loc_node, cl_node); struct crush_loc_node *loc2 = rb_entry(n2, struct crush_loc_node, cl_node); ret = crush_loc_compare(&loc1->cl_loc, &loc2->cl_loc); if (ret) return ret; } if (!n1 && n2) return -1; if (n1 && !n2) return 1; return 0; } void ceph_clear_crush_locs(struct rb_root *locs) { while (!RB_EMPTY_ROOT(locs)) { struct crush_loc_node *loc = rb_entry(rb_first(locs), struct crush_loc_node, cl_node); erase_crush_loc(locs, loc); free_crush_loc(loc); } } /* * [a-zA-Z0-9-_.]+ */ static bool is_valid_crush_name(const char *name) { do { if (!('a' <= *name && *name <= 'z') && !('A' <= *name && *name <= 'Z') && !('0' <= *name && *name <= '9') && *name != '-' && *name != '_' && *name != '.') return false; } while (*++name != '\0'); return true; } /* * Gets the parent of an item. Returns its id (<0 because the * parent is always a bucket), type id (>0 for the same reason, * via @parent_type_id) and location (via @parent_loc). If no * parent, returns 0. * * Does a linear search, as there are no parent pointers of any * kind. Note that the result is ambiguous for items that occur * multiple times in the map. */ static int get_immediate_parent(struct crush_map *c, int id, u16 *parent_type_id, struct crush_loc *parent_loc) { struct crush_bucket *b; struct crush_name_node *type_cn, *cn; int i, j; for (i = 0; i < c->max_buckets; i++) { b = c->buckets[i]; if (!b) continue; /* ignore per-class shadow hierarchy */ cn = lookup_crush_name(&c->names, b->id); if (!cn || !is_valid_crush_name(cn->cn_name)) continue; for (j = 0; j < b->size; j++) { if (b->items[j] != id) continue; *parent_type_id = b->type; type_cn = lookup_crush_name(&c->type_names, b->type); parent_loc->cl_type_name = type_cn->cn_name; parent_loc->cl_name = cn->cn_name; return b->id; } } return 0; /* no parent */ } /* * Calculates the locality/distance from an item to a client * location expressed in terms of CRUSH hierarchy as a set of * (bucket type name, bucket name) pairs. Specifically, looks * for the lowest-valued bucket type for which the location of * @id matches one of the locations in @locs, so for standard * bucket types (host = 1, rack = 3, datacenter = 8, zone = 9) * a matching host is closer than a matching rack and a matching * data center is closer than a matching zone. * * Specifying multiple locations (a "multipath" location) such * as "rack=foo1 rack=foo2 datacenter=bar" is allowed -- @locs * is a multimap. The locality will be: * * - 3 for OSDs in racks foo1 and foo2 * - 8 for OSDs in data center bar * - -1 for all other OSDs * * The lowest possible bucket type is 1, so the best locality * for an OSD is 1 (i.e. a matching host). Locality 0 would be * the OSD itself. */ int ceph_get_crush_locality(struct ceph_osdmap *osdmap, int id, struct rb_root *locs) { struct crush_loc loc; u16 type_id; /* * Instead of repeated get_immediate_parent() calls, * the location of @id could be obtained with a single * depth-first traversal. */ for (;;) { id = get_immediate_parent(osdmap->crush, id, &type_id, &loc); if (id >= 0) return -1; /* not local */ if (lookup_crush_loc(locs, &loc)) return type_id; } }