// SPDX-License-Identifier: GPL-2.0-only /* * Pid namespaces * * Authors: * (C) 2007 Pavel Emelyanov , OpenVZ, SWsoft Inc. * (C) 2007 Sukadev Bhattiprolu , IBM * Many thanks to Oleg Nesterov for comments and help * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pid_sysctl.h" static DEFINE_MUTEX(pid_caches_mutex); static struct kmem_cache *pid_ns_cachep; /* Write once array, filled from the beginning. */ static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL]; /* * creates the kmem cache to allocate pids from. * @level: pid namespace level */ static struct kmem_cache *create_pid_cachep(unsigned int level) { /* Level 0 is init_pid_ns.pid_cachep */ struct kmem_cache **pkc = &pid_cache[level - 1]; struct kmem_cache *kc; char name[4 + 10 + 1]; unsigned int len; kc = READ_ONCE(*pkc); if (kc) return kc; snprintf(name, sizeof(name), "pid_%u", level + 1); len = struct_size_t(struct pid, numbers, level + 1); mutex_lock(&pid_caches_mutex); /* Name collision forces to do allocation under mutex. */ if (!*pkc) *pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL); mutex_unlock(&pid_caches_mutex); /* current can fail, but someone else can succeed. */ return READ_ONCE(*pkc); } static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) { return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); } static void dec_pid_namespaces(struct ucounts *ucounts) { dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); } static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, struct pid_namespace *parent_pid_ns) { struct pid_namespace *ns; unsigned int level = parent_pid_ns->level + 1; struct ucounts *ucounts; int err; err = -EINVAL; if (!in_userns(parent_pid_ns->user_ns, user_ns)) goto out; err = -ENOSPC; if (level > MAX_PID_NS_LEVEL) goto out; ucounts = inc_pid_namespaces(user_ns); if (!ucounts) goto out; err = -ENOMEM; ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); if (ns == NULL) goto out_dec; idr_init(&ns->idr); ns->pid_cachep = create_pid_cachep(level); if (ns->pid_cachep == NULL) goto out_free_idr; err = ns_alloc_inum(&ns->ns); if (err) goto out_free_idr; ns->ns.ops = &pidns_operations; refcount_set(&ns->ns.count, 1); ns->level = level; ns->parent = get_pid_ns(parent_pid_ns); ns->user_ns = get_user_ns(user_ns); ns->ucounts = ucounts; ns->pid_allocated = PIDNS_ADDING; #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE) ns->memfd_noexec_scope = pidns_memfd_noexec_scope(parent_pid_ns); #endif return ns; out_free_idr: idr_destroy(&ns->idr); kmem_cache_free(pid_ns_cachep, ns); out_dec: dec_pid_namespaces(ucounts); out: return ERR_PTR(err); } static void delayed_free_pidns(struct rcu_head *p) { struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); dec_pid_namespaces(ns->ucounts); put_user_ns(ns->user_ns); kmem_cache_free(pid_ns_cachep, ns); } static void destroy_pid_namespace(struct pid_namespace *ns) { ns_free_inum(&ns->ns); idr_destroy(&ns->idr); call_rcu(&ns->rcu, delayed_free_pidns); } struct pid_namespace *copy_pid_ns(unsigned long flags, struct user_namespace *user_ns, struct pid_namespace *old_ns) { if (!(flags & CLONE_NEWPID)) return get_pid_ns(old_ns); if (task_active_pid_ns(current) != old_ns) return ERR_PTR(-EINVAL); return create_pid_namespace(user_ns, old_ns); } void put_pid_ns(struct pid_namespace *ns) { struct pid_namespace *parent; while (ns != &init_pid_ns) { parent = ns->parent; if (!refcount_dec_and_test(&ns->ns.count)) break; destroy_pid_namespace(ns); ns = parent; } } EXPORT_SYMBOL_GPL(put_pid_ns); void zap_pid_ns_processes(struct pid_namespace *pid_ns) { int nr; int rc; struct task_struct *task, *me = current; int init_pids = thread_group_leader(me) ? 1 : 2; struct pid *pid; /* Don't allow any more processes into the pid namespace */ disable_pid_allocation(pid_ns); /* * Ignore SIGCHLD causing any terminated children to autoreap. * This speeds up the namespace shutdown, plus see the comment * below. */ spin_lock_irq(&me->sighand->siglock); me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; spin_unlock_irq(&me->sighand->siglock); /* * The last thread in the cgroup-init thread group is terminating. * Find remaining pid_ts in the namespace, signal and wait for them * to exit. * * Note: This signals each threads in the namespace - even those that * belong to the same thread group, To avoid this, we would have * to walk the entire tasklist looking a processes in this * namespace, but that could be unnecessarily expensive if the * pid namespace has just a few processes. Or we need to * maintain a tasklist for each pid namespace. * */ rcu_read_lock(); read_lock(&tasklist_lock); nr = 2; idr_for_each_entry_continue(&pid_ns->idr, pid, nr) { task = pid_task(pid, PIDTYPE_PID); if (task && !__fatal_signal_pending(task)) group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX); } read_unlock(&tasklist_lock); rcu_read_unlock(); /* * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. * kernel_wait4() will also block until our children traced from the * parent namespace are detached and become EXIT_DEAD. */ do { clear_thread_flag(TIF_SIGPENDING); clear_thread_flag(TIF_NOTIFY_SIGNAL); rc = kernel_wait4(-1, NULL, __WALL, NULL); } while (rc != -ECHILD); /* * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE * process whose parents processes are outside of the pid * namespace. Such processes are created with setns()+fork(). * * If those EXIT_ZOMBIE processes are not reaped by their * parents before their parents exit, they will be reparented * to pid_ns->child_reaper. Thus pidns->child_reaper needs to * stay valid until they all go away. * * The code relies on the pid_ns->child_reaper ignoring * SIGCHILD to cause those EXIT_ZOMBIE processes to be * autoreaped if reparented. * * Semantically it is also desirable to wait for EXIT_ZOMBIE * processes before allowing the child_reaper to be reaped, as * that gives the invariant that when the init process of a * pid namespace is reaped all of the processes in the pid * namespace are gone. * * Once all of the other tasks are gone from the pid_namespace * free_pid() will awaken this task. */ for (;;) { set_current_state(TASK_INTERRUPTIBLE); if (pid_ns->pid_allocated == init_pids) break; /* * Release tasks_rcu_exit_srcu to avoid following deadlock: * * 1) TASK A unshare(CLONE_NEWPID) * 2) TASK A fork() twice -> TASK B (child reaper for new ns) * and TASK C * 3) TASK B exits, kills TASK C, waits for TASK A to reap it * 4) TASK A calls synchronize_rcu_tasks() * -> synchronize_srcu(tasks_rcu_exit_srcu) * 5) *DEADLOCK* * * It is considered safe to release tasks_rcu_exit_srcu here * because we assume the current task can not be concurrently * reaped at this point. */ exit_tasks_rcu_stop(); schedule(); exit_tasks_rcu_start(); } __set_current_state(TASK_RUNNING); if (pid_ns->reboot) current->signal->group_exit_code = pid_ns->reboot; acct_exit_ns(pid_ns); return; } #ifdef CONFIG_CHECKPOINT_RESTORE static int pid_ns_ctl_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct pid_namespace *pid_ns = task_active_pid_ns(current); struct ctl_table tmp = *table; int ret, next; if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns)) return -EPERM; /* * Writing directly to ns' last_pid field is OK, since this field * is volatile in a living namespace anyway and a code writing to * it should synchronize its usage with external means. */ next = idr_get_cursor(&pid_ns->idr) - 1; tmp.data = &next; ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); if (!ret && write) idr_set_cursor(&pid_ns->idr, next + 1); return ret; } extern int pid_max; static struct ctl_table pid_ns_ctl_table[] = { { .procname = "ns_last_pid", .maxlen = sizeof(int), .mode = 0666, /* permissions are checked in the handler */ .proc_handler = pid_ns_ctl_handler, .extra1 = SYSCTL_ZERO, .extra2 = &pid_max, }, { } }; #endif /* CONFIG_CHECKPOINT_RESTORE */ int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) { if (pid_ns == &init_pid_ns) return 0; switch (cmd) { case LINUX_REBOOT_CMD_RESTART2: case LINUX_REBOOT_CMD_RESTART: pid_ns->reboot = SIGHUP; break; case LINUX_REBOOT_CMD_POWER_OFF: case LINUX_REBOOT_CMD_HALT: pid_ns->reboot = SIGINT; break; default: return -EINVAL; } read_lock(&tasklist_lock); send_sig(SIGKILL, pid_ns->child_reaper, 1); read_unlock(&tasklist_lock); do_exit(0); /* Not reached */ return 0; } static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) { return container_of(ns, struct pid_namespace, ns); } static struct ns_common *pidns_get(struct task_struct *task) { struct pid_namespace *ns; rcu_read_lock(); ns = task_active_pid_ns(task); if (ns) get_pid_ns(ns); rcu_read_unlock(); return ns ? &ns->ns : NULL; } static struct ns_common *pidns_for_children_get(struct task_struct *task) { struct pid_namespace *ns = NULL; task_lock(task); if (task->nsproxy) { ns = task->nsproxy->pid_ns_for_children; get_pid_ns(ns); } task_unlock(task); if (ns) { read_lock(&tasklist_lock); if (!ns->child_reaper) { put_pid_ns(ns); ns = NULL; } read_unlock(&tasklist_lock); } return ns ? &ns->ns : NULL; } static void pidns_put(struct ns_common *ns) { put_pid_ns(to_pid_ns(ns)); } static int pidns_install(struct nsset *nsset, struct ns_common *ns) { struct nsproxy *nsproxy = nsset->nsproxy; struct pid_namespace *active = task_active_pid_ns(current); struct pid_namespace *ancestor, *new = to_pid_ns(ns); if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) return -EPERM; /* * Only allow entering the current active pid namespace * or a child of the current active pid namespace. * * This is required for fork to return a usable pid value and * this maintains the property that processes and their * children can not escape their current pid namespace. */ if (new->level < active->level) return -EINVAL; ancestor = new; while (ancestor->level > active->level) ancestor = ancestor->parent; if (ancestor != active) return -EINVAL; put_pid_ns(nsproxy->pid_ns_for_children); nsproxy->pid_ns_for_children = get_pid_ns(new); return 0; } static struct ns_common *pidns_get_parent(struct ns_common *ns) { struct pid_namespace *active = task_active_pid_ns(current); struct pid_namespace *pid_ns, *p; /* See if the parent is in the current namespace */ pid_ns = p = to_pid_ns(ns)->parent; for (;;) { if (!p) return ERR_PTR(-EPERM); if (p == active) break; p = p->parent; } return &get_pid_ns(pid_ns)->ns; } static struct user_namespace *pidns_owner(struct ns_common *ns) { return to_pid_ns(ns)->user_ns; } const struct proc_ns_operations pidns_operations = { .name = "pid", .type = CLONE_NEWPID, .get = pidns_get, .put = pidns_put, .install = pidns_install, .owner = pidns_owner, .get_parent = pidns_get_parent, }; const struct proc_ns_operations pidns_for_children_operations = { .name = "pid_for_children", .real_ns_name = "pid", .type = CLONE_NEWPID, .get = pidns_for_children_get, .put = pidns_put, .install = pidns_install, .owner = pidns_owner, .get_parent = pidns_get_parent, }; static __init int pid_namespaces_init(void) { pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT); #ifdef CONFIG_CHECKPOINT_RESTORE register_sysctl_init("kernel", pid_ns_ctl_table); #endif register_pid_ns_sysctl_table_vm(); return 0; } __initcall(pid_namespaces_init);