// SPDX-License-Identifier: GPL-2.0-only /* * Generic pidhash and scalable, time-bounded PID allocator * * (C) 2002-2003 Nadia Yvette Chambers, IBM * (C) 2004 Nadia Yvette Chambers, Oracle * (C) 2002-2004 Ingo Molnar, Red Hat * * pid-structures are backing objects for tasks sharing a given ID to chain * against. There is very little to them aside from hashing them and * parking tasks using given ID's on a list. * * The hash is always changed with the tasklist_lock write-acquired, * and the hash is only accessed with the tasklist_lock at least * read-acquired, so there's no additional SMP locking needed here. * * We have a list of bitmap pages, which bitmaps represent the PID space. * Allocating and freeing PIDs is completely lockless. The worst-case * allocation scenario when all but one out of 1 million PIDs possible are * allocated already: the scanning of 32 list entries and at most PAGE_SIZE * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). * * Pid namespaces: * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM * Many thanks to Oleg Nesterov for comments and help * */ #include <linux/mm.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/rculist.h> #include <linux/memblock.h> #include <linux/pid_namespace.h> #include <linux/init_task.h> #include <linux/syscalls.h> #include <linux/proc_ns.h> #include <linux/refcount.h> #include <linux/anon_inodes.h> #include <linux/sched/signal.h> #include <linux/sched/task.h> #include <linux/idr.h> #include <net/sock.h> #include <uapi/linux/pidfd.h> struct pid init_struct_pid = { .count = REFCOUNT_INIT(1), .tasks = { { .first = NULL }, { .first = NULL }, { .first = NULL }, }, .level = 0, .numbers = { { .nr = 0, .ns = &init_pid_ns, }, } }; int pid_max = PID_MAX_DEFAULT; #define RESERVED_PIDS 300 int pid_max_min = RESERVED_PIDS + 1; int pid_max_max = PID_MAX_LIMIT; /* * PID-map pages start out as NULL, they get allocated upon * first use and are never deallocated. This way a low pid_max * value does not cause lots of bitmaps to be allocated, but * the scheme scales to up to 4 million PIDs, runtime. */ struct pid_namespace init_pid_ns = { .ns.count = REFCOUNT_INIT(2), .idr = IDR_INIT(init_pid_ns.idr), .pid_allocated = PIDNS_ADDING, .level = 0, .child_reaper = &init_task, .user_ns = &init_user_ns, .ns.inum = PROC_PID_INIT_INO, #ifdef CONFIG_PID_NS .ns.ops = &pidns_operations, #endif }; EXPORT_SYMBOL_GPL(init_pid_ns); /* * Note: disable interrupts while the pidmap_lock is held as an * interrupt might come in and do read_lock(&tasklist_lock). * * If we don't disable interrupts there is a nasty deadlock between * detach_pid()->free_pid() and another cpu that does * spin_lock(&pidmap_lock) followed by an interrupt routine that does * read_lock(&tasklist_lock); * * After we clean up the tasklist_lock and know there are no * irq handlers that take it we can leave the interrupts enabled. * For now it is easier to be safe than to prove it can't happen. */ static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); void put_pid(struct pid *pid) { struct pid_namespace *ns; if (!pid) return; ns = pid->numbers[pid->level].ns; if (refcount_dec_and_test(&pid->count)) { kmem_cache_free(ns->pid_cachep, pid); put_pid_ns(ns); } } EXPORT_SYMBOL_GPL(put_pid); static void delayed_put_pid(struct rcu_head *rhp) { struct pid *pid = container_of(rhp, struct pid, rcu); put_pid(pid); } void free_pid(struct pid *pid) { /* We can be called with write_lock_irq(&tasklist_lock) held */ int i; unsigned long flags; spin_lock_irqsave(&pidmap_lock, flags); for (i = 0; i <= pid->level; i++) { struct upid *upid = pid->numbers + i; struct pid_namespace *ns = upid->ns; switch (--ns->pid_allocated) { case 2: case 1: /* When all that is left in the pid namespace * is the reaper wake up the reaper. The reaper * may be sleeping in zap_pid_ns_processes(). */ wake_up_process(ns->child_reaper); break; case PIDNS_ADDING: /* Handle a fork failure of the first process */ WARN_ON(ns->child_reaper); ns->pid_allocated = 0; break; } idr_remove(&ns->idr, upid->nr); } spin_unlock_irqrestore(&pidmap_lock, flags); call_rcu(&pid->rcu, delayed_put_pid); } struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, size_t set_tid_size) { struct pid *pid; enum pid_type type; int i, nr; struct pid_namespace *tmp; struct upid *upid; int retval = -ENOMEM; /* * set_tid_size contains the size of the set_tid array. Starting at * the most nested currently active PID namespace it tells alloc_pid() * which PID to set for a process in that most nested PID namespace * up to set_tid_size PID namespaces. It does not have to set the PID * for a process in all nested PID namespaces but set_tid_size must * never be greater than the current ns->level + 1. */ if (set_tid_size > ns->level + 1) return ERR_PTR(-EINVAL); pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); if (!pid) return ERR_PTR(retval); tmp = ns; pid->level = ns->level; for (i = ns->level; i >= 0; i--) { int tid = 0; if (set_tid_size) { tid = set_tid[ns->level - i]; retval = -EINVAL; if (tid < 1 || tid >= pid_max) goto out_free; /* * Also fail if a PID != 1 is requested and * no PID 1 exists. */ if (tid != 1 && !tmp->child_reaper) goto out_free; retval = -EPERM; if (!checkpoint_restore_ns_capable(tmp->user_ns)) goto out_free; set_tid_size--; } idr_preload(GFP_KERNEL); spin_lock_irq(&pidmap_lock); if (tid) { nr = idr_alloc(&tmp->idr, NULL, tid, tid + 1, GFP_ATOMIC); /* * If ENOSPC is returned it means that the PID is * alreay in use. Return EEXIST in that case. */ if (nr == -ENOSPC) nr = -EEXIST; } else { int pid_min = 1; /* * init really needs pid 1, but after reaching the * maximum wrap back to RESERVED_PIDS */ if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) pid_min = RESERVED_PIDS; /* * Store a null pointer so find_pid_ns does not find * a partially initialized PID (see below). */ nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, pid_max, GFP_ATOMIC); } spin_unlock_irq(&pidmap_lock); idr_preload_end(); if (nr < 0) { retval = (nr == -ENOSPC) ? -EAGAIN : nr; goto out_free; } pid->numbers[i].nr = nr; pid->numbers[i].ns = tmp; tmp = tmp->parent; } /* * ENOMEM is not the most obvious choice especially for the case * where the child subreaper has already exited and the pid * namespace denies the creation of any new processes. But ENOMEM * is what we have exposed to userspace for a long time and it is * documented behavior for pid namespaces. So we can't easily * change it even if there were an error code better suited. */ retval = -ENOMEM; get_pid_ns(ns); refcount_set(&pid->count, 1); spin_lock_init(&pid->lock); for (type = 0; type < PIDTYPE_MAX; ++type) INIT_HLIST_HEAD(&pid->tasks[type]); init_waitqueue_head(&pid->wait_pidfd); INIT_HLIST_HEAD(&pid->inodes); upid = pid->numbers + ns->level; spin_lock_irq(&pidmap_lock); if (!(ns->pid_allocated & PIDNS_ADDING)) goto out_unlock; for ( ; upid >= pid->numbers; --upid) { /* Make the PID visible to find_pid_ns. */ idr_replace(&upid->ns->idr, pid, upid->nr); upid->ns->pid_allocated++; } spin_unlock_irq(&pidmap_lock); return pid; out_unlock: spin_unlock_irq(&pidmap_lock); put_pid_ns(ns); out_free: spin_lock_irq(&pidmap_lock); while (++i <= ns->level) { upid = pid->numbers + i; idr_remove(&upid->ns->idr, upid->nr); } /* On failure to allocate the first pid, reset the state */ if (ns->pid_allocated == PIDNS_ADDING) idr_set_cursor(&ns->idr, 0); spin_unlock_irq(&pidmap_lock); kmem_cache_free(ns->pid_cachep, pid); return ERR_PTR(retval); } void disable_pid_allocation(struct pid_namespace *ns) { spin_lock_irq(&pidmap_lock); ns->pid_allocated &= ~PIDNS_ADDING; spin_unlock_irq(&pidmap_lock); } struct pid *find_pid_ns(int nr, struct pid_namespace *ns) { return idr_find(&ns->idr, nr); } EXPORT_SYMBOL_GPL(find_pid_ns); struct pid *find_vpid(int nr) { return find_pid_ns(nr, task_active_pid_ns(current)); } EXPORT_SYMBOL_GPL(find_vpid); static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) { return (type == PIDTYPE_PID) ? &task->thread_pid : &task->signal->pids[type]; } /* * attach_pid() must be called with the tasklist_lock write-held. */ void attach_pid(struct task_struct *task, enum pid_type type) { struct pid *pid = *task_pid_ptr(task, type); hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); } static void __change_pid(struct task_struct *task, enum pid_type type, struct pid *new) { struct pid **pid_ptr = task_pid_ptr(task, type); struct pid *pid; int tmp; pid = *pid_ptr; hlist_del_rcu(&task->pid_links[type]); *pid_ptr = new; for (tmp = PIDTYPE_MAX; --tmp >= 0; ) if (pid_has_task(pid, tmp)) return; free_pid(pid); } void detach_pid(struct task_struct *task, enum pid_type type) { __change_pid(task, type, NULL); } void change_pid(struct task_struct *task, enum pid_type type, struct pid *pid) { __change_pid(task, type, pid); attach_pid(task, type); } void exchange_tids(struct task_struct *left, struct task_struct *right) { struct pid *pid1 = left->thread_pid; struct pid *pid2 = right->thread_pid; struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID]; struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID]; /* Swap the single entry tid lists */ hlists_swap_heads_rcu(head1, head2); /* Swap the per task_struct pid */ rcu_assign_pointer(left->thread_pid, pid2); rcu_assign_pointer(right->thread_pid, pid1); /* Swap the cached value */ WRITE_ONCE(left->pid, pid_nr(pid2)); WRITE_ONCE(right->pid, pid_nr(pid1)); } /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ void transfer_pid(struct task_struct *old, struct task_struct *new, enum pid_type type) { if (type == PIDTYPE_PID) new->thread_pid = old->thread_pid; hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); } struct task_struct *pid_task(struct pid *pid, enum pid_type type) { struct task_struct *result = NULL; if (pid) { struct hlist_node *first; first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), lockdep_tasklist_lock_is_held()); if (first) result = hlist_entry(first, struct task_struct, pid_links[(type)]); } return result; } EXPORT_SYMBOL(pid_task); /* * Must be called under rcu_read_lock(). */ struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) { RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "find_task_by_pid_ns() needs rcu_read_lock() protection"); return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); } struct task_struct *find_task_by_vpid(pid_t vnr) { return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); } struct task_struct *find_get_task_by_vpid(pid_t nr) { struct task_struct *task; rcu_read_lock(); task = find_task_by_vpid(nr); if (task) get_task_struct(task); rcu_read_unlock(); return task; } struct pid *get_task_pid(struct task_struct *task, enum pid_type type) { struct pid *pid; rcu_read_lock(); pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); rcu_read_unlock(); return pid; } EXPORT_SYMBOL_GPL(get_task_pid); struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) { struct task_struct *result; rcu_read_lock(); result = pid_task(pid, type); if (result) get_task_struct(result); rcu_read_unlock(); return result; } EXPORT_SYMBOL_GPL(get_pid_task); struct pid *find_get_pid(pid_t nr) { struct pid *pid; rcu_read_lock(); pid = get_pid(find_vpid(nr)); rcu_read_unlock(); return pid; } EXPORT_SYMBOL_GPL(find_get_pid); pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) { struct upid *upid; pid_t nr = 0; if (pid && ns->level <= pid->level) { upid = &pid->numbers[ns->level]; if (upid->ns == ns) nr = upid->nr; } return nr; } EXPORT_SYMBOL_GPL(pid_nr_ns); pid_t pid_vnr(struct pid *pid) { return pid_nr_ns(pid, task_active_pid_ns(current)); } EXPORT_SYMBOL_GPL(pid_vnr); pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns) { pid_t nr = 0; rcu_read_lock(); if (!ns) ns = task_active_pid_ns(current); nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); rcu_read_unlock(); return nr; } EXPORT_SYMBOL(__task_pid_nr_ns); struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) { return ns_of_pid(task_pid(tsk)); } EXPORT_SYMBOL_GPL(task_active_pid_ns); /* * Used by proc to find the first pid that is greater than or equal to nr. * * If there is a pid at nr this function is exactly the same as find_pid_ns. */ struct pid *find_ge_pid(int nr, struct pid_namespace *ns) { return idr_get_next(&ns->idr, &nr); } struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags) { struct fd f; struct pid *pid; f = fdget(fd); if (!f.file) return ERR_PTR(-EBADF); pid = pidfd_pid(f.file); if (!IS_ERR(pid)) { get_pid(pid); *flags = f.file->f_flags; } fdput(f); return pid; } /** * pidfd_get_task() - Get the task associated with a pidfd * * @pidfd: pidfd for which to get the task * @flags: flags associated with this pidfd * * Return the task associated with @pidfd. The function takes a reference on * the returned task. The caller is responsible for releasing that reference. * * Currently, the process identified by @pidfd is always a thread-group leader. * This restriction currently exists for all aspects of pidfds including pidfd * creation (CLONE_PIDFD cannot be used with CLONE_THREAD) and pidfd polling * (only supports thread group leaders). * * Return: On success, the task_struct associated with the pidfd. * On error, a negative errno number will be returned. */ struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags) { unsigned int f_flags; struct pid *pid; struct task_struct *task; pid = pidfd_get_pid(pidfd, &f_flags); if (IS_ERR(pid)) return ERR_CAST(pid); task = get_pid_task(pid, PIDTYPE_TGID); put_pid(pid); if (!task) return ERR_PTR(-ESRCH); *flags = f_flags; return task; } /** * pidfd_create() - Create a new pid file descriptor. * * @pid: struct pid that the pidfd will reference * @flags: flags to pass * * This creates a new pid file descriptor with the O_CLOEXEC flag set. * * Note, that this function can only be called after the fd table has * been unshared to avoid leaking the pidfd to the new process. * * This symbol should not be explicitly exported to loadable modules. * * Return: On success, a cloexec pidfd is returned. * On error, a negative errno number will be returned. */ int pidfd_create(struct pid *pid, unsigned int flags) { int fd; if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) return -EINVAL; if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) return -EINVAL; fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), flags | O_RDWR | O_CLOEXEC); if (fd < 0) put_pid(pid); return fd; } /** * pidfd_open() - Open new pid file descriptor. * * @pid: pid for which to retrieve a pidfd * @flags: flags to pass * * This creates a new pid file descriptor with the O_CLOEXEC flag set for * the process identified by @pid. Currently, the process identified by * @pid must be a thread-group leader. This restriction currently exists * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot * be used with CLONE_THREAD) and pidfd polling (only supports thread group * leaders). * * Return: On success, a cloexec pidfd is returned. * On error, a negative errno number will be returned. */ SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) { int fd; struct pid *p; if (flags & ~PIDFD_NONBLOCK) return -EINVAL; if (pid <= 0) return -EINVAL; p = find_get_pid(pid); if (!p) return -ESRCH; fd = pidfd_create(p, flags); put_pid(p); return fd; } void __init pid_idr_init(void) { /* Verify no one has done anything silly: */ BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); /* bump default and minimum pid_max based on number of cpus */ pid_max = min(pid_max_max, max_t(int, pid_max, PIDS_PER_CPU_DEFAULT * num_possible_cpus())); pid_max_min = max_t(int, pid_max_min, PIDS_PER_CPU_MIN * num_possible_cpus()); pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); idr_init(&init_pid_ns.idr); init_pid_ns.pid_cachep = KMEM_CACHE(pid, SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); } static struct file *__pidfd_fget(struct task_struct *task, int fd) { struct file *file; int ret; ret = down_read_killable(&task->signal->exec_update_lock); if (ret) return ERR_PTR(ret); if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) file = fget_task(task, fd); else file = ERR_PTR(-EPERM); up_read(&task->signal->exec_update_lock); return file ?: ERR_PTR(-EBADF); } static int pidfd_getfd(struct pid *pid, int fd) { struct task_struct *task; struct file *file; int ret; task = get_pid_task(pid, PIDTYPE_PID); if (!task) return -ESRCH; file = __pidfd_fget(task, fd); put_task_struct(task); if (IS_ERR(file)) return PTR_ERR(file); ret = receive_fd(file, O_CLOEXEC); fput(file); return ret; } /** * sys_pidfd_getfd() - Get a file descriptor from another process * * @pidfd: the pidfd file descriptor of the process * @fd: the file descriptor number to get * @flags: flags on how to get the fd (reserved) * * This syscall gets a copy of a file descriptor from another process * based on the pidfd, and file descriptor number. It requires that * the calling process has the ability to ptrace the process represented * by the pidfd. The process which is having its file descriptor copied * is otherwise unaffected. * * Return: On success, a cloexec file descriptor is returned. * On error, a negative errno number will be returned. */ SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, unsigned int, flags) { struct pid *pid; struct fd f; int ret; /* flags is currently unused - make sure it's unset */ if (flags) return -EINVAL; f = fdget(pidfd); if (!f.file) return -EBADF; pid = pidfd_pid(f.file); if (IS_ERR(pid)) ret = PTR_ERR(pid); else ret = pidfd_getfd(pid, fd); fdput(f); return ret; }