// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar * Copyright (C) 2005-2006, Thomas Gleixner, Russell King * * This file contains the interrupt descriptor management code. Detailed * information is available in Documentation/core-api/genericirq.rst * */ #include #include #include #include #include #include #include #include #include "internals.h" /* * lockdep: we want to handle all irq_desc locks as a single lock-class: */ static struct lock_class_key irq_desc_lock_class; #if defined(CONFIG_SMP) static int __init irq_affinity_setup(char *str) { alloc_bootmem_cpumask_var(&irq_default_affinity); cpulist_parse(str, irq_default_affinity); /* * Set at least the boot cpu. We don't want to end up with * bugreports caused by random commandline masks */ cpumask_set_cpu(smp_processor_id(), irq_default_affinity); return 1; } __setup("irqaffinity=", irq_affinity_setup); static void __init init_irq_default_affinity(void) { if (!cpumask_available(irq_default_affinity)) zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT); if (cpumask_empty(irq_default_affinity)) cpumask_setall(irq_default_affinity); } #else static void __init init_irq_default_affinity(void) { } #endif #ifdef CONFIG_SMP static int alloc_masks(struct irq_desc *desc, int node) { if (!zalloc_cpumask_var_node(&desc->irq_common_data.affinity, GFP_KERNEL, node)) return -ENOMEM; #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK if (!zalloc_cpumask_var_node(&desc->irq_common_data.effective_affinity, GFP_KERNEL, node)) { free_cpumask_var(desc->irq_common_data.affinity); return -ENOMEM; } #endif #ifdef CONFIG_GENERIC_PENDING_IRQ if (!zalloc_cpumask_var_node(&desc->pending_mask, GFP_KERNEL, node)) { #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK free_cpumask_var(desc->irq_common_data.effective_affinity); #endif free_cpumask_var(desc->irq_common_data.affinity); return -ENOMEM; } #endif return 0; } static void desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity) { if (!affinity) affinity = irq_default_affinity; cpumask_copy(desc->irq_common_data.affinity, affinity); #ifdef CONFIG_GENERIC_PENDING_IRQ cpumask_clear(desc->pending_mask); #endif #ifdef CONFIG_NUMA desc->irq_common_data.node = node; #endif } #else static inline int alloc_masks(struct irq_desc *desc, int node) { return 0; } static inline void desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity) { } #endif static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node, const struct cpumask *affinity, struct module *owner) { int cpu; desc->irq_common_data.handler_data = NULL; desc->irq_common_data.msi_desc = NULL; desc->irq_data.common = &desc->irq_common_data; desc->irq_data.irq = irq; desc->irq_data.chip = &no_irq_chip; desc->irq_data.chip_data = NULL; irq_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS); irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED); irqd_set(&desc->irq_data, IRQD_IRQ_MASKED); desc->handle_irq = handle_bad_irq; desc->depth = 1; desc->irq_count = 0; desc->irqs_unhandled = 0; desc->tot_count = 0; desc->name = NULL; desc->owner = owner; for_each_possible_cpu(cpu) *per_cpu_ptr(desc->kstat_irqs, cpu) = 0; desc_smp_init(desc, node, affinity); } int nr_irqs = NR_IRQS; EXPORT_SYMBOL_GPL(nr_irqs); static DEFINE_MUTEX(sparse_irq_lock); static struct maple_tree sparse_irqs = MTREE_INIT_EXT(sparse_irqs, MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | MT_FLAGS_USE_RCU, sparse_irq_lock); static int irq_find_free_area(unsigned int from, unsigned int cnt) { MA_STATE(mas, &sparse_irqs, 0, 0); if (mas_empty_area(&mas, from, MAX_SPARSE_IRQS, cnt)) return -ENOSPC; return mas.index; } static unsigned int irq_find_at_or_after(unsigned int offset) { unsigned long index = offset; struct irq_desc *desc; guard(rcu)(); desc = mt_find(&sparse_irqs, &index, nr_irqs); return desc ? irq_desc_get_irq(desc) : nr_irqs; } static void irq_insert_desc(unsigned int irq, struct irq_desc *desc) { MA_STATE(mas, &sparse_irqs, irq, irq); WARN_ON(mas_store_gfp(&mas, desc, GFP_KERNEL) != 0); } static void delete_irq_desc(unsigned int irq) { MA_STATE(mas, &sparse_irqs, irq, irq); mas_erase(&mas); } #ifdef CONFIG_SPARSE_IRQ static void irq_kobj_release(struct kobject *kobj); #ifdef CONFIG_SYSFS static struct kobject *irq_kobj_base; #define IRQ_ATTR_RO(_name) \ static struct kobj_attribute _name##_attr = __ATTR_RO(_name) static ssize_t per_cpu_count_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); ssize_t ret = 0; char *p = ""; int cpu; for_each_possible_cpu(cpu) { unsigned int c = irq_desc_kstat_cpu(desc, cpu); ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%u", p, c); p = ","; } ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n"); return ret; } IRQ_ATTR_RO(per_cpu_count); static ssize_t chip_name_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); ssize_t ret = 0; raw_spin_lock_irq(&desc->lock); if (desc->irq_data.chip && desc->irq_data.chip->name) { ret = scnprintf(buf, PAGE_SIZE, "%s\n", desc->irq_data.chip->name); } raw_spin_unlock_irq(&desc->lock); return ret; } IRQ_ATTR_RO(chip_name); static ssize_t hwirq_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); ssize_t ret = 0; raw_spin_lock_irq(&desc->lock); if (desc->irq_data.domain) ret = sprintf(buf, "%lu\n", desc->irq_data.hwirq); raw_spin_unlock_irq(&desc->lock); return ret; } IRQ_ATTR_RO(hwirq); static ssize_t type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); ssize_t ret = 0; raw_spin_lock_irq(&desc->lock); ret = sprintf(buf, "%s\n", irqd_is_level_type(&desc->irq_data) ? "level" : "edge"); raw_spin_unlock_irq(&desc->lock); return ret; } IRQ_ATTR_RO(type); static ssize_t wakeup_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); ssize_t ret = 0; raw_spin_lock_irq(&desc->lock); ret = sprintf(buf, "%s\n", irqd_is_wakeup_set(&desc->irq_data) ? "enabled" : "disabled"); raw_spin_unlock_irq(&desc->lock); return ret; } IRQ_ATTR_RO(wakeup); static ssize_t name_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); ssize_t ret = 0; raw_spin_lock_irq(&desc->lock); if (desc->name) ret = scnprintf(buf, PAGE_SIZE, "%s\n", desc->name); raw_spin_unlock_irq(&desc->lock); return ret; } IRQ_ATTR_RO(name); static ssize_t actions_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); struct irqaction *action; ssize_t ret = 0; char *p = ""; raw_spin_lock_irq(&desc->lock); for_each_action_of_desc(desc, action) { ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%s", p, action->name); p = ","; } raw_spin_unlock_irq(&desc->lock); if (ret) ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n"); return ret; } IRQ_ATTR_RO(actions); static struct attribute *irq_attrs[] = { &per_cpu_count_attr.attr, &chip_name_attr.attr, &hwirq_attr.attr, &type_attr.attr, &wakeup_attr.attr, &name_attr.attr, &actions_attr.attr, NULL }; ATTRIBUTE_GROUPS(irq); static const struct kobj_type irq_kobj_type = { .release = irq_kobj_release, .sysfs_ops = &kobj_sysfs_ops, .default_groups = irq_groups, }; static void irq_sysfs_add(int irq, struct irq_desc *desc) { if (irq_kobj_base) { /* * Continue even in case of failure as this is nothing * crucial and failures in the late irq_sysfs_init() * cannot be rolled back. */ if (kobject_add(&desc->kobj, irq_kobj_base, "%d", irq)) pr_warn("Failed to add kobject for irq %d\n", irq); else desc->istate |= IRQS_SYSFS; } } static void irq_sysfs_del(struct irq_desc *desc) { /* * Only invoke kobject_del() when kobject_add() was successfully * invoked for the descriptor. This covers both early boot, where * sysfs is not initialized yet, and the case of a failed * kobject_add() invocation. */ if (desc->istate & IRQS_SYSFS) kobject_del(&desc->kobj); } static int __init irq_sysfs_init(void) { struct irq_desc *desc; int irq; /* Prevent concurrent irq alloc/free */ irq_lock_sparse(); irq_kobj_base = kobject_create_and_add("irq", kernel_kobj); if (!irq_kobj_base) { irq_unlock_sparse(); return -ENOMEM; } /* Add the already allocated interrupts */ for_each_irq_desc(irq, desc) irq_sysfs_add(irq, desc); irq_unlock_sparse(); return 0; } postcore_initcall(irq_sysfs_init); #else /* !CONFIG_SYSFS */ static const struct kobj_type irq_kobj_type = { .release = irq_kobj_release, }; static void irq_sysfs_add(int irq, struct irq_desc *desc) {} static void irq_sysfs_del(struct irq_desc *desc) {} #endif /* CONFIG_SYSFS */ struct irq_desc *irq_to_desc(unsigned int irq) { return mtree_load(&sparse_irqs, irq); } #ifdef CONFIG_KVM_BOOK3S_64_HV_MODULE EXPORT_SYMBOL_GPL(irq_to_desc); #endif #ifdef CONFIG_SMP static void free_masks(struct irq_desc *desc) { #ifdef CONFIG_GENERIC_PENDING_IRQ free_cpumask_var(desc->pending_mask); #endif free_cpumask_var(desc->irq_common_data.affinity); #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK free_cpumask_var(desc->irq_common_data.effective_affinity); #endif } #else static inline void free_masks(struct irq_desc *desc) { } #endif void irq_lock_sparse(void) { mutex_lock(&sparse_irq_lock); } void irq_unlock_sparse(void) { mutex_unlock(&sparse_irq_lock); } static struct irq_desc *alloc_desc(int irq, int node, unsigned int flags, const struct cpumask *affinity, struct module *owner) { struct irq_desc *desc; desc = kzalloc_node(sizeof(*desc), GFP_KERNEL, node); if (!desc) return NULL; /* allocate based on nr_cpu_ids */ desc->kstat_irqs = alloc_percpu(unsigned int); if (!desc->kstat_irqs) goto err_desc; if (alloc_masks(desc, node)) goto err_kstat; raw_spin_lock_init(&desc->lock); lockdep_set_class(&desc->lock, &irq_desc_lock_class); mutex_init(&desc->request_mutex); init_rcu_head(&desc->rcu); init_waitqueue_head(&desc->wait_for_threads); desc_set_defaults(irq, desc, node, affinity, owner); irqd_set(&desc->irq_data, flags); kobject_init(&desc->kobj, &irq_kobj_type); irq_resend_init(desc); return desc; err_kstat: free_percpu(desc->kstat_irqs); err_desc: kfree(desc); return NULL; } static void irq_kobj_release(struct kobject *kobj) { struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); free_masks(desc); free_percpu(desc->kstat_irqs); kfree(desc); } static void delayed_free_desc(struct rcu_head *rhp) { struct irq_desc *desc = container_of(rhp, struct irq_desc, rcu); kobject_put(&desc->kobj); } static void free_desc(unsigned int irq) { struct irq_desc *desc = irq_to_desc(irq); irq_remove_debugfs_entry(desc); unregister_irq_proc(irq, desc); /* * sparse_irq_lock protects also show_interrupts() and * kstat_irq_usr(). Once we deleted the descriptor from the * sparse tree we can free it. Access in proc will fail to * lookup the descriptor. * * The sysfs entry must be serialized against a concurrent * irq_sysfs_init() as well. */ irq_sysfs_del(desc); delete_irq_desc(irq); /* * We free the descriptor, masks and stat fields via RCU. That * allows demultiplex interrupts to do rcu based management of * the child interrupts. * This also allows us to use rcu in kstat_irqs_usr(). */ call_rcu(&desc->rcu, delayed_free_desc); } static int alloc_descs(unsigned int start, unsigned int cnt, int node, const struct irq_affinity_desc *affinity, struct module *owner) { struct irq_desc *desc; int i; /* Validate affinity mask(s) */ if (affinity) { for (i = 0; i < cnt; i++) { if (cpumask_empty(&affinity[i].mask)) return -EINVAL; } } for (i = 0; i < cnt; i++) { const struct cpumask *mask = NULL; unsigned int flags = 0; if (affinity) { if (affinity->is_managed) { flags = IRQD_AFFINITY_MANAGED | IRQD_MANAGED_SHUTDOWN; } mask = &affinity->mask; node = cpu_to_node(cpumask_first(mask)); affinity++; } desc = alloc_desc(start + i, node, flags, mask, owner); if (!desc) goto err; irq_insert_desc(start + i, desc); irq_sysfs_add(start + i, desc); irq_add_debugfs_entry(start + i, desc); } return start; err: for (i--; i >= 0; i--) free_desc(start + i); return -ENOMEM; } static int irq_expand_nr_irqs(unsigned int nr) { if (nr > MAX_SPARSE_IRQS) return -ENOMEM; nr_irqs = nr; return 0; } int __init early_irq_init(void) { int i, initcnt, node = first_online_node; struct irq_desc *desc; init_irq_default_affinity(); /* Let arch update nr_irqs and return the nr of preallocated irqs */ initcnt = arch_probe_nr_irqs(); printk(KERN_INFO "NR_IRQS: %d, nr_irqs: %d, preallocated irqs: %d\n", NR_IRQS, nr_irqs, initcnt); if (WARN_ON(nr_irqs > MAX_SPARSE_IRQS)) nr_irqs = MAX_SPARSE_IRQS; if (WARN_ON(initcnt > MAX_SPARSE_IRQS)) initcnt = MAX_SPARSE_IRQS; if (initcnt > nr_irqs) nr_irqs = initcnt; for (i = 0; i < initcnt; i++) { desc = alloc_desc(i, node, 0, NULL, NULL); irq_insert_desc(i, desc); } return arch_early_irq_init(); } #else /* !CONFIG_SPARSE_IRQ */ struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = { [0 ... NR_IRQS-1] = { .handle_irq = handle_bad_irq, .depth = 1, .lock = __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock), } }; int __init early_irq_init(void) { int count, i, node = first_online_node; struct irq_desc *desc; init_irq_default_affinity(); printk(KERN_INFO "NR_IRQS: %d\n", NR_IRQS); desc = irq_desc; count = ARRAY_SIZE(irq_desc); for (i = 0; i < count; i++) { desc[i].kstat_irqs = alloc_percpu(unsigned int); alloc_masks(&desc[i], node); raw_spin_lock_init(&desc[i].lock); lockdep_set_class(&desc[i].lock, &irq_desc_lock_class); mutex_init(&desc[i].request_mutex); init_waitqueue_head(&desc[i].wait_for_threads); desc_set_defaults(i, &desc[i], node, NULL, NULL); irq_resend_init(&desc[i]); } return arch_early_irq_init(); } struct irq_desc *irq_to_desc(unsigned int irq) { return (irq < NR_IRQS) ? irq_desc + irq : NULL; } EXPORT_SYMBOL(irq_to_desc); static void free_desc(unsigned int irq) { struct irq_desc *desc = irq_to_desc(irq); unsigned long flags; raw_spin_lock_irqsave(&desc->lock, flags); desc_set_defaults(irq, desc, irq_desc_get_node(desc), NULL, NULL); raw_spin_unlock_irqrestore(&desc->lock, flags); delete_irq_desc(irq); } static inline int alloc_descs(unsigned int start, unsigned int cnt, int node, const struct irq_affinity_desc *affinity, struct module *owner) { u32 i; for (i = 0; i < cnt; i++) { struct irq_desc *desc = irq_to_desc(start + i); desc->owner = owner; irq_insert_desc(start + i, desc); } return start; } static int irq_expand_nr_irqs(unsigned int nr) { return -ENOMEM; } void irq_mark_irq(unsigned int irq) { mutex_lock(&sparse_irq_lock); irq_insert_desc(irq, irq_desc + irq); mutex_unlock(&sparse_irq_lock); } #ifdef CONFIG_GENERIC_IRQ_LEGACY void irq_init_desc(unsigned int irq) { free_desc(irq); } #endif #endif /* !CONFIG_SPARSE_IRQ */ int handle_irq_desc(struct irq_desc *desc) { struct irq_data *data; if (!desc) return -EINVAL; data = irq_desc_get_irq_data(desc); if (WARN_ON_ONCE(!in_hardirq() && handle_enforce_irqctx(data))) return -EPERM; generic_handle_irq_desc(desc); return 0; } /** * generic_handle_irq - Invoke the handler for a particular irq * @irq: The irq number to handle * * Returns: 0 on success, or -EINVAL if conversion has failed * * This function must be called from an IRQ context with irq regs * initialized. */ int generic_handle_irq(unsigned int irq) { return handle_irq_desc(irq_to_desc(irq)); } EXPORT_SYMBOL_GPL(generic_handle_irq); /** * generic_handle_irq_safe - Invoke the handler for a particular irq from any * context. * @irq: The irq number to handle * * Returns: 0 on success, a negative value on error. * * This function can be called from any context (IRQ or process context). It * will report an error if not invoked from IRQ context and the irq has been * marked to enforce IRQ-context only. */ int generic_handle_irq_safe(unsigned int irq) { unsigned long flags; int ret; local_irq_save(flags); ret = handle_irq_desc(irq_to_desc(irq)); local_irq_restore(flags); return ret; } EXPORT_SYMBOL_GPL(generic_handle_irq_safe); #ifdef CONFIG_IRQ_DOMAIN /** * generic_handle_domain_irq - Invoke the handler for a HW irq belonging * to a domain. * @domain: The domain where to perform the lookup * @hwirq: The HW irq number to convert to a logical one * * Returns: 0 on success, or -EINVAL if conversion has failed * * This function must be called from an IRQ context with irq regs * initialized. */ int generic_handle_domain_irq(struct irq_domain *domain, unsigned int hwirq) { return handle_irq_desc(irq_resolve_mapping(domain, hwirq)); } EXPORT_SYMBOL_GPL(generic_handle_domain_irq); /** * generic_handle_irq_safe - Invoke the handler for a HW irq belonging * to a domain from any context. * @domain: The domain where to perform the lookup * @hwirq: The HW irq number to convert to a logical one * * Returns: 0 on success, a negative value on error. * * This function can be called from any context (IRQ or process * context). If the interrupt is marked as 'enforce IRQ-context only' then * the function must be invoked from hard interrupt context. */ int generic_handle_domain_irq_safe(struct irq_domain *domain, unsigned int hwirq) { unsigned long flags; int ret; local_irq_save(flags); ret = handle_irq_desc(irq_resolve_mapping(domain, hwirq)); local_irq_restore(flags); return ret; } EXPORT_SYMBOL_GPL(generic_handle_domain_irq_safe); /** * generic_handle_domain_nmi - Invoke the handler for a HW nmi belonging * to a domain. * @domain: The domain where to perform the lookup * @hwirq: The HW irq number to convert to a logical one * * Returns: 0 on success, or -EINVAL if conversion has failed * * This function must be called from an NMI context with irq regs * initialized. **/ int generic_handle_domain_nmi(struct irq_domain *domain, unsigned int hwirq) { WARN_ON_ONCE(!in_nmi()); return handle_irq_desc(irq_resolve_mapping(domain, hwirq)); } #endif /* Dynamic interrupt handling */ /** * irq_free_descs - free irq descriptors * @from: Start of descriptor range * @cnt: Number of consecutive irqs to free */ void irq_free_descs(unsigned int from, unsigned int cnt) { int i; if (from >= nr_irqs || (from + cnt) > nr_irqs) return; mutex_lock(&sparse_irq_lock); for (i = 0; i < cnt; i++) free_desc(from + i); mutex_unlock(&sparse_irq_lock); } EXPORT_SYMBOL_GPL(irq_free_descs); /** * __irq_alloc_descs - allocate and initialize a range of irq descriptors * @irq: Allocate for specific irq number if irq >= 0 * @from: Start the search from this irq number * @cnt: Number of consecutive irqs to allocate. * @node: Preferred node on which the irq descriptor should be allocated * @owner: Owning module (can be NULL) * @affinity: Optional pointer to an affinity mask array of size @cnt which * hints where the irq descriptors should be allocated and which * default affinities to use * * Returns the first irq number or error code */ int __ref __irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node, struct module *owner, const struct irq_affinity_desc *affinity) { int start, ret; if (!cnt) return -EINVAL; if (irq >= 0) { if (from > irq) return -EINVAL; from = irq; } else { /* * For interrupts which are freely allocated the * architecture can force a lower bound to the @from * argument. x86 uses this to exclude the GSI space. */ from = arch_dynirq_lower_bound(from); } mutex_lock(&sparse_irq_lock); start = irq_find_free_area(from, cnt); ret = -EEXIST; if (irq >=0 && start != irq) goto unlock; if (start + cnt > nr_irqs) { ret = irq_expand_nr_irqs(start + cnt); if (ret) goto unlock; } ret = alloc_descs(start, cnt, node, affinity, owner); unlock: mutex_unlock(&sparse_irq_lock); return ret; } EXPORT_SYMBOL_GPL(__irq_alloc_descs); /** * irq_get_next_irq - get next allocated irq number * @offset: where to start the search * * Returns next irq number after offset or nr_irqs if none is found. */ unsigned int irq_get_next_irq(unsigned int offset) { return irq_find_at_or_after(offset); } struct irq_desc * __irq_get_desc_lock(unsigned int irq, unsigned long *flags, bool bus, unsigned int check) { struct irq_desc *desc = irq_to_desc(irq); if (desc) { if (check & _IRQ_DESC_CHECK) { if ((check & _IRQ_DESC_PERCPU) && !irq_settings_is_per_cpu_devid(desc)) return NULL; if (!(check & _IRQ_DESC_PERCPU) && irq_settings_is_per_cpu_devid(desc)) return NULL; } if (bus) chip_bus_lock(desc); raw_spin_lock_irqsave(&desc->lock, *flags); } return desc; } void __irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags, bool bus) __releases(&desc->lock) { raw_spin_unlock_irqrestore(&desc->lock, flags); if (bus) chip_bus_sync_unlock(desc); } int irq_set_percpu_devid_partition(unsigned int irq, const struct cpumask *affinity) { struct irq_desc *desc = irq_to_desc(irq); if (!desc) return -EINVAL; if (desc->percpu_enabled) return -EINVAL; desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL); if (!desc->percpu_enabled) return -ENOMEM; if (affinity) desc->percpu_affinity = affinity; else desc->percpu_affinity = cpu_possible_mask; irq_set_percpu_devid_flags(irq); return 0; } int irq_set_percpu_devid(unsigned int irq) { return irq_set_percpu_devid_partition(irq, NULL); } int irq_get_percpu_devid_partition(unsigned int irq, struct cpumask *affinity) { struct irq_desc *desc = irq_to_desc(irq); if (!desc || !desc->percpu_enabled) return -EINVAL; if (affinity) cpumask_copy(affinity, desc->percpu_affinity); return 0; } EXPORT_SYMBOL_GPL(irq_get_percpu_devid_partition); void kstat_incr_irq_this_cpu(unsigned int irq) { kstat_incr_irqs_this_cpu(irq_to_desc(irq)); } /** * kstat_irqs_cpu - Get the statistics for an interrupt on a cpu * @irq: The interrupt number * @cpu: The cpu number * * Returns the sum of interrupt counts on @cpu since boot for * @irq. The caller must ensure that the interrupt is not removed * concurrently. */ unsigned int kstat_irqs_cpu(unsigned int irq, int cpu) { struct irq_desc *desc = irq_to_desc(irq); return desc && desc->kstat_irqs ? *per_cpu_ptr(desc->kstat_irqs, cpu) : 0; } static bool irq_is_nmi(struct irq_desc *desc) { return desc->istate & IRQS_NMI; } static unsigned int kstat_irqs(unsigned int irq) { struct irq_desc *desc = irq_to_desc(irq); unsigned int sum = 0; int cpu; if (!desc || !desc->kstat_irqs) return 0; if (!irq_settings_is_per_cpu_devid(desc) && !irq_settings_is_per_cpu(desc) && !irq_is_nmi(desc)) return data_race(desc->tot_count); for_each_possible_cpu(cpu) sum += data_race(*per_cpu_ptr(desc->kstat_irqs, cpu)); return sum; } /** * kstat_irqs_usr - Get the statistics for an interrupt from thread context * @irq: The interrupt number * * Returns the sum of interrupt counts on all cpus since boot for @irq. * * It uses rcu to protect the access since a concurrent removal of an * interrupt descriptor is observing an rcu grace period before * delayed_free_desc()/irq_kobj_release(). */ unsigned int kstat_irqs_usr(unsigned int irq) { unsigned int sum; rcu_read_lock(); sum = kstat_irqs(irq); rcu_read_unlock(); return sum; } #ifdef CONFIG_LOCKDEP void __irq_set_lockdep_class(unsigned int irq, struct lock_class_key *lock_class, struct lock_class_key *request_class) { struct irq_desc *desc = irq_to_desc(irq); if (desc) { lockdep_set_class(&desc->lock, lock_class); lockdep_set_class(&desc->request_mutex, request_class); } } EXPORT_SYMBOL_GPL(__irq_set_lockdep_class); #endif