// SPDX-License-Identifier: GPL-2.0-only /* bpf/cpumap.c * * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. */ /** * DOC: cpu map * The 'cpumap' is primarily used as a backend map for XDP BPF helper * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. * * Unlike devmap which redirects XDP frames out to another NIC device, * this map type redirects raw XDP frames to another CPU. The remote * CPU will do SKB-allocation and call the normal network stack. */ /* * This is a scalability and isolation mechanism, that allow * separating the early driver network XDP layer, from the rest of the * netstack, and assigning dedicated CPUs for this stage. This * basically allows for 10G wirespeed pre-filtering via bpf. */ #include #include #include #include #include #include #include #include #include #include #include #include /* netif_receive_skb_list */ #include /* eth_type_trans */ /* General idea: XDP packets getting XDP redirected to another CPU, * will maximum be stored/queued for one driver ->poll() call. It is * guaranteed that queueing the frame and the flush operation happen on * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() * which queue in bpf_cpu_map_entry contains packets. */ #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ struct bpf_cpu_map_entry; struct bpf_cpu_map; struct xdp_bulk_queue { void *q[CPU_MAP_BULK_SIZE]; struct list_head flush_node; struct bpf_cpu_map_entry *obj; unsigned int count; }; /* Struct for every remote "destination" CPU in map */ struct bpf_cpu_map_entry { u32 cpu; /* kthread CPU and map index */ int map_id; /* Back reference to map */ /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ struct xdp_bulk_queue __percpu *bulkq; /* Queue with potential multi-producers, and single-consumer kthread */ struct ptr_ring *queue; struct task_struct *kthread; struct bpf_cpumap_val value; struct bpf_prog *prog; struct completion kthread_running; struct rcu_work free_work; }; struct bpf_cpu_map { struct bpf_map map; /* Below members specific for map type */ struct bpf_cpu_map_entry __rcu **cpu_map; }; static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list); static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) { u32 value_size = attr->value_size; struct bpf_cpu_map *cmap; /* check sanity of attributes */ if (attr->max_entries == 0 || attr->key_size != 4 || (value_size != offsetofend(struct bpf_cpumap_val, qsize) && value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) || attr->map_flags & ~BPF_F_NUMA_NODE) return ERR_PTR(-EINVAL); /* Pre-limit array size based on NR_CPUS, not final CPU check */ if (attr->max_entries > NR_CPUS) return ERR_PTR(-E2BIG); cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE); if (!cmap) return ERR_PTR(-ENOMEM); bpf_map_init_from_attr(&cmap->map, attr); /* Alloc array for possible remote "destination" CPUs */ cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *), cmap->map.numa_node); if (!cmap->cpu_map) { bpf_map_area_free(cmap); return ERR_PTR(-ENOMEM); } return &cmap->map; } static void __cpu_map_ring_cleanup(struct ptr_ring *ring) { /* The tear-down procedure should have made sure that queue is * empty. See __cpu_map_entry_replace() and work-queue * invoked cpu_map_kthread_stop(). Catch any broken behaviour * gracefully and warn once. */ void *ptr; while ((ptr = ptr_ring_consume(ring))) { WARN_ON_ONCE(1); if (unlikely(__ptr_test_bit(0, &ptr))) { __ptr_clear_bit(0, &ptr); kfree_skb(ptr); continue; } xdp_return_frame(ptr); } } static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu, struct list_head *listp, struct xdp_cpumap_stats *stats) { struct sk_buff *skb, *tmp; struct xdp_buff xdp; u32 act; int err; list_for_each_entry_safe(skb, tmp, listp, list) { act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog); switch (act) { case XDP_PASS: break; case XDP_REDIRECT: skb_list_del_init(skb); err = xdp_do_generic_redirect(skb->dev, skb, &xdp, rcpu->prog); if (unlikely(err)) { kfree_skb(skb); stats->drop++; } else { stats->redirect++; } return; default: bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); fallthrough; case XDP_ABORTED: trace_xdp_exception(skb->dev, rcpu->prog, act); fallthrough; case XDP_DROP: skb_list_del_init(skb); kfree_skb(skb); stats->drop++; return; } } } static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu, void **frames, int n, struct xdp_cpumap_stats *stats) { struct xdp_rxq_info rxq = {}; struct xdp_buff xdp; int i, nframes = 0; xdp_set_return_frame_no_direct(); xdp.rxq = &rxq; for (i = 0; i < n; i++) { struct xdp_frame *xdpf = frames[i]; u32 act; int err; rxq.dev = xdpf->dev_rx; rxq.mem = xdpf->mem; /* TODO: report queue_index to xdp_rxq_info */ xdp_convert_frame_to_buff(xdpf, &xdp); act = bpf_prog_run_xdp(rcpu->prog, &xdp); switch (act) { case XDP_PASS: err = xdp_update_frame_from_buff(&xdp, xdpf); if (err < 0) { xdp_return_frame(xdpf); stats->drop++; } else { frames[nframes++] = xdpf; stats->pass++; } break; case XDP_REDIRECT: err = xdp_do_redirect(xdpf->dev_rx, &xdp, rcpu->prog); if (unlikely(err)) { xdp_return_frame(xdpf); stats->drop++; } else { stats->redirect++; } break; default: bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); fallthrough; case XDP_DROP: xdp_return_frame(xdpf); stats->drop++; break; } } xdp_clear_return_frame_no_direct(); return nframes; } #define CPUMAP_BATCH 8 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames, int xdp_n, struct xdp_cpumap_stats *stats, struct list_head *list) { int nframes; if (!rcpu->prog) return xdp_n; rcu_read_lock_bh(); nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats); if (stats->redirect) xdp_do_flush(); if (unlikely(!list_empty(list))) cpu_map_bpf_prog_run_skb(rcpu, list, stats); rcu_read_unlock_bh(); /* resched point, may call do_softirq() */ return nframes; } static int cpu_map_kthread_run(void *data) { struct bpf_cpu_map_entry *rcpu = data; complete(&rcpu->kthread_running); set_current_state(TASK_INTERRUPTIBLE); /* When kthread gives stop order, then rcpu have been disconnected * from map, thus no new packets can enter. Remaining in-flight * per CPU stored packets are flushed to this queue. Wait honoring * kthread_stop signal until queue is empty. */ while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { struct xdp_cpumap_stats stats = {}; /* zero stats */ unsigned int kmem_alloc_drops = 0, sched = 0; gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; int i, n, m, nframes, xdp_n; void *frames[CPUMAP_BATCH]; void *skbs[CPUMAP_BATCH]; LIST_HEAD(list); /* Release CPU reschedule checks */ if (__ptr_ring_empty(rcpu->queue)) { set_current_state(TASK_INTERRUPTIBLE); /* Recheck to avoid lost wake-up */ if (__ptr_ring_empty(rcpu->queue)) { schedule(); sched = 1; } else { __set_current_state(TASK_RUNNING); } } else { sched = cond_resched(); } /* * The bpf_cpu_map_entry is single consumer, with this * kthread CPU pinned. Lockless access to ptr_ring * consume side valid as no-resize allowed of queue. */ n = __ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH); for (i = 0, xdp_n = 0; i < n; i++) { void *f = frames[i]; struct page *page; if (unlikely(__ptr_test_bit(0, &f))) { struct sk_buff *skb = f; __ptr_clear_bit(0, &skb); list_add_tail(&skb->list, &list); continue; } frames[xdp_n++] = f; page = virt_to_page(f); /* Bring struct page memory area to curr CPU. Read by * build_skb_around via page_is_pfmemalloc(), and when * freed written by page_frag_free call. */ prefetchw(page); } /* Support running another XDP prog on this CPU */ nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list); if (nframes) { m = kmem_cache_alloc_bulk(skbuff_cache, gfp, nframes, skbs); if (unlikely(m == 0)) { for (i = 0; i < nframes; i++) skbs[i] = NULL; /* effect: xdp_return_frame */ kmem_alloc_drops += nframes; } } local_bh_disable(); for (i = 0; i < nframes; i++) { struct xdp_frame *xdpf = frames[i]; struct sk_buff *skb = skbs[i]; skb = __xdp_build_skb_from_frame(xdpf, skb, xdpf->dev_rx); if (!skb) { xdp_return_frame(xdpf); continue; } list_add_tail(&skb->list, &list); } netif_receive_skb_list(&list); /* Feedback loop via tracepoint */ trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops, sched, &stats); local_bh_enable(); /* resched point, may call do_softirq() */ } __set_current_state(TASK_RUNNING); return 0; } static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, struct bpf_map *map, int fd) { struct bpf_prog *prog; prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); if (IS_ERR(prog)) return PTR_ERR(prog); if (prog->expected_attach_type != BPF_XDP_CPUMAP || !bpf_prog_map_compatible(map, prog)) { bpf_prog_put(prog); return -EINVAL; } rcpu->value.bpf_prog.id = prog->aux->id; rcpu->prog = prog; return 0; } static struct bpf_cpu_map_entry * __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value, u32 cpu) { int numa, err, i, fd = value->bpf_prog.fd; gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; struct bpf_cpu_map_entry *rcpu; struct xdp_bulk_queue *bq; /* Have map->numa_node, but choose node of redirect target CPU */ numa = cpu_to_node(cpu); rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa); if (!rcpu) return NULL; /* Alloc percpu bulkq */ rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq), sizeof(void *), gfp); if (!rcpu->bulkq) goto free_rcu; for_each_possible_cpu(i) { bq = per_cpu_ptr(rcpu->bulkq, i); bq->obj = rcpu; } /* Alloc queue */ rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp, numa); if (!rcpu->queue) goto free_bulkq; err = ptr_ring_init(rcpu->queue, value->qsize, gfp); if (err) goto free_queue; rcpu->cpu = cpu; rcpu->map_id = map->id; rcpu->value.qsize = value->qsize; if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd)) goto free_ptr_ring; /* Setup kthread */ init_completion(&rcpu->kthread_running); rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, "cpumap/%d/map:%d", cpu, map->id); if (IS_ERR(rcpu->kthread)) goto free_prog; /* Make sure kthread runs on a single CPU */ kthread_bind(rcpu->kthread, cpu); wake_up_process(rcpu->kthread); /* Make sure kthread has been running, so kthread_stop() will not * stop the kthread prematurely and all pending frames or skbs * will be handled by the kthread before kthread_stop() returns. */ wait_for_completion(&rcpu->kthread_running); return rcpu; free_prog: if (rcpu->prog) bpf_prog_put(rcpu->prog); free_ptr_ring: ptr_ring_cleanup(rcpu->queue, NULL); free_queue: kfree(rcpu->queue); free_bulkq: free_percpu(rcpu->bulkq); free_rcu: kfree(rcpu); return NULL; } static void __cpu_map_entry_free(struct work_struct *work) { struct bpf_cpu_map_entry *rcpu; /* This cpu_map_entry have been disconnected from map and one * RCU grace-period have elapsed. Thus, XDP cannot queue any * new packets and cannot change/set flush_needed that can * find this entry. */ rcpu = container_of(to_rcu_work(work), struct bpf_cpu_map_entry, free_work); /* kthread_stop will wake_up_process and wait for it to complete. * cpu_map_kthread_run() makes sure the pointer ring is empty * before exiting. */ kthread_stop(rcpu->kthread); if (rcpu->prog) bpf_prog_put(rcpu->prog); /* The queue should be empty at this point */ __cpu_map_ring_cleanup(rcpu->queue); ptr_ring_cleanup(rcpu->queue, NULL); kfree(rcpu->queue); free_percpu(rcpu->bulkq); kfree(rcpu); } /* After the xchg of the bpf_cpu_map_entry pointer, we need to make sure the old * entry is no longer in use before freeing. We use queue_rcu_work() to call * __cpu_map_entry_free() in a separate workqueue after waiting for an RCU grace * period. This means that (a) all pending enqueue and flush operations have * completed (because of the RCU callback), and (b) we are in a workqueue * context where we can stop the kthread and wait for it to exit before freeing * everything. */ static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, u32 key_cpu, struct bpf_cpu_map_entry *rcpu) { struct bpf_cpu_map_entry *old_rcpu; old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu))); if (old_rcpu) { INIT_RCU_WORK(&old_rcpu->free_work, __cpu_map_entry_free); queue_rcu_work(system_wq, &old_rcpu->free_work); } } static long cpu_map_delete_elem(struct bpf_map *map, void *key) { struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); u32 key_cpu = *(u32 *)key; if (key_cpu >= map->max_entries) return -EINVAL; /* notice caller map_delete_elem() uses rcu_read_lock() */ __cpu_map_entry_replace(cmap, key_cpu, NULL); return 0; } static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); struct bpf_cpumap_val cpumap_value = {}; struct bpf_cpu_map_entry *rcpu; /* Array index key correspond to CPU number */ u32 key_cpu = *(u32 *)key; memcpy(&cpumap_value, value, map->value_size); if (unlikely(map_flags > BPF_EXIST)) return -EINVAL; if (unlikely(key_cpu >= cmap->map.max_entries)) return -E2BIG; if (unlikely(map_flags == BPF_NOEXIST)) return -EEXIST; if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */ return -EOVERFLOW; /* Make sure CPU is a valid possible cpu */ if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu)) return -ENODEV; if (cpumap_value.qsize == 0) { rcpu = NULL; /* Same as deleting */ } else { /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu); if (!rcpu) return -ENOMEM; } rcu_read_lock(); __cpu_map_entry_replace(cmap, key_cpu, rcpu); rcu_read_unlock(); return 0; } static void cpu_map_free(struct bpf_map *map) { struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); u32 i; /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, * so the bpf programs (can be more than one that used this map) were * disconnected from events. Wait for outstanding critical sections in * these programs to complete. synchronize_rcu() below not only * guarantees no further "XDP/bpf-side" reads against * bpf_cpu_map->cpu_map, but also ensure pending flush operations * (if any) are completed. */ synchronize_rcu(); /* The only possible user of bpf_cpu_map_entry is * cpu_map_kthread_run(). */ for (i = 0; i < cmap->map.max_entries; i++) { struct bpf_cpu_map_entry *rcpu; rcpu = rcu_dereference_raw(cmap->cpu_map[i]); if (!rcpu) continue; /* Stop kthread and cleanup entry directly */ __cpu_map_entry_free(&rcpu->free_work.work); } bpf_map_area_free(cmap->cpu_map); bpf_map_area_free(cmap); } /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or * by local_bh_disable() (from XDP calls inside NAPI). The * rcu_read_lock_bh_held() below makes lockdep accept both. */ static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) { struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); struct bpf_cpu_map_entry *rcpu; if (key >= map->max_entries) return NULL; rcpu = rcu_dereference_check(cmap->cpu_map[key], rcu_read_lock_bh_held()); return rcpu; } static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) { struct bpf_cpu_map_entry *rcpu = __cpu_map_lookup_elem(map, *(u32 *)key); return rcpu ? &rcpu->value : NULL; } static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) { struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); u32 index = key ? *(u32 *)key : U32_MAX; u32 *next = next_key; if (index >= cmap->map.max_entries) { *next = 0; return 0; } if (index == cmap->map.max_entries - 1) return -ENOENT; *next = index + 1; return 0; } static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags) { return __bpf_xdp_redirect_map(map, index, flags, 0, __cpu_map_lookup_elem); } static u64 cpu_map_mem_usage(const struct bpf_map *map) { u64 usage = sizeof(struct bpf_cpu_map); /* Currently the dynamically allocated elements are not counted */ usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *); return usage; } BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map) const struct bpf_map_ops cpu_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc = cpu_map_alloc, .map_free = cpu_map_free, .map_delete_elem = cpu_map_delete_elem, .map_update_elem = cpu_map_update_elem, .map_lookup_elem = cpu_map_lookup_elem, .map_get_next_key = cpu_map_get_next_key, .map_check_btf = map_check_no_btf, .map_mem_usage = cpu_map_mem_usage, .map_btf_id = &cpu_map_btf_ids[0], .map_redirect = cpu_map_redirect, }; static void bq_flush_to_queue(struct xdp_bulk_queue *bq) { struct bpf_cpu_map_entry *rcpu = bq->obj; unsigned int processed = 0, drops = 0; const int to_cpu = rcpu->cpu; struct ptr_ring *q; int i; if (unlikely(!bq->count)) return; q = rcpu->queue; spin_lock(&q->producer_lock); for (i = 0; i < bq->count; i++) { struct xdp_frame *xdpf = bq->q[i]; int err; err = __ptr_ring_produce(q, xdpf); if (err) { drops++; xdp_return_frame_rx_napi(xdpf); } processed++; } bq->count = 0; spin_unlock(&q->producer_lock); __list_del_clearprev(&bq->flush_node); /* Feedback loop via tracepoints */ trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); } /* Runs under RCU-read-side, plus in softirq under NAPI protection. * Thus, safe percpu variable access. */ static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) { struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) bq_flush_to_queue(bq); /* Notice, xdp_buff/page MUST be queued here, long enough for * driver to code invoking us to finished, due to driver * (e.g. ixgbe) recycle tricks based on page-refcnt. * * Thus, incoming xdp_frame is always queued here (else we race * with another CPU on page-refcnt and remaining driver code). * Queue time is very short, as driver will invoke flush * operation, when completing napi->poll call. */ bq->q[bq->count++] = xdpf; if (!bq->flush_node.prev) list_add(&bq->flush_node, flush_list); } int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, struct net_device *dev_rx) { /* Info needed when constructing SKB on remote CPU */ xdpf->dev_rx = dev_rx; bq_enqueue(rcpu, xdpf); return 0; } int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, struct sk_buff *skb) { int ret; __skb_pull(skb, skb->mac_len); skb_set_redirected(skb, false); __ptr_set_bit(0, &skb); ret = ptr_ring_produce(rcpu->queue, skb); if (ret < 0) goto trace; wake_up_process(rcpu->kthread); trace: trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu); return ret; } void __cpu_map_flush(void) { struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); struct xdp_bulk_queue *bq, *tmp; list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { bq_flush_to_queue(bq); /* If already running, costs spin_lock_irqsave + smb_mb */ wake_up_process(bq->obj->kthread); } } static int __init cpu_map_init(void) { int cpu; for_each_possible_cpu(cpu) INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu)); return 0; } subsys_initcall(cpu_map_init);