// SPDX-License-Identifier: GPL-2.0-or-later /* * Linux Socket Filter - Kernel level socket filtering * * Based on the design of the Berkeley Packet Filter. The new * internal format has been designed by PLUMgrid: * * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com * * Authors: * * Jay Schulist * Alexei Starovoitov * Daniel Borkmann * * Andi Kleen - Fix a few bad bugs and races. * Kris Katterjohn - Added many additional checks in bpf_check_classic() */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Registers */ #define BPF_R0 regs[BPF_REG_0] #define BPF_R1 regs[BPF_REG_1] #define BPF_R2 regs[BPF_REG_2] #define BPF_R3 regs[BPF_REG_3] #define BPF_R4 regs[BPF_REG_4] #define BPF_R5 regs[BPF_REG_5] #define BPF_R6 regs[BPF_REG_6] #define BPF_R7 regs[BPF_REG_7] #define BPF_R8 regs[BPF_REG_8] #define BPF_R9 regs[BPF_REG_9] #define BPF_R10 regs[BPF_REG_10] /* Named registers */ #define DST regs[insn->dst_reg] #define SRC regs[insn->src_reg] #define FP regs[BPF_REG_FP] #define AX regs[BPF_REG_AX] #define ARG1 regs[BPF_REG_ARG1] #define CTX regs[BPF_REG_CTX] #define OFF insn->off #define IMM insn->imm struct bpf_mem_alloc bpf_global_ma; bool bpf_global_ma_set; /* No hurry in this branch * * Exported for the bpf jit load helper. */ void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size) { u8 *ptr = NULL; if (k >= SKF_NET_OFF) { ptr = skb_network_header(skb) + k - SKF_NET_OFF; } else if (k >= SKF_LL_OFF) { if (unlikely(!skb_mac_header_was_set(skb))) return NULL; ptr = skb_mac_header(skb) + k - SKF_LL_OFF; } if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb)) return ptr; return NULL; } struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags) { gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags); struct bpf_prog_aux *aux; struct bpf_prog *fp; size = round_up(size, PAGE_SIZE); fp = __vmalloc(size, gfp_flags); if (fp == NULL) return NULL; aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags)); if (aux == NULL) { vfree(fp); return NULL; } fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags)); if (!fp->active) { vfree(fp); kfree(aux); return NULL; } fp->pages = size / PAGE_SIZE; fp->aux = aux; fp->aux->prog = fp; fp->jit_requested = ebpf_jit_enabled(); fp->blinding_requested = bpf_jit_blinding_enabled(fp); #ifdef CONFIG_CGROUP_BPF aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID; #endif INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode); mutex_init(&fp->aux->used_maps_mutex); mutex_init(&fp->aux->dst_mutex); return fp; } struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags) { gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags); struct bpf_prog *prog; int cpu; prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags); if (!prog) return NULL; prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags); if (!prog->stats) { free_percpu(prog->active); kfree(prog->aux); vfree(prog); return NULL; } for_each_possible_cpu(cpu) { struct bpf_prog_stats *pstats; pstats = per_cpu_ptr(prog->stats, cpu); u64_stats_init(&pstats->syncp); } return prog; } EXPORT_SYMBOL_GPL(bpf_prog_alloc); int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog) { if (!prog->aux->nr_linfo || !prog->jit_requested) return 0; prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo, sizeof(*prog->aux->jited_linfo), bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN)); if (!prog->aux->jited_linfo) return -ENOMEM; return 0; } void bpf_prog_jit_attempt_done(struct bpf_prog *prog) { if (prog->aux->jited_linfo && (!prog->jited || !prog->aux->jited_linfo[0])) { kvfree(prog->aux->jited_linfo); prog->aux->jited_linfo = NULL; } kfree(prog->aux->kfunc_tab); prog->aux->kfunc_tab = NULL; } /* The jit engine is responsible to provide an array * for insn_off to the jited_off mapping (insn_to_jit_off). * * The idx to this array is the insn_off. Hence, the insn_off * here is relative to the prog itself instead of the main prog. * This array has one entry for each xlated bpf insn. * * jited_off is the byte off to the end of the jited insn. * * Hence, with * insn_start: * The first bpf insn off of the prog. The insn off * here is relative to the main prog. * e.g. if prog is a subprog, insn_start > 0 * linfo_idx: * The prog's idx to prog->aux->linfo and jited_linfo * * jited_linfo[linfo_idx] = prog->bpf_func * * For i > linfo_idx, * * jited_linfo[i] = prog->bpf_func + * insn_to_jit_off[linfo[i].insn_off - insn_start - 1] */ void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, const u32 *insn_to_jit_off) { u32 linfo_idx, insn_start, insn_end, nr_linfo, i; const struct bpf_line_info *linfo; void **jited_linfo; if (!prog->aux->jited_linfo) /* Userspace did not provide linfo */ return; linfo_idx = prog->aux->linfo_idx; linfo = &prog->aux->linfo[linfo_idx]; insn_start = linfo[0].insn_off; insn_end = insn_start + prog->len; jited_linfo = &prog->aux->jited_linfo[linfo_idx]; jited_linfo[0] = prog->bpf_func; nr_linfo = prog->aux->nr_linfo - linfo_idx; for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++) /* The verifier ensures that linfo[i].insn_off is * strictly increasing */ jited_linfo[i] = prog->bpf_func + insn_to_jit_off[linfo[i].insn_off - insn_start - 1]; } struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, gfp_t gfp_extra_flags) { gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags); struct bpf_prog *fp; u32 pages; size = round_up(size, PAGE_SIZE); pages = size / PAGE_SIZE; if (pages <= fp_old->pages) return fp_old; fp = __vmalloc(size, gfp_flags); if (fp) { memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE); fp->pages = pages; fp->aux->prog = fp; /* We keep fp->aux from fp_old around in the new * reallocated structure. */ fp_old->aux = NULL; fp_old->stats = NULL; fp_old->active = NULL; __bpf_prog_free(fp_old); } return fp; } void __bpf_prog_free(struct bpf_prog *fp) { if (fp->aux) { mutex_destroy(&fp->aux->used_maps_mutex); mutex_destroy(&fp->aux->dst_mutex); kfree(fp->aux->poke_tab); kfree(fp->aux); } free_percpu(fp->stats); free_percpu(fp->active); vfree(fp); } int bpf_prog_calc_tag(struct bpf_prog *fp) { const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64); u32 raw_size = bpf_prog_tag_scratch_size(fp); u32 digest[SHA1_DIGEST_WORDS]; u32 ws[SHA1_WORKSPACE_WORDS]; u32 i, bsize, psize, blocks; struct bpf_insn *dst; bool was_ld_map; u8 *raw, *todo; __be32 *result; __be64 *bits; raw = vmalloc(raw_size); if (!raw) return -ENOMEM; sha1_init(digest); memset(ws, 0, sizeof(ws)); /* We need to take out the map fd for the digest calculation * since they are unstable from user space side. */ dst = (void *)raw; for (i = 0, was_ld_map = false; i < fp->len; i++) { dst[i] = fp->insnsi[i]; if (!was_ld_map && dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) && (dst[i].src_reg == BPF_PSEUDO_MAP_FD || dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) { was_ld_map = true; dst[i].imm = 0; } else if (was_ld_map && dst[i].code == 0 && dst[i].dst_reg == 0 && dst[i].src_reg == 0 && dst[i].off == 0) { was_ld_map = false; dst[i].imm = 0; } else { was_ld_map = false; } } psize = bpf_prog_insn_size(fp); memset(&raw[psize], 0, raw_size - psize); raw[psize++] = 0x80; bsize = round_up(psize, SHA1_BLOCK_SIZE); blocks = bsize / SHA1_BLOCK_SIZE; todo = raw; if (bsize - psize >= sizeof(__be64)) { bits = (__be64 *)(todo + bsize - sizeof(__be64)); } else { bits = (__be64 *)(todo + bsize + bits_offset); blocks++; } *bits = cpu_to_be64((psize - 1) << 3); while (blocks--) { sha1_transform(digest, todo, ws); todo += SHA1_BLOCK_SIZE; } result = (__force __be32 *)digest; for (i = 0; i < SHA1_DIGEST_WORDS; i++) result[i] = cpu_to_be32(digest[i]); memcpy(fp->tag, result, sizeof(fp->tag)); vfree(raw); return 0; } static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old, s32 end_new, s32 curr, const bool probe_pass) { const s64 imm_min = S32_MIN, imm_max = S32_MAX; s32 delta = end_new - end_old; s64 imm = insn->imm; if (curr < pos && curr + imm + 1 >= end_old) imm += delta; else if (curr >= end_new && curr + imm + 1 < end_new) imm -= delta; if (imm < imm_min || imm > imm_max) return -ERANGE; if (!probe_pass) insn->imm = imm; return 0; } static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old, s32 end_new, s32 curr, const bool probe_pass) { const s32 off_min = S16_MIN, off_max = S16_MAX; s32 delta = end_new - end_old; s32 off; if (insn->code == (BPF_JMP32 | BPF_JA)) off = insn->imm; else off = insn->off; if (curr < pos && curr + off + 1 >= end_old) off += delta; else if (curr >= end_new && curr + off + 1 < end_new) off -= delta; if (off < off_min || off > off_max) return -ERANGE; if (!probe_pass) { if (insn->code == (BPF_JMP32 | BPF_JA)) insn->imm = off; else insn->off = off; } return 0; } static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old, s32 end_new, const bool probe_pass) { u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0); struct bpf_insn *insn = prog->insnsi; int ret = 0; for (i = 0; i < insn_cnt; i++, insn++) { u8 code; /* In the probing pass we still operate on the original, * unpatched image in order to check overflows before we * do any other adjustments. Therefore skip the patchlet. */ if (probe_pass && i == pos) { i = end_new; insn = prog->insnsi + end_old; } if (bpf_pseudo_func(insn)) { ret = bpf_adj_delta_to_imm(insn, pos, end_old, end_new, i, probe_pass); if (ret) return ret; continue; } code = insn->code; if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || BPF_OP(code) == BPF_EXIT) continue; /* Adjust offset of jmps if we cross patch boundaries. */ if (BPF_OP(code) == BPF_CALL) { if (insn->src_reg != BPF_PSEUDO_CALL) continue; ret = bpf_adj_delta_to_imm(insn, pos, end_old, end_new, i, probe_pass); } else { ret = bpf_adj_delta_to_off(insn, pos, end_old, end_new, i, probe_pass); } if (ret) break; } return ret; } static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta) { struct bpf_line_info *linfo; u32 i, nr_linfo; nr_linfo = prog->aux->nr_linfo; if (!nr_linfo || !delta) return; linfo = prog->aux->linfo; for (i = 0; i < nr_linfo; i++) if (off < linfo[i].insn_off) break; /* Push all off < linfo[i].insn_off by delta */ for (; i < nr_linfo; i++) linfo[i].insn_off += delta; } struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, const struct bpf_insn *patch, u32 len) { u32 insn_adj_cnt, insn_rest, insn_delta = len - 1; const u32 cnt_max = S16_MAX; struct bpf_prog *prog_adj; int err; /* Since our patchlet doesn't expand the image, we're done. */ if (insn_delta == 0) { memcpy(prog->insnsi + off, patch, sizeof(*patch)); return prog; } insn_adj_cnt = prog->len + insn_delta; /* Reject anything that would potentially let the insn->off * target overflow when we have excessive program expansions. * We need to probe here before we do any reallocation where * we afterwards may not fail anymore. */ if (insn_adj_cnt > cnt_max && (err = bpf_adj_branches(prog, off, off + 1, off + len, true))) return ERR_PTR(err); /* Several new instructions need to be inserted. Make room * for them. Likely, there's no need for a new allocation as * last page could have large enough tailroom. */ prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt), GFP_USER); if (!prog_adj) return ERR_PTR(-ENOMEM); prog_adj->len = insn_adj_cnt; /* Patching happens in 3 steps: * * 1) Move over tail of insnsi from next instruction onwards, * so we can patch the single target insn with one or more * new ones (patching is always from 1 to n insns, n > 0). * 2) Inject new instructions at the target location. * 3) Adjust branch offsets if necessary. */ insn_rest = insn_adj_cnt - off - len; memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1, sizeof(*patch) * insn_rest); memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len); /* We are guaranteed to not fail at this point, otherwise * the ship has sailed to reverse to the original state. An * overflow cannot happen at this point. */ BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false)); bpf_adj_linfo(prog_adj, off, insn_delta); return prog_adj; } int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt) { /* Branch offsets can't overflow when program is shrinking, no need * to call bpf_adj_branches(..., true) here */ memmove(prog->insnsi + off, prog->insnsi + off + cnt, sizeof(struct bpf_insn) * (prog->len - off - cnt)); prog->len -= cnt; return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false)); } static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp) { int i; for (i = 0; i < fp->aux->func_cnt; i++) bpf_prog_kallsyms_del(fp->aux->func[i]); } void bpf_prog_kallsyms_del_all(struct bpf_prog *fp) { bpf_prog_kallsyms_del_subprogs(fp); bpf_prog_kallsyms_del(fp); } #ifdef CONFIG_BPF_JIT /* All BPF JIT sysctl knobs here. */ int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON); int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON); int bpf_jit_harden __read_mostly; long bpf_jit_limit __read_mostly; long bpf_jit_limit_max __read_mostly; static void bpf_prog_ksym_set_addr(struct bpf_prog *prog) { WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog)); prog->aux->ksym.start = (unsigned long) prog->bpf_func; prog->aux->ksym.end = prog->aux->ksym.start + prog->jited_len; } static void bpf_prog_ksym_set_name(struct bpf_prog *prog) { char *sym = prog->aux->ksym.name; const char *end = sym + KSYM_NAME_LEN; const struct btf_type *type; const char *func_name; BUILD_BUG_ON(sizeof("bpf_prog_") + sizeof(prog->tag) * 2 + /* name has been null terminated. * We should need +1 for the '_' preceding * the name. However, the null character * is double counted between the name and the * sizeof("bpf_prog_") above, so we omit * the +1 here. */ sizeof(prog->aux->name) > KSYM_NAME_LEN); sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_"); sym = bin2hex(sym, prog->tag, sizeof(prog->tag)); /* prog->aux->name will be ignored if full btf name is available */ if (prog->aux->func_info_cnt) { type = btf_type_by_id(prog->aux->btf, prog->aux->func_info[prog->aux->func_idx].type_id); func_name = btf_name_by_offset(prog->aux->btf, type->name_off); snprintf(sym, (size_t)(end - sym), "_%s", func_name); return; } if (prog->aux->name[0]) snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name); else *sym = 0; } static unsigned long bpf_get_ksym_start(struct latch_tree_node *n) { return container_of(n, struct bpf_ksym, tnode)->start; } static __always_inline bool bpf_tree_less(struct latch_tree_node *a, struct latch_tree_node *b) { return bpf_get_ksym_start(a) < bpf_get_ksym_start(b); } static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n) { unsigned long val = (unsigned long)key; const struct bpf_ksym *ksym; ksym = container_of(n, struct bpf_ksym, tnode); if (val < ksym->start) return -1; /* Ensure that we detect return addresses as part of the program, when * the final instruction is a call for a program part of the stack * trace. Therefore, do val > ksym->end instead of val >= ksym->end. */ if (val > ksym->end) return 1; return 0; } static const struct latch_tree_ops bpf_tree_ops = { .less = bpf_tree_less, .comp = bpf_tree_comp, }; static DEFINE_SPINLOCK(bpf_lock); static LIST_HEAD(bpf_kallsyms); static struct latch_tree_root bpf_tree __cacheline_aligned; void bpf_ksym_add(struct bpf_ksym *ksym) { spin_lock_bh(&bpf_lock); WARN_ON_ONCE(!list_empty(&ksym->lnode)); list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms); latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops); spin_unlock_bh(&bpf_lock); } static void __bpf_ksym_del(struct bpf_ksym *ksym) { if (list_empty(&ksym->lnode)) return; latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops); list_del_rcu(&ksym->lnode); } void bpf_ksym_del(struct bpf_ksym *ksym) { spin_lock_bh(&bpf_lock); __bpf_ksym_del(ksym); spin_unlock_bh(&bpf_lock); } static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp) { return fp->jited && !bpf_prog_was_classic(fp); } void bpf_prog_kallsyms_add(struct bpf_prog *fp) { if (!bpf_prog_kallsyms_candidate(fp) || !bpf_capable()) return; bpf_prog_ksym_set_addr(fp); bpf_prog_ksym_set_name(fp); fp->aux->ksym.prog = true; bpf_ksym_add(&fp->aux->ksym); } void bpf_prog_kallsyms_del(struct bpf_prog *fp) { if (!bpf_prog_kallsyms_candidate(fp)) return; bpf_ksym_del(&fp->aux->ksym); } static struct bpf_ksym *bpf_ksym_find(unsigned long addr) { struct latch_tree_node *n; n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops); return n ? container_of(n, struct bpf_ksym, tnode) : NULL; } const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, unsigned long *off, char *sym) { struct bpf_ksym *ksym; char *ret = NULL; rcu_read_lock(); ksym = bpf_ksym_find(addr); if (ksym) { unsigned long symbol_start = ksym->start; unsigned long symbol_end = ksym->end; strncpy(sym, ksym->name, KSYM_NAME_LEN); ret = sym; if (size) *size = symbol_end - symbol_start; if (off) *off = addr - symbol_start; } rcu_read_unlock(); return ret; } bool is_bpf_text_address(unsigned long addr) { bool ret; rcu_read_lock(); ret = bpf_ksym_find(addr) != NULL; rcu_read_unlock(); return ret; } static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr) { struct bpf_ksym *ksym = bpf_ksym_find(addr); return ksym && ksym->prog ? container_of(ksym, struct bpf_prog_aux, ksym)->prog : NULL; } const struct exception_table_entry *search_bpf_extables(unsigned long addr) { const struct exception_table_entry *e = NULL; struct bpf_prog *prog; rcu_read_lock(); prog = bpf_prog_ksym_find(addr); if (!prog) goto out; if (!prog->aux->num_exentries) goto out; e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr); out: rcu_read_unlock(); return e; } int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, char *sym) { struct bpf_ksym *ksym; unsigned int it = 0; int ret = -ERANGE; if (!bpf_jit_kallsyms_enabled()) return ret; rcu_read_lock(); list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) { if (it++ != symnum) continue; strncpy(sym, ksym->name, KSYM_NAME_LEN); *value = ksym->start; *type = BPF_SYM_ELF_TYPE; ret = 0; break; } rcu_read_unlock(); return ret; } int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, struct bpf_jit_poke_descriptor *poke) { struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; static const u32 poke_tab_max = 1024; u32 slot = prog->aux->size_poke_tab; u32 size = slot + 1; if (size > poke_tab_max) return -ENOSPC; if (poke->tailcall_target || poke->tailcall_target_stable || poke->tailcall_bypass || poke->adj_off || poke->bypass_addr) return -EINVAL; switch (poke->reason) { case BPF_POKE_REASON_TAIL_CALL: if (!poke->tail_call.map) return -EINVAL; break; default: return -EINVAL; } tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL); if (!tab) return -ENOMEM; memcpy(&tab[slot], poke, sizeof(*poke)); prog->aux->size_poke_tab = size; prog->aux->poke_tab = tab; return slot; } /* * BPF program pack allocator. * * Most BPF programs are pretty small. Allocating a hole page for each * program is sometime a waste. Many small bpf program also adds pressure * to instruction TLB. To solve this issue, we introduce a BPF program pack * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86) * to host BPF programs. */ #define BPF_PROG_CHUNK_SHIFT 6 #define BPF_PROG_CHUNK_SIZE (1 << BPF_PROG_CHUNK_SHIFT) #define BPF_PROG_CHUNK_MASK (~(BPF_PROG_CHUNK_SIZE - 1)) struct bpf_prog_pack { struct list_head list; void *ptr; unsigned long bitmap[]; }; void bpf_jit_fill_hole_with_zero(void *area, unsigned int size) { memset(area, 0, size); } #define BPF_PROG_SIZE_TO_NBITS(size) (round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE) static DEFINE_MUTEX(pack_mutex); static LIST_HEAD(pack_list); /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with * CONFIG_MMU=n. Use PAGE_SIZE in these cases. */ #ifdef PMD_SIZE #define BPF_PROG_PACK_SIZE (PMD_SIZE * num_possible_nodes()) #else #define BPF_PROG_PACK_SIZE PAGE_SIZE #endif #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE) static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns) { struct bpf_prog_pack *pack; pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)), GFP_KERNEL); if (!pack) return NULL; pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE); if (!pack->ptr) { kfree(pack); return NULL; } bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE); bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE); list_add_tail(&pack->list, &pack_list); set_vm_flush_reset_perms(pack->ptr); set_memory_rox((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE); return pack; } void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns) { unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size); struct bpf_prog_pack *pack; unsigned long pos; void *ptr = NULL; mutex_lock(&pack_mutex); if (size > BPF_PROG_PACK_SIZE) { size = round_up(size, PAGE_SIZE); ptr = bpf_jit_alloc_exec(size); if (ptr) { bpf_fill_ill_insns(ptr, size); set_vm_flush_reset_perms(ptr); set_memory_rox((unsigned long)ptr, size / PAGE_SIZE); } goto out; } list_for_each_entry(pack, &pack_list, list) { pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0, nbits, 0); if (pos < BPF_PROG_CHUNK_COUNT) goto found_free_area; } pack = alloc_new_pack(bpf_fill_ill_insns); if (!pack) goto out; pos = 0; found_free_area: bitmap_set(pack->bitmap, pos, nbits); ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT); out: mutex_unlock(&pack_mutex); return ptr; } void bpf_prog_pack_free(struct bpf_binary_header *hdr) { struct bpf_prog_pack *pack = NULL, *tmp; unsigned int nbits; unsigned long pos; mutex_lock(&pack_mutex); if (hdr->size > BPF_PROG_PACK_SIZE) { bpf_jit_free_exec(hdr); goto out; } list_for_each_entry(tmp, &pack_list, list) { if ((void *)hdr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > (void *)hdr) { pack = tmp; break; } } if (WARN_ONCE(!pack, "bpf_prog_pack bug\n")) goto out; nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size); pos = ((unsigned long)hdr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT; WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size), "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n"); bitmap_clear(pack->bitmap, pos, nbits); if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0, BPF_PROG_CHUNK_COUNT, 0) == 0) { list_del(&pack->list); bpf_jit_free_exec(pack->ptr); kfree(pack); } out: mutex_unlock(&pack_mutex); } static atomic_long_t bpf_jit_current; /* Can be overridden by an arch's JIT compiler if it has a custom, * dedicated BPF backend memory area, or if neither of the two * below apply. */ u64 __weak bpf_jit_alloc_exec_limit(void) { #if defined(MODULES_VADDR) return MODULES_END - MODULES_VADDR; #else return VMALLOC_END - VMALLOC_START; #endif } static int __init bpf_jit_charge_init(void) { /* Only used as heuristic here to derive limit. */ bpf_jit_limit_max = bpf_jit_alloc_exec_limit(); bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1, PAGE_SIZE), LONG_MAX); return 0; } pure_initcall(bpf_jit_charge_init); int bpf_jit_charge_modmem(u32 size) { if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) { if (!bpf_capable()) { atomic_long_sub(size, &bpf_jit_current); return -EPERM; } } return 0; } void bpf_jit_uncharge_modmem(u32 size) { atomic_long_sub(size, &bpf_jit_current); } void *__weak bpf_jit_alloc_exec(unsigned long size) { return module_alloc(size); } void __weak bpf_jit_free_exec(void *addr) { module_memfree(addr); } struct bpf_binary_header * bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, unsigned int alignment, bpf_jit_fill_hole_t bpf_fill_ill_insns) { struct bpf_binary_header *hdr; u32 size, hole, start; WARN_ON_ONCE(!is_power_of_2(alignment) || alignment > BPF_IMAGE_ALIGNMENT); /* Most of BPF filters are really small, but if some of them * fill a page, allow at least 128 extra bytes to insert a * random section of illegal instructions. */ size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE); if (bpf_jit_charge_modmem(size)) return NULL; hdr = bpf_jit_alloc_exec(size); if (!hdr) { bpf_jit_uncharge_modmem(size); return NULL; } /* Fill space with illegal/arch-dep instructions. */ bpf_fill_ill_insns(hdr, size); hdr->size = size; hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)), PAGE_SIZE - sizeof(*hdr)); start = get_random_u32_below(hole) & ~(alignment - 1); /* Leave a random number of instructions before BPF code. */ *image_ptr = &hdr->image[start]; return hdr; } void bpf_jit_binary_free(struct bpf_binary_header *hdr) { u32 size = hdr->size; bpf_jit_free_exec(hdr); bpf_jit_uncharge_modmem(size); } /* Allocate jit binary from bpf_prog_pack allocator. * Since the allocated memory is RO+X, the JIT engine cannot write directly * to the memory. To solve this problem, a RW buffer is also allocated at * as the same time. The JIT engine should calculate offsets based on the * RO memory address, but write JITed program to the RW buffer. Once the * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies * the JITed program to the RO memory. */ struct bpf_binary_header * bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr, unsigned int alignment, struct bpf_binary_header **rw_header, u8 **rw_image, bpf_jit_fill_hole_t bpf_fill_ill_insns) { struct bpf_binary_header *ro_header; u32 size, hole, start; WARN_ON_ONCE(!is_power_of_2(alignment) || alignment > BPF_IMAGE_ALIGNMENT); /* add 16 bytes for a random section of illegal instructions */ size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE); if (bpf_jit_charge_modmem(size)) return NULL; ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns); if (!ro_header) { bpf_jit_uncharge_modmem(size); return NULL; } *rw_header = kvmalloc(size, GFP_KERNEL); if (!*rw_header) { bpf_arch_text_copy(&ro_header->size, &size, sizeof(size)); bpf_prog_pack_free(ro_header); bpf_jit_uncharge_modmem(size); return NULL; } /* Fill space with illegal/arch-dep instructions. */ bpf_fill_ill_insns(*rw_header, size); (*rw_header)->size = size; hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)), BPF_PROG_CHUNK_SIZE - sizeof(*ro_header)); start = get_random_u32_below(hole) & ~(alignment - 1); *image_ptr = &ro_header->image[start]; *rw_image = &(*rw_header)->image[start]; return ro_header; } /* Copy JITed text from rw_header to its final location, the ro_header. */ int bpf_jit_binary_pack_finalize(struct bpf_prog *prog, struct bpf_binary_header *ro_header, struct bpf_binary_header *rw_header) { void *ptr; ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size); kvfree(rw_header); if (IS_ERR(ptr)) { bpf_prog_pack_free(ro_header); return PTR_ERR(ptr); } return 0; } /* bpf_jit_binary_pack_free is called in two different scenarios: * 1) when the program is freed after; * 2) when the JIT engine fails (before bpf_jit_binary_pack_finalize). * For case 2), we need to free both the RO memory and the RW buffer. * * bpf_jit_binary_pack_free requires proper ro_header->size. However, * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size * must be set with either bpf_jit_binary_pack_finalize (normal path) or * bpf_arch_text_copy (when jit fails). */ void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header, struct bpf_binary_header *rw_header) { u32 size = ro_header->size; bpf_prog_pack_free(ro_header); kvfree(rw_header); bpf_jit_uncharge_modmem(size); } struct bpf_binary_header * bpf_jit_binary_pack_hdr(const struct bpf_prog *fp) { unsigned long real_start = (unsigned long)fp->bpf_func; unsigned long addr; addr = real_start & BPF_PROG_CHUNK_MASK; return (void *)addr; } static inline struct bpf_binary_header * bpf_jit_binary_hdr(const struct bpf_prog *fp) { unsigned long real_start = (unsigned long)fp->bpf_func; unsigned long addr; addr = real_start & PAGE_MASK; return (void *)addr; } /* This symbol is only overridden by archs that have different * requirements than the usual eBPF JITs, f.e. when they only * implement cBPF JIT, do not set images read-only, etc. */ void __weak bpf_jit_free(struct bpf_prog *fp) { if (fp->jited) { struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp); bpf_jit_binary_free(hdr); WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp)); } bpf_prog_unlock_free(fp); } int bpf_jit_get_func_addr(const struct bpf_prog *prog, const struct bpf_insn *insn, bool extra_pass, u64 *func_addr, bool *func_addr_fixed) { s16 off = insn->off; s32 imm = insn->imm; u8 *addr; int err; *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL; if (!*func_addr_fixed) { /* Place-holder address till the last pass has collected * all addresses for JITed subprograms in which case we * can pick them up from prog->aux. */ if (!extra_pass) addr = NULL; else if (prog->aux->func && off >= 0 && off < prog->aux->func_cnt) addr = (u8 *)prog->aux->func[off]->bpf_func; else return -EINVAL; } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && bpf_jit_supports_far_kfunc_call()) { err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr); if (err) return err; } else { /* Address of a BPF helper call. Since part of the core * kernel, it's always at a fixed location. __bpf_call_base * and the helper with imm relative to it are both in core * kernel. */ addr = (u8 *)__bpf_call_base + imm; } *func_addr = (unsigned long)addr; return 0; } static int bpf_jit_blind_insn(const struct bpf_insn *from, const struct bpf_insn *aux, struct bpf_insn *to_buff, bool emit_zext) { struct bpf_insn *to = to_buff; u32 imm_rnd = get_random_u32(); s16 off; BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG); BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG); /* Constraints on AX register: * * AX register is inaccessible from user space. It is mapped in * all JITs, and used here for constant blinding rewrites. It is * typically "stateless" meaning its contents are only valid within * the executed instruction, but not across several instructions. * There are a few exceptions however which are further detailed * below. * * Constant blinding is only used by JITs, not in the interpreter. * The interpreter uses AX in some occasions as a local temporary * register e.g. in DIV or MOD instructions. * * In restricted circumstances, the verifier can also use the AX * register for rewrites as long as they do not interfere with * the above cases! */ if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX) goto out; if (from->imm == 0 && (from->code == (BPF_ALU | BPF_MOV | BPF_K) || from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) { *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg); goto out; } switch (from->code) { case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU | BPF_MOV | BPF_K: case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU | BPF_MOD | BPF_K: *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); *to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off); break; case BPF_ALU64 | BPF_ADD | BPF_K: case BPF_ALU64 | BPF_SUB | BPF_K: case BPF_ALU64 | BPF_AND | BPF_K: case BPF_ALU64 | BPF_OR | BPF_K: case BPF_ALU64 | BPF_XOR | BPF_K: case BPF_ALU64 | BPF_MUL | BPF_K: case BPF_ALU64 | BPF_MOV | BPF_K: case BPF_ALU64 | BPF_DIV | BPF_K: case BPF_ALU64 | BPF_MOD | BPF_K: *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); *to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off); break; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSLE | BPF_K: case BPF_JMP | BPF_JSET | BPF_K: /* Accommodate for extra offset in case of a backjump. */ off = from->off; if (off < 0) off -= 2; *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off); break; case BPF_JMP32 | BPF_JEQ | BPF_K: case BPF_JMP32 | BPF_JNE | BPF_K: case BPF_JMP32 | BPF_JGT | BPF_K: case BPF_JMP32 | BPF_JLT | BPF_K: case BPF_JMP32 | BPF_JGE | BPF_K: case BPF_JMP32 | BPF_JLE | BPF_K: case BPF_JMP32 | BPF_JSGT | BPF_K: case BPF_JMP32 | BPF_JSLT | BPF_K: case BPF_JMP32 | BPF_JSGE | BPF_K: case BPF_JMP32 | BPF_JSLE | BPF_K: case BPF_JMP32 | BPF_JSET | BPF_K: /* Accommodate for extra offset in case of a backjump. */ off = from->off; if (off < 0) off -= 2; *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX, off); break; case BPF_LD | BPF_IMM | BPF_DW: *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm); *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX); break; case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */ *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm); *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); if (emit_zext) *to++ = BPF_ZEXT_REG(BPF_REG_AX); *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX); break; case BPF_ST | BPF_MEM | BPF_DW: case BPF_ST | BPF_MEM | BPF_W: case BPF_ST | BPF_MEM | BPF_H: case BPF_ST | BPF_MEM | BPF_B: *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off); break; } out: return to - to_buff; } static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other, gfp_t gfp_extra_flags) { gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags; struct bpf_prog *fp; fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags); if (fp != NULL) { /* aux->prog still points to the fp_other one, so * when promoting the clone to the real program, * this still needs to be adapted. */ memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE); } return fp; } static void bpf_prog_clone_free(struct bpf_prog *fp) { /* aux was stolen by the other clone, so we cannot free * it from this path! It will be freed eventually by the * other program on release. * * At this point, we don't need a deferred release since * clone is guaranteed to not be locked. */ fp->aux = NULL; fp->stats = NULL; fp->active = NULL; __bpf_prog_free(fp); } void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other) { /* We have to repoint aux->prog to self, as we don't * know whether fp here is the clone or the original. */ fp->aux->prog = fp; bpf_prog_clone_free(fp_other); } struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog) { struct bpf_insn insn_buff[16], aux[2]; struct bpf_prog *clone, *tmp; int insn_delta, insn_cnt; struct bpf_insn *insn; int i, rewritten; if (!prog->blinding_requested || prog->blinded) return prog; clone = bpf_prog_clone_create(prog, GFP_USER); if (!clone) return ERR_PTR(-ENOMEM); insn_cnt = clone->len; insn = clone->insnsi; for (i = 0; i < insn_cnt; i++, insn++) { if (bpf_pseudo_func(insn)) { /* ld_imm64 with an address of bpf subprog is not * a user controlled constant. Don't randomize it, * since it will conflict with jit_subprogs() logic. */ insn++; i++; continue; } /* We temporarily need to hold the original ld64 insn * so that we can still access the first part in the * second blinding run. */ if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) && insn[1].code == 0) memcpy(aux, insn, sizeof(aux)); rewritten = bpf_jit_blind_insn(insn, aux, insn_buff, clone->aux->verifier_zext); if (!rewritten) continue; tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten); if (IS_ERR(tmp)) { /* Patching may have repointed aux->prog during * realloc from the original one, so we need to * fix it up here on error. */ bpf_jit_prog_release_other(prog, clone); return tmp; } clone = tmp; insn_delta = rewritten - 1; /* Walk new program and skip insns we just inserted. */ insn = clone->insnsi + i + insn_delta; insn_cnt += insn_delta; i += insn_delta; } clone->blinded = 1; return clone; } #endif /* CONFIG_BPF_JIT */ /* Base function for offset calculation. Needs to go into .text section, * therefore keeping it non-static as well; will also be used by JITs * anyway later on, so do not let the compiler omit it. This also needs * to go into kallsyms for correlation from e.g. bpftool, so naming * must not change. */ noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) { return 0; } EXPORT_SYMBOL_GPL(__bpf_call_base); /* All UAPI available opcodes. */ #define BPF_INSN_MAP(INSN_2, INSN_3) \ /* 32 bit ALU operations. */ \ /* Register based. */ \ INSN_3(ALU, ADD, X), \ INSN_3(ALU, SUB, X), \ INSN_3(ALU, AND, X), \ INSN_3(ALU, OR, X), \ INSN_3(ALU, LSH, X), \ INSN_3(ALU, RSH, X), \ INSN_3(ALU, XOR, X), \ INSN_3(ALU, MUL, X), \ INSN_3(ALU, MOV, X), \ INSN_3(ALU, ARSH, X), \ INSN_3(ALU, DIV, X), \ INSN_3(ALU, MOD, X), \ INSN_2(ALU, NEG), \ INSN_3(ALU, END, TO_BE), \ INSN_3(ALU, END, TO_LE), \ /* Immediate based. */ \ INSN_3(ALU, ADD, K), \ INSN_3(ALU, SUB, K), \ INSN_3(ALU, AND, K), \ INSN_3(ALU, OR, K), \ INSN_3(ALU, LSH, K), \ INSN_3(ALU, RSH, K), \ INSN_3(ALU, XOR, K), \ INSN_3(ALU, MUL, K), \ INSN_3(ALU, MOV, K), \ INSN_3(ALU, ARSH, K), \ INSN_3(ALU, DIV, K), \ INSN_3(ALU, MOD, K), \ /* 64 bit ALU operations. */ \ /* Register based. */ \ INSN_3(ALU64, ADD, X), \ INSN_3(ALU64, SUB, X), \ INSN_3(ALU64, AND, X), \ INSN_3(ALU64, OR, X), \ INSN_3(ALU64, LSH, X), \ INSN_3(ALU64, RSH, X), \ INSN_3(ALU64, XOR, X), \ INSN_3(ALU64, MUL, X), \ INSN_3(ALU64, MOV, X), \ INSN_3(ALU64, ARSH, X), \ INSN_3(ALU64, DIV, X), \ INSN_3(ALU64, MOD, X), \ INSN_2(ALU64, NEG), \ INSN_3(ALU64, END, TO_LE), \ /* Immediate based. */ \ INSN_3(ALU64, ADD, K), \ INSN_3(ALU64, SUB, K), \ INSN_3(ALU64, AND, K), \ INSN_3(ALU64, OR, K), \ INSN_3(ALU64, LSH, K), \ INSN_3(ALU64, RSH, K), \ INSN_3(ALU64, XOR, K), \ INSN_3(ALU64, MUL, K), \ INSN_3(ALU64, MOV, K), \ INSN_3(ALU64, ARSH, K), \ INSN_3(ALU64, DIV, K), \ INSN_3(ALU64, MOD, K), \ /* Call instruction. */ \ INSN_2(JMP, CALL), \ /* Exit instruction. */ \ INSN_2(JMP, EXIT), \ /* 32-bit Jump instructions. */ \ /* Register based. */ \ INSN_3(JMP32, JEQ, X), \ INSN_3(JMP32, JNE, X), \ INSN_3(JMP32, JGT, X), \ INSN_3(JMP32, JLT, X), \ INSN_3(JMP32, JGE, X), \ INSN_3(JMP32, JLE, X), \ INSN_3(JMP32, JSGT, X), \ INSN_3(JMP32, JSLT, X), \ INSN_3(JMP32, JSGE, X), \ INSN_3(JMP32, JSLE, X), \ INSN_3(JMP32, JSET, X), \ /* Immediate based. */ \ INSN_3(JMP32, JEQ, K), \ INSN_3(JMP32, JNE, K), \ INSN_3(JMP32, JGT, K), \ INSN_3(JMP32, JLT, K), \ INSN_3(JMP32, JGE, K), \ INSN_3(JMP32, JLE, K), \ INSN_3(JMP32, JSGT, K), \ INSN_3(JMP32, JSLT, K), \ INSN_3(JMP32, JSGE, K), \ INSN_3(JMP32, JSLE, K), \ INSN_3(JMP32, JSET, K), \ /* Jump instructions. */ \ /* Register based. */ \ INSN_3(JMP, JEQ, X), \ INSN_3(JMP, JNE, X), \ INSN_3(JMP, JGT, X), \ INSN_3(JMP, JLT, X), \ INSN_3(JMP, JGE, X), \ INSN_3(JMP, JLE, X), \ INSN_3(JMP, JSGT, X), \ INSN_3(JMP, JSLT, X), \ INSN_3(JMP, JSGE, X), \ INSN_3(JMP, JSLE, X), \ INSN_3(JMP, JSET, X), \ /* Immediate based. */ \ INSN_3(JMP, JEQ, K), \ INSN_3(JMP, JNE, K), \ INSN_3(JMP, JGT, K), \ INSN_3(JMP, JLT, K), \ INSN_3(JMP, JGE, K), \ INSN_3(JMP, JLE, K), \ INSN_3(JMP, JSGT, K), \ INSN_3(JMP, JSLT, K), \ INSN_3(JMP, JSGE, K), \ INSN_3(JMP, JSLE, K), \ INSN_3(JMP, JSET, K), \ INSN_2(JMP, JA), \ INSN_2(JMP32, JA), \ /* Store instructions. */ \ /* Register based. */ \ INSN_3(STX, MEM, B), \ INSN_3(STX, MEM, H), \ INSN_3(STX, MEM, W), \ INSN_3(STX, MEM, DW), \ INSN_3(STX, ATOMIC, W), \ INSN_3(STX, ATOMIC, DW), \ /* Immediate based. */ \ INSN_3(ST, MEM, B), \ INSN_3(ST, MEM, H), \ INSN_3(ST, MEM, W), \ INSN_3(ST, MEM, DW), \ /* Load instructions. */ \ /* Register based. */ \ INSN_3(LDX, MEM, B), \ INSN_3(LDX, MEM, H), \ INSN_3(LDX, MEM, W), \ INSN_3(LDX, MEM, DW), \ INSN_3(LDX, MEMSX, B), \ INSN_3(LDX, MEMSX, H), \ INSN_3(LDX, MEMSX, W), \ /* Immediate based. */ \ INSN_3(LD, IMM, DW) bool bpf_opcode_in_insntable(u8 code) { #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true static const bool public_insntable[256] = { [0 ... 255] = false, /* Now overwrite non-defaults ... */ BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL), /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */ [BPF_LD | BPF_ABS | BPF_B] = true, [BPF_LD | BPF_ABS | BPF_H] = true, [BPF_LD | BPF_ABS | BPF_W] = true, [BPF_LD | BPF_IND | BPF_B] = true, [BPF_LD | BPF_IND | BPF_H] = true, [BPF_LD | BPF_IND | BPF_W] = true, }; #undef BPF_INSN_3_TBL #undef BPF_INSN_2_TBL return public_insntable[code]; } #ifndef CONFIG_BPF_JIT_ALWAYS_ON /** * ___bpf_prog_run - run eBPF program on a given context * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers * @insn: is the array of eBPF instructions * * Decode and execute eBPF instructions. * * Return: whatever value is in %BPF_R0 at program exit */ static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn) { #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z static const void * const jumptable[256] __annotate_jump_table = { [0 ... 255] = &&default_label, /* Now overwrite non-defaults ... */ BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL), /* Non-UAPI available opcodes. */ [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS, [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL, [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC, [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B, [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H, [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W, [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW, [BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B, [BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H, [BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W, }; #undef BPF_INSN_3_LBL #undef BPF_INSN_2_LBL u32 tail_call_cnt = 0; #define CONT ({ insn++; goto select_insn; }) #define CONT_JMP ({ insn++; goto select_insn; }) select_insn: goto *jumptable[insn->code]; /* Explicitly mask the register-based shift amounts with 63 or 31 * to avoid undefined behavior. Normally this won't affect the * generated code, for example, in case of native 64 bit archs such * as x86-64 or arm64, the compiler is optimizing the AND away for * the interpreter. In case of JITs, each of the JIT backends compiles * the BPF shift operations to machine instructions which produce * implementation-defined results in such a case; the resulting * contents of the register may be arbitrary, but program behaviour * as a whole remains defined. In other words, in case of JIT backends, * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation. */ /* ALU (shifts) */ #define SHT(OPCODE, OP) \ ALU64_##OPCODE##_X: \ DST = DST OP (SRC & 63); \ CONT; \ ALU_##OPCODE##_X: \ DST = (u32) DST OP ((u32) SRC & 31); \ CONT; \ ALU64_##OPCODE##_K: \ DST = DST OP IMM; \ CONT; \ ALU_##OPCODE##_K: \ DST = (u32) DST OP (u32) IMM; \ CONT; /* ALU (rest) */ #define ALU(OPCODE, OP) \ ALU64_##OPCODE##_X: \ DST = DST OP SRC; \ CONT; \ ALU_##OPCODE##_X: \ DST = (u32) DST OP (u32) SRC; \ CONT; \ ALU64_##OPCODE##_K: \ DST = DST OP IMM; \ CONT; \ ALU_##OPCODE##_K: \ DST = (u32) DST OP (u32) IMM; \ CONT; ALU(ADD, +) ALU(SUB, -) ALU(AND, &) ALU(OR, |) ALU(XOR, ^) ALU(MUL, *) SHT(LSH, <<) SHT(RSH, >>) #undef SHT #undef ALU ALU_NEG: DST = (u32) -DST; CONT; ALU64_NEG: DST = -DST; CONT; ALU_MOV_X: switch (OFF) { case 0: DST = (u32) SRC; break; case 8: DST = (u32)(s8) SRC; break; case 16: DST = (u32)(s16) SRC; break; } CONT; ALU_MOV_K: DST = (u32) IMM; CONT; ALU64_MOV_X: switch (OFF) { case 0: DST = SRC; break; case 8: DST = (s8) SRC; break; case 16: DST = (s16) SRC; break; case 32: DST = (s32) SRC; break; } CONT; ALU64_MOV_K: DST = IMM; CONT; LD_IMM_DW: DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32; insn++; CONT; ALU_ARSH_X: DST = (u64) (u32) (((s32) DST) >> (SRC & 31)); CONT; ALU_ARSH_K: DST = (u64) (u32) (((s32) DST) >> IMM); CONT; ALU64_ARSH_X: (*(s64 *) &DST) >>= (SRC & 63); CONT; ALU64_ARSH_K: (*(s64 *) &DST) >>= IMM; CONT; ALU64_MOD_X: switch (OFF) { case 0: div64_u64_rem(DST, SRC, &AX); DST = AX; break; case 1: AX = div64_s64(DST, SRC); DST = DST - AX * SRC; break; } CONT; ALU_MOD_X: switch (OFF) { case 0: AX = (u32) DST; DST = do_div(AX, (u32) SRC); break; case 1: AX = abs((s32)DST); AX = do_div(AX, abs((s32)SRC)); if ((s32)DST < 0) DST = (u32)-AX; else DST = (u32)AX; break; } CONT; ALU64_MOD_K: switch (OFF) { case 0: div64_u64_rem(DST, IMM, &AX); DST = AX; break; case 1: AX = div64_s64(DST, IMM); DST = DST - AX * IMM; break; } CONT; ALU_MOD_K: switch (OFF) { case 0: AX = (u32) DST; DST = do_div(AX, (u32) IMM); break; case 1: AX = abs((s32)DST); AX = do_div(AX, abs((s32)IMM)); if ((s32)DST < 0) DST = (u32)-AX; else DST = (u32)AX; break; } CONT; ALU64_DIV_X: switch (OFF) { case 0: DST = div64_u64(DST, SRC); break; case 1: DST = div64_s64(DST, SRC); break; } CONT; ALU_DIV_X: switch (OFF) { case 0: AX = (u32) DST; do_div(AX, (u32) SRC); DST = (u32) AX; break; case 1: AX = abs((s32)DST); do_div(AX, abs((s32)SRC)); if (((s32)DST < 0) == ((s32)SRC < 0)) DST = (u32)AX; else DST = (u32)-AX; break; } CONT; ALU64_DIV_K: switch (OFF) { case 0: DST = div64_u64(DST, IMM); break; case 1: DST = div64_s64(DST, IMM); break; } CONT; ALU_DIV_K: switch (OFF) { case 0: AX = (u32) DST; do_div(AX, (u32) IMM); DST = (u32) AX; break; case 1: AX = abs((s32)DST); do_div(AX, abs((s32)IMM)); if (((s32)DST < 0) == ((s32)IMM < 0)) DST = (u32)AX; else DST = (u32)-AX; break; } CONT; ALU_END_TO_BE: switch (IMM) { case 16: DST = (__force u16) cpu_to_be16(DST); break; case 32: DST = (__force u32) cpu_to_be32(DST); break; case 64: DST = (__force u64) cpu_to_be64(DST); break; } CONT; ALU_END_TO_LE: switch (IMM) { case 16: DST = (__force u16) cpu_to_le16(DST); break; case 32: DST = (__force u32) cpu_to_le32(DST); break; case 64: DST = (__force u64) cpu_to_le64(DST); break; } CONT; ALU64_END_TO_LE: switch (IMM) { case 16: DST = (__force u16) __swab16(DST); break; case 32: DST = (__force u32) __swab32(DST); break; case 64: DST = (__force u64) __swab64(DST); break; } CONT; /* CALL */ JMP_CALL: /* Function call scratches BPF_R1-BPF_R5 registers, * preserves BPF_R6-BPF_R9, and stores return value * into BPF_R0. */ BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3, BPF_R4, BPF_R5); CONT; JMP_CALL_ARGS: BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2, BPF_R3, BPF_R4, BPF_R5, insn + insn->off + 1); CONT; JMP_TAIL_CALL: { struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2; struct bpf_array *array = container_of(map, struct bpf_array, map); struct bpf_prog *prog; u32 index = BPF_R3; if (unlikely(index >= array->map.max_entries)) goto out; if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT)) goto out; tail_call_cnt++; prog = READ_ONCE(array->ptrs[index]); if (!prog) goto out; /* ARG1 at this point is guaranteed to point to CTX from * the verifier side due to the fact that the tail call is * handled like a helper, that is, bpf_tail_call_proto, * where arg1_type is ARG_PTR_TO_CTX. */ insn = prog->insnsi; goto select_insn; out: CONT; } JMP_JA: insn += insn->off; CONT; JMP32_JA: insn += insn->imm; CONT; JMP_EXIT: return BPF_R0; /* JMP */ #define COND_JMP(SIGN, OPCODE, CMP_OP) \ JMP_##OPCODE##_X: \ if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \ insn += insn->off; \ CONT_JMP; \ } \ CONT; \ JMP32_##OPCODE##_X: \ if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \ insn += insn->off; \ CONT_JMP; \ } \ CONT; \ JMP_##OPCODE##_K: \ if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \ insn += insn->off; \ CONT_JMP; \ } \ CONT; \ JMP32_##OPCODE##_K: \ if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \ insn += insn->off; \ CONT_JMP; \ } \ CONT; COND_JMP(u, JEQ, ==) COND_JMP(u, JNE, !=) COND_JMP(u, JGT, >) COND_JMP(u, JLT, <) COND_JMP(u, JGE, >=) COND_JMP(u, JLE, <=) COND_JMP(u, JSET, &) COND_JMP(s, JSGT, >) COND_JMP(s, JSLT, <) COND_JMP(s, JSGE, >=) COND_JMP(s, JSLE, <=) #undef COND_JMP /* ST, STX and LDX*/ ST_NOSPEC: /* Speculation barrier for mitigating Speculative Store Bypass. * In case of arm64, we rely on the firmware mitigation as * controlled via the ssbd kernel parameter. Whenever the * mitigation is enabled, it works for all of the kernel code * with no need to provide any additional instructions here. * In case of x86, we use 'lfence' insn for mitigation. We * reuse preexisting logic from Spectre v1 mitigation that * happens to produce the required code on x86 for v4 as well. */ barrier_nospec(); CONT; #define LDST(SIZEOP, SIZE) \ STX_MEM_##SIZEOP: \ *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \ CONT; \ ST_MEM_##SIZEOP: \ *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \ CONT; \ LDX_MEM_##SIZEOP: \ DST = *(SIZE *)(unsigned long) (SRC + insn->off); \ CONT; \ LDX_PROBE_MEM_##SIZEOP: \ bpf_probe_read_kernel_common(&DST, sizeof(SIZE), \ (const void *)(long) (SRC + insn->off)); \ DST = *((SIZE *)&DST); \ CONT; LDST(B, u8) LDST(H, u16) LDST(W, u32) LDST(DW, u64) #undef LDST #define LDSX(SIZEOP, SIZE) \ LDX_MEMSX_##SIZEOP: \ DST = *(SIZE *)(unsigned long) (SRC + insn->off); \ CONT; \ LDX_PROBE_MEMSX_##SIZEOP: \ bpf_probe_read_kernel_common(&DST, sizeof(SIZE), \ (const void *)(long) (SRC + insn->off)); \ DST = *((SIZE *)&DST); \ CONT; LDSX(B, s8) LDSX(H, s16) LDSX(W, s32) #undef LDSX #define ATOMIC_ALU_OP(BOP, KOP) \ case BOP: \ if (BPF_SIZE(insn->code) == BPF_W) \ atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \ (DST + insn->off)); \ else \ atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \ (DST + insn->off)); \ break; \ case BOP | BPF_FETCH: \ if (BPF_SIZE(insn->code) == BPF_W) \ SRC = (u32) atomic_fetch_##KOP( \ (u32) SRC, \ (atomic_t *)(unsigned long) (DST + insn->off)); \ else \ SRC = (u64) atomic64_fetch_##KOP( \ (u64) SRC, \ (atomic64_t *)(unsigned long) (DST + insn->off)); \ break; STX_ATOMIC_DW: STX_ATOMIC_W: switch (IMM) { ATOMIC_ALU_OP(BPF_ADD, add) ATOMIC_ALU_OP(BPF_AND, and) ATOMIC_ALU_OP(BPF_OR, or) ATOMIC_ALU_OP(BPF_XOR, xor) #undef ATOMIC_ALU_OP case BPF_XCHG: if (BPF_SIZE(insn->code) == BPF_W) SRC = (u32) atomic_xchg( (atomic_t *)(unsigned long) (DST + insn->off), (u32) SRC); else SRC = (u64) atomic64_xchg( (atomic64_t *)(unsigned long) (DST + insn->off), (u64) SRC); break; case BPF_CMPXCHG: if (BPF_SIZE(insn->code) == BPF_W) BPF_R0 = (u32) atomic_cmpxchg( (atomic_t *)(unsigned long) (DST + insn->off), (u32) BPF_R0, (u32) SRC); else BPF_R0 = (u64) atomic64_cmpxchg( (atomic64_t *)(unsigned long) (DST + insn->off), (u64) BPF_R0, (u64) SRC); break; default: goto default_label; } CONT; default_label: /* If we ever reach this, we have a bug somewhere. Die hard here * instead of just returning 0; we could be somewhere in a subprog, * so execution could continue otherwise which we do /not/ want. * * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable(). */ pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n", insn->code, insn->imm); BUG_ON(1); return 0; } #define PROG_NAME(stack_size) __bpf_prog_run##stack_size #define DEFINE_BPF_PROG_RUN(stack_size) \ static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \ { \ u64 stack[stack_size / sizeof(u64)]; \ u64 regs[MAX_BPF_EXT_REG] = {}; \ \ FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \ ARG1 = (u64) (unsigned long) ctx; \ return ___bpf_prog_run(regs, insn); \ } #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \ static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \ const struct bpf_insn *insn) \ { \ u64 stack[stack_size / sizeof(u64)]; \ u64 regs[MAX_BPF_EXT_REG]; \ \ FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \ BPF_R1 = r1; \ BPF_R2 = r2; \ BPF_R3 = r3; \ BPF_R4 = r4; \ BPF_R5 = r5; \ return ___bpf_prog_run(regs, insn); \ } #define EVAL1(FN, X) FN(X) #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y) #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y) #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y) #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y) #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y) EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192); EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384); EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512); EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192); EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384); EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512); #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size), static unsigned int (*interpreters[])(const void *ctx, const struct bpf_insn *insn) = { EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192) EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384) EVAL4(PROG_NAME_LIST, 416, 448, 480, 512) }; #undef PROG_NAME_LIST #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size), static __maybe_unused u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, const struct bpf_insn *insn) = { EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192) EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384) EVAL4(PROG_NAME_LIST, 416, 448, 480, 512) }; #undef PROG_NAME_LIST #ifdef CONFIG_BPF_SYSCALL void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth) { stack_depth = max_t(u32, stack_depth, 1); insn->off = (s16) insn->imm; insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] - __bpf_call_base_args; insn->code = BPF_JMP | BPF_CALL_ARGS; } #endif #else static unsigned int __bpf_prog_ret0_warn(const void *ctx, const struct bpf_insn *insn) { /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON * is not working properly, so warn about it! */ WARN_ON_ONCE(1); return 0; } #endif bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp) { enum bpf_prog_type prog_type = resolve_prog_type(fp); bool ret; if (fp->kprobe_override) return false; /* XDP programs inserted into maps are not guaranteed to run on * a particular netdev (and can run outside driver context entirely * in the case of devmap and cpumap). Until device checks * are implemented, prohibit adding dev-bound programs to program maps. */ if (bpf_prog_is_dev_bound(fp->aux)) return false; spin_lock(&map->owner.lock); if (!map->owner.type) { /* There's no owner yet where we could check for * compatibility. */ map->owner.type = prog_type; map->owner.jited = fp->jited; map->owner.xdp_has_frags = fp->aux->xdp_has_frags; ret = true; } else { ret = map->owner.type == prog_type && map->owner.jited == fp->jited && map->owner.xdp_has_frags == fp->aux->xdp_has_frags; } spin_unlock(&map->owner.lock); return ret; } static int bpf_check_tail_call(const struct bpf_prog *fp) { struct bpf_prog_aux *aux = fp->aux; int i, ret = 0; mutex_lock(&aux->used_maps_mutex); for (i = 0; i < aux->used_map_cnt; i++) { struct bpf_map *map = aux->used_maps[i]; if (!map_type_contains_progs(map)) continue; if (!bpf_prog_map_compatible(map, fp)) { ret = -EINVAL; goto out; } } out: mutex_unlock(&aux->used_maps_mutex); return ret; } static void bpf_prog_select_func(struct bpf_prog *fp) { #ifndef CONFIG_BPF_JIT_ALWAYS_ON u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1); fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1]; #else fp->bpf_func = __bpf_prog_ret0_warn; #endif } /** * bpf_prog_select_runtime - select exec runtime for BPF program * @fp: bpf_prog populated with BPF program * @err: pointer to error variable * * Try to JIT eBPF program, if JIT is not available, use interpreter. * The BPF program will be executed via bpf_prog_run() function. * * Return: the &fp argument along with &err set to 0 for success or * a negative errno code on failure */ struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err) { /* In case of BPF to BPF calls, verifier did all the prep * work with regards to JITing, etc. */ bool jit_needed = false; if (fp->bpf_func) goto finalize; if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) || bpf_prog_has_kfunc_call(fp)) jit_needed = true; bpf_prog_select_func(fp); /* eBPF JITs can rewrite the program in case constant * blinding is active. However, in case of error during * blinding, bpf_int_jit_compile() must always return a * valid program, which in this case would simply not * be JITed, but falls back to the interpreter. */ if (!bpf_prog_is_offloaded(fp->aux)) { *err = bpf_prog_alloc_jited_linfo(fp); if (*err) return fp; fp = bpf_int_jit_compile(fp); bpf_prog_jit_attempt_done(fp); if (!fp->jited && jit_needed) { *err = -ENOTSUPP; return fp; } } else { *err = bpf_prog_offload_compile(fp); if (*err) return fp; } finalize: bpf_prog_lock_ro(fp); /* The tail call compatibility check can only be done at * this late stage as we need to determine, if we deal * with JITed or non JITed program concatenations and not * all eBPF JITs might immediately support all features. */ *err = bpf_check_tail_call(fp); return fp; } EXPORT_SYMBOL_GPL(bpf_prog_select_runtime); static unsigned int __bpf_prog_ret1(const void *ctx, const struct bpf_insn *insn) { return 1; } static struct bpf_prog_dummy { struct bpf_prog prog; } dummy_bpf_prog = { .prog = { .bpf_func = __bpf_prog_ret1, }, }; struct bpf_empty_prog_array bpf_empty_prog_array = { .null_prog = NULL, }; EXPORT_SYMBOL(bpf_empty_prog_array); struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags) { if (prog_cnt) return kzalloc(sizeof(struct bpf_prog_array) + sizeof(struct bpf_prog_array_item) * (prog_cnt + 1), flags); return &bpf_empty_prog_array.hdr; } void bpf_prog_array_free(struct bpf_prog_array *progs) { if (!progs || progs == &bpf_empty_prog_array.hdr) return; kfree_rcu(progs, rcu); } static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu) { struct bpf_prog_array *progs; /* If RCU Tasks Trace grace period implies RCU grace period, there is * no need to call kfree_rcu(), just call kfree() directly. */ progs = container_of(rcu, struct bpf_prog_array, rcu); if (rcu_trace_implies_rcu_gp()) kfree(progs); else kfree_rcu(progs, rcu); } void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs) { if (!progs || progs == &bpf_empty_prog_array.hdr) return; call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb); } int bpf_prog_array_length(struct bpf_prog_array *array) { struct bpf_prog_array_item *item; u32 cnt = 0; for (item = array->items; item->prog; item++) if (item->prog != &dummy_bpf_prog.prog) cnt++; return cnt; } bool bpf_prog_array_is_empty(struct bpf_prog_array *array) { struct bpf_prog_array_item *item; for (item = array->items; item->prog; item++) if (item->prog != &dummy_bpf_prog.prog) return false; return true; } static bool bpf_prog_array_copy_core(struct bpf_prog_array *array, u32 *prog_ids, u32 request_cnt) { struct bpf_prog_array_item *item; int i = 0; for (item = array->items; item->prog; item++) { if (item->prog == &dummy_bpf_prog.prog) continue; prog_ids[i] = item->prog->aux->id; if (++i == request_cnt) { item++; break; } } return !!(item->prog); } int bpf_prog_array_copy_to_user(struct bpf_prog_array *array, __u32 __user *prog_ids, u32 cnt) { unsigned long err = 0; bool nospc; u32 *ids; /* users of this function are doing: * cnt = bpf_prog_array_length(); * if (cnt > 0) * bpf_prog_array_copy_to_user(..., cnt); * so below kcalloc doesn't need extra cnt > 0 check. */ ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN); if (!ids) return -ENOMEM; nospc = bpf_prog_array_copy_core(array, ids, cnt); err = copy_to_user(prog_ids, ids, cnt * sizeof(u32)); kfree(ids); if (err) return -EFAULT; if (nospc) return -ENOSPC; return 0; } void bpf_prog_array_delete_safe(struct bpf_prog_array *array, struct bpf_prog *old_prog) { struct bpf_prog_array_item *item; for (item = array->items; item->prog; item++) if (item->prog == old_prog) { WRITE_ONCE(item->prog, &dummy_bpf_prog.prog); break; } } /** * bpf_prog_array_delete_safe_at() - Replaces the program at the given * index into the program array with * a dummy no-op program. * @array: a bpf_prog_array * @index: the index of the program to replace * * Skips over dummy programs, by not counting them, when calculating * the position of the program to replace. * * Return: * * 0 - Success * * -EINVAL - Invalid index value. Must be a non-negative integer. * * -ENOENT - Index out of range */ int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index) { return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog); } /** * bpf_prog_array_update_at() - Updates the program at the given index * into the program array. * @array: a bpf_prog_array * @index: the index of the program to update * @prog: the program to insert into the array * * Skips over dummy programs, by not counting them, when calculating * the position of the program to update. * * Return: * * 0 - Success * * -EINVAL - Invalid index value. Must be a non-negative integer. * * -ENOENT - Index out of range */ int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, struct bpf_prog *prog) { struct bpf_prog_array_item *item; if (unlikely(index < 0)) return -EINVAL; for (item = array->items; item->prog; item++) { if (item->prog == &dummy_bpf_prog.prog) continue; if (!index) { WRITE_ONCE(item->prog, prog); return 0; } index--; } return -ENOENT; } int bpf_prog_array_copy(struct bpf_prog_array *old_array, struct bpf_prog *exclude_prog, struct bpf_prog *include_prog, u64 bpf_cookie, struct bpf_prog_array **new_array) { int new_prog_cnt, carry_prog_cnt = 0; struct bpf_prog_array_item *existing, *new; struct bpf_prog_array *array; bool found_exclude = false; /* Figure out how many existing progs we need to carry over to * the new array. */ if (old_array) { existing = old_array->items; for (; existing->prog; existing++) { if (existing->prog == exclude_prog) { found_exclude = true; continue; } if (existing->prog != &dummy_bpf_prog.prog) carry_prog_cnt++; if (existing->prog == include_prog) return -EEXIST; } } if (exclude_prog && !found_exclude) return -ENOENT; /* How many progs (not NULL) will be in the new array? */ new_prog_cnt = carry_prog_cnt; if (include_prog) new_prog_cnt += 1; /* Do we have any prog (not NULL) in the new array? */ if (!new_prog_cnt) { *new_array = NULL; return 0; } /* +1 as the end of prog_array is marked with NULL */ array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL); if (!array) return -ENOMEM; new = array->items; /* Fill in the new prog array */ if (carry_prog_cnt) { existing = old_array->items; for (; existing->prog; existing++) { if (existing->prog == exclude_prog || existing->prog == &dummy_bpf_prog.prog) continue; new->prog = existing->prog; new->bpf_cookie = existing->bpf_cookie; new++; } } if (include_prog) { new->prog = include_prog; new->bpf_cookie = bpf_cookie; new++; } new->prog = NULL; *new_array = array; return 0; } int bpf_prog_array_copy_info(struct bpf_prog_array *array, u32 *prog_ids, u32 request_cnt, u32 *prog_cnt) { u32 cnt = 0; if (array) cnt = bpf_prog_array_length(array); *prog_cnt = cnt; /* return early if user requested only program count or nothing to copy */ if (!request_cnt || !cnt) return 0; /* this function is called under trace/bpf_trace.c: bpf_event_mutex */ return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC : 0; } void __bpf_free_used_maps(struct bpf_prog_aux *aux, struct bpf_map **used_maps, u32 len) { struct bpf_map *map; u32 i; for (i = 0; i < len; i++) { map = used_maps[i]; if (map->ops->map_poke_untrack) map->ops->map_poke_untrack(map, aux); bpf_map_put(map); } } static void bpf_free_used_maps(struct bpf_prog_aux *aux) { __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt); kfree(aux->used_maps); } void __bpf_free_used_btfs(struct bpf_prog_aux *aux, struct btf_mod_pair *used_btfs, u32 len) { #ifdef CONFIG_BPF_SYSCALL struct btf_mod_pair *btf_mod; u32 i; for (i = 0; i < len; i++) { btf_mod = &used_btfs[i]; if (btf_mod->module) module_put(btf_mod->module); btf_put(btf_mod->btf); } #endif } static void bpf_free_used_btfs(struct bpf_prog_aux *aux) { __bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt); kfree(aux->used_btfs); } static void bpf_prog_free_deferred(struct work_struct *work) { struct bpf_prog_aux *aux; int i; aux = container_of(work, struct bpf_prog_aux, work); #ifdef CONFIG_BPF_SYSCALL bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab); #endif #ifdef CONFIG_CGROUP_BPF if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID) bpf_cgroup_atype_put(aux->cgroup_atype); #endif bpf_free_used_maps(aux); bpf_free_used_btfs(aux); if (bpf_prog_is_dev_bound(aux)) bpf_prog_dev_bound_destroy(aux->prog); #ifdef CONFIG_PERF_EVENTS if (aux->prog->has_callchain_buf) put_callchain_buffers(); #endif if (aux->dst_trampoline) bpf_trampoline_put(aux->dst_trampoline); for (i = 0; i < aux->func_cnt; i++) { /* We can just unlink the subprog poke descriptor table as * it was originally linked to the main program and is also * released along with it. */ aux->func[i]->aux->poke_tab = NULL; bpf_jit_free(aux->func[i]); } if (aux->func_cnt) { kfree(aux->func); bpf_prog_unlock_free(aux->prog); } else { bpf_jit_free(aux->prog); } } void bpf_prog_free(struct bpf_prog *fp) { struct bpf_prog_aux *aux = fp->aux; if (aux->dst_prog) bpf_prog_put(aux->dst_prog); INIT_WORK(&aux->work, bpf_prog_free_deferred); schedule_work(&aux->work); } EXPORT_SYMBOL_GPL(bpf_prog_free); /* RNG for unpriviledged user space with separated state from prandom_u32(). */ static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state); void bpf_user_rnd_init_once(void) { prandom_init_once(&bpf_user_rnd_state); } BPF_CALL_0(bpf_user_rnd_u32) { /* Should someone ever have the rather unwise idea to use some * of the registers passed into this function, then note that * this function is called from native eBPF and classic-to-eBPF * transformations. Register assignments from both sides are * different, f.e. classic always sets fn(ctx, A, X) here. */ struct rnd_state *state; u32 res; state = &get_cpu_var(bpf_user_rnd_state); res = prandom_u32_state(state); put_cpu_var(bpf_user_rnd_state); return res; } BPF_CALL_0(bpf_get_raw_cpu_id) { return raw_smp_processor_id(); } /* Weak definitions of helper functions in case we don't have bpf syscall. */ const struct bpf_func_proto bpf_map_lookup_elem_proto __weak; const struct bpf_func_proto bpf_map_update_elem_proto __weak; const struct bpf_func_proto bpf_map_delete_elem_proto __weak; const struct bpf_func_proto bpf_map_push_elem_proto __weak; const struct bpf_func_proto bpf_map_pop_elem_proto __weak; const struct bpf_func_proto bpf_map_peek_elem_proto __weak; const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak; const struct bpf_func_proto bpf_spin_lock_proto __weak; const struct bpf_func_proto bpf_spin_unlock_proto __weak; const struct bpf_func_proto bpf_jiffies64_proto __weak; const struct bpf_func_proto bpf_get_prandom_u32_proto __weak; const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak; const struct bpf_func_proto bpf_get_numa_node_id_proto __weak; const struct bpf_func_proto bpf_ktime_get_ns_proto __weak; const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak; const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak; const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak; const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak; const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak; const struct bpf_func_proto bpf_get_current_comm_proto __weak; const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak; const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak; const struct bpf_func_proto bpf_get_local_storage_proto __weak; const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak; const struct bpf_func_proto bpf_snprintf_btf_proto __weak; const struct bpf_func_proto bpf_seq_printf_btf_proto __weak; const struct bpf_func_proto bpf_set_retval_proto __weak; const struct bpf_func_proto bpf_get_retval_proto __weak; const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void) { return NULL; } const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void) { return NULL; } u64 __weak bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) { return -ENOTSUPP; } EXPORT_SYMBOL_GPL(bpf_event_output); /* Always built-in helper functions. */ const struct bpf_func_proto bpf_tail_call_proto = { .func = NULL, .gpl_only = false, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, }; /* Stub for JITs that only support cBPF. eBPF programs are interpreted. * It is encouraged to implement bpf_int_jit_compile() instead, so that * eBPF and implicitly also cBPF can get JITed! */ struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog) { return prog; } /* Stub for JITs that support eBPF. All cBPF code gets transformed into * eBPF by the kernel and is later compiled by bpf_int_jit_compile(). */ void __weak bpf_jit_compile(struct bpf_prog *prog) { } bool __weak bpf_helper_changes_pkt_data(void *func) { return false; } /* Return TRUE if the JIT backend wants verifier to enable sub-register usage * analysis code and wants explicit zero extension inserted by verifier. * Otherwise, return FALSE. * * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if * you don't override this. JITs that don't want these extra insns can detect * them using insn_is_zext. */ bool __weak bpf_jit_needs_zext(void) { return false; } /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */ bool __weak bpf_jit_supports_subprog_tailcalls(void) { return false; } bool __weak bpf_jit_supports_kfunc_call(void) { return false; } bool __weak bpf_jit_supports_far_kfunc_call(void) { return false; } /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call * skb_copy_bits(), so provide a weak definition of it for NET-less config. */ int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) { return -EFAULT; } int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, void *addr1, void *addr2) { return -ENOTSUPP; } void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len) { return ERR_PTR(-ENOTSUPP); } int __weak bpf_arch_text_invalidate(void *dst, size_t len) { return -ENOTSUPP; } #ifdef CONFIG_BPF_SYSCALL static int __init bpf_global_ma_init(void) { int ret; ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false); bpf_global_ma_set = !ret; return ret; } late_initcall(bpf_global_ma_init); #endif DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key); EXPORT_SYMBOL(bpf_stats_enabled_key); /* All definitions of tracepoints related to BPF. */ #define CREATE_TRACE_POINTS #include EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception); EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);