/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Universal Flash Storage Host controller driver * Copyright (C) 2011-2013 Samsung India Software Operations * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved. * * Authors: * Santosh Yaraganavi * Vinayak Holikatti */ #ifndef _UFSHCD_H #define _UFSHCD_H #include #include #include #include #include #include #include #include #include #include #include #include #include #define UFSHCD "ufshcd" struct ufs_hba; enum dev_cmd_type { DEV_CMD_TYPE_NOP = 0x0, DEV_CMD_TYPE_QUERY = 0x1, DEV_CMD_TYPE_RPMB = 0x2, }; enum ufs_event_type { /* uic specific errors */ UFS_EVT_PA_ERR = 0, UFS_EVT_DL_ERR, UFS_EVT_NL_ERR, UFS_EVT_TL_ERR, UFS_EVT_DME_ERR, /* fatal errors */ UFS_EVT_AUTO_HIBERN8_ERR, UFS_EVT_FATAL_ERR, UFS_EVT_LINK_STARTUP_FAIL, UFS_EVT_RESUME_ERR, UFS_EVT_SUSPEND_ERR, UFS_EVT_WL_SUSP_ERR, UFS_EVT_WL_RES_ERR, /* abnormal events */ UFS_EVT_DEV_RESET, UFS_EVT_HOST_RESET, UFS_EVT_ABORT, UFS_EVT_CNT, }; /** * struct uic_command - UIC command structure * @command: UIC command * @argument1: UIC command argument 1 * @argument2: UIC command argument 2 * @argument3: UIC command argument 3 * @cmd_active: Indicate if UIC command is outstanding * @done: UIC command completion */ struct uic_command { u32 command; u32 argument1; u32 argument2; u32 argument3; int cmd_active; struct completion done; }; /* Used to differentiate the power management options */ enum ufs_pm_op { UFS_RUNTIME_PM, UFS_SYSTEM_PM, UFS_SHUTDOWN_PM, }; /* Host <-> Device UniPro Link state */ enum uic_link_state { UIC_LINK_OFF_STATE = 0, /* Link powered down or disabled */ UIC_LINK_ACTIVE_STATE = 1, /* Link is in Fast/Slow/Sleep state */ UIC_LINK_HIBERN8_STATE = 2, /* Link is in Hibernate state */ UIC_LINK_BROKEN_STATE = 3, /* Link is in broken state */ }; #define ufshcd_is_link_off(hba) ((hba)->uic_link_state == UIC_LINK_OFF_STATE) #define ufshcd_is_link_active(hba) ((hba)->uic_link_state == \ UIC_LINK_ACTIVE_STATE) #define ufshcd_is_link_hibern8(hba) ((hba)->uic_link_state == \ UIC_LINK_HIBERN8_STATE) #define ufshcd_is_link_broken(hba) ((hba)->uic_link_state == \ UIC_LINK_BROKEN_STATE) #define ufshcd_set_link_off(hba) ((hba)->uic_link_state = UIC_LINK_OFF_STATE) #define ufshcd_set_link_active(hba) ((hba)->uic_link_state = \ UIC_LINK_ACTIVE_STATE) #define ufshcd_set_link_hibern8(hba) ((hba)->uic_link_state = \ UIC_LINK_HIBERN8_STATE) #define ufshcd_set_link_broken(hba) ((hba)->uic_link_state = \ UIC_LINK_BROKEN_STATE) #define ufshcd_set_ufs_dev_active(h) \ ((h)->curr_dev_pwr_mode = UFS_ACTIVE_PWR_MODE) #define ufshcd_set_ufs_dev_sleep(h) \ ((h)->curr_dev_pwr_mode = UFS_SLEEP_PWR_MODE) #define ufshcd_set_ufs_dev_poweroff(h) \ ((h)->curr_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE) #define ufshcd_set_ufs_dev_deepsleep(h) \ ((h)->curr_dev_pwr_mode = UFS_DEEPSLEEP_PWR_MODE) #define ufshcd_is_ufs_dev_active(h) \ ((h)->curr_dev_pwr_mode == UFS_ACTIVE_PWR_MODE) #define ufshcd_is_ufs_dev_sleep(h) \ ((h)->curr_dev_pwr_mode == UFS_SLEEP_PWR_MODE) #define ufshcd_is_ufs_dev_poweroff(h) \ ((h)->curr_dev_pwr_mode == UFS_POWERDOWN_PWR_MODE) #define ufshcd_is_ufs_dev_deepsleep(h) \ ((h)->curr_dev_pwr_mode == UFS_DEEPSLEEP_PWR_MODE) /* * UFS Power management levels. * Each level is in increasing order of power savings, except DeepSleep * which is lower than PowerDown with power on but not PowerDown with * power off. */ enum ufs_pm_level { UFS_PM_LVL_0, UFS_PM_LVL_1, UFS_PM_LVL_2, UFS_PM_LVL_3, UFS_PM_LVL_4, UFS_PM_LVL_5, UFS_PM_LVL_6, UFS_PM_LVL_MAX }; struct ufs_pm_lvl_states { enum ufs_dev_pwr_mode dev_state; enum uic_link_state link_state; }; /** * struct ufshcd_lrb - local reference block * @utr_descriptor_ptr: UTRD address of the command * @ucd_req_ptr: UCD address of the command * @ucd_rsp_ptr: Response UPIU address for this command * @ucd_prdt_ptr: PRDT address of the command * @utrd_dma_addr: UTRD dma address for debug * @ucd_prdt_dma_addr: PRDT dma address for debug * @ucd_rsp_dma_addr: UPIU response dma address for debug * @ucd_req_dma_addr: UPIU request dma address for debug * @cmd: pointer to SCSI command * @scsi_status: SCSI status of the command * @command_type: SCSI, UFS, Query. * @task_tag: Task tag of the command * @lun: LUN of the command * @intr_cmd: Interrupt command (doesn't participate in interrupt aggregation) * @issue_time_stamp: time stamp for debug purposes (CLOCK_MONOTONIC) * @issue_time_stamp_local_clock: time stamp for debug purposes (local_clock) * @compl_time_stamp: time stamp for statistics (CLOCK_MONOTONIC) * @compl_time_stamp_local_clock: time stamp for debug purposes (local_clock) * @crypto_key_slot: the key slot to use for inline crypto (-1 if none) * @data_unit_num: the data unit number for the first block for inline crypto * @req_abort_skip: skip request abort task flag */ struct ufshcd_lrb { struct utp_transfer_req_desc *utr_descriptor_ptr; struct utp_upiu_req *ucd_req_ptr; struct utp_upiu_rsp *ucd_rsp_ptr; struct ufshcd_sg_entry *ucd_prdt_ptr; dma_addr_t utrd_dma_addr; dma_addr_t ucd_req_dma_addr; dma_addr_t ucd_rsp_dma_addr; dma_addr_t ucd_prdt_dma_addr; struct scsi_cmnd *cmd; int scsi_status; int command_type; int task_tag; u8 lun; /* UPIU LUN id field is only 8-bit wide */ bool intr_cmd; ktime_t issue_time_stamp; u64 issue_time_stamp_local_clock; ktime_t compl_time_stamp; u64 compl_time_stamp_local_clock; #ifdef CONFIG_SCSI_UFS_CRYPTO int crypto_key_slot; u64 data_unit_num; #endif bool req_abort_skip; }; /** * struct ufs_query_req - parameters for building a query request * @query_func: UPIU header query function * @upiu_req: the query request data */ struct ufs_query_req { u8 query_func; struct utp_upiu_query upiu_req; }; /** * struct ufs_query_resp - UPIU QUERY * @response: device response code * @upiu_res: query response data */ struct ufs_query_res { struct utp_upiu_query upiu_res; }; /** * struct ufs_query - holds relevant data structures for query request * @request: request upiu and function * @descriptor: buffer for sending/receiving descriptor * @response: response upiu and response */ struct ufs_query { struct ufs_query_req request; u8 *descriptor; struct ufs_query_res response; }; /** * struct ufs_dev_cmd - all assosiated fields with device management commands * @type: device management command type - Query, NOP OUT * @lock: lock to allow one command at a time * @complete: internal commands completion * @query: Device management query information */ struct ufs_dev_cmd { enum dev_cmd_type type; struct mutex lock; struct completion *complete; struct ufs_query query; }; /** * struct ufs_clk_info - UFS clock related info * @list: list headed by hba->clk_list_head * @clk: clock node * @name: clock name * @max_freq: maximum frequency supported by the clock * @min_freq: min frequency that can be used for clock scaling * @curr_freq: indicates the current frequency that it is set to * @keep_link_active: indicates that the clk should not be disabled if * link is active * @enabled: variable to check against multiple enable/disable */ struct ufs_clk_info { struct list_head list; struct clk *clk; const char *name; u32 max_freq; u32 min_freq; u32 curr_freq; bool keep_link_active; bool enabled; }; enum ufs_notify_change_status { PRE_CHANGE, POST_CHANGE, }; struct ufs_pa_layer_attr { u32 gear_rx; u32 gear_tx; u32 lane_rx; u32 lane_tx; u32 pwr_rx; u32 pwr_tx; u32 hs_rate; }; struct ufs_pwr_mode_info { bool is_valid; struct ufs_pa_layer_attr info; }; /** * struct ufs_hba_variant_ops - variant specific callbacks * @name: variant name * @init: called when the driver is initialized * @exit: called to cleanup everything done in init * @get_ufs_hci_version: called to get UFS HCI version * @clk_scale_notify: notifies that clks are scaled up/down * @setup_clocks: called before touching any of the controller registers * @hce_enable_notify: called before and after HCE enable bit is set to allow * variant specific Uni-Pro initialization. * @link_startup_notify: called before and after Link startup is carried out * to allow variant specific Uni-Pro initialization. * @pwr_change_notify: called before and after a power mode change * is carried out to allow vendor spesific capabilities * to be set. * @setup_xfer_req: called before any transfer request is issued * to set some things * @setup_task_mgmt: called before any task management request is issued * to set some things * @hibern8_notify: called around hibern8 enter/exit * @apply_dev_quirks: called to apply device specific quirks * @fixup_dev_quirks: called to modify device specific quirks * @suspend: called during host controller PM callback * @resume: called during host controller PM callback * @dbg_register_dump: used to dump controller debug information * @phy_initialization: used to initialize phys * @device_reset: called to issue a reset pulse on the UFS device * @config_scaling_param: called to configure clock scaling parameters * @program_key: program or evict an inline encryption key * @event_notify: called to notify important events * @reinit_notify: called to notify reinit of UFSHCD during max gear switch * @mcq_config_resource: called to configure MCQ platform resources * @get_hba_mac: called to get vendor specific mac value, mandatory for mcq mode * @op_runtime_config: called to config Operation and runtime regs Pointers * @get_outstanding_cqs: called to get outstanding completion queues * @config_esi: called to config Event Specific Interrupt */ struct ufs_hba_variant_ops { const char *name; int (*init)(struct ufs_hba *); void (*exit)(struct ufs_hba *); u32 (*get_ufs_hci_version)(struct ufs_hba *); int (*clk_scale_notify)(struct ufs_hba *, bool, enum ufs_notify_change_status); int (*setup_clocks)(struct ufs_hba *, bool, enum ufs_notify_change_status); int (*hce_enable_notify)(struct ufs_hba *, enum ufs_notify_change_status); int (*link_startup_notify)(struct ufs_hba *, enum ufs_notify_change_status); int (*pwr_change_notify)(struct ufs_hba *, enum ufs_notify_change_status status, struct ufs_pa_layer_attr *, struct ufs_pa_layer_attr *); void (*setup_xfer_req)(struct ufs_hba *hba, int tag, bool is_scsi_cmd); void (*setup_task_mgmt)(struct ufs_hba *, int, u8); void (*hibern8_notify)(struct ufs_hba *, enum uic_cmd_dme, enum ufs_notify_change_status); int (*apply_dev_quirks)(struct ufs_hba *hba); void (*fixup_dev_quirks)(struct ufs_hba *hba); int (*suspend)(struct ufs_hba *, enum ufs_pm_op, enum ufs_notify_change_status); int (*resume)(struct ufs_hba *, enum ufs_pm_op); void (*dbg_register_dump)(struct ufs_hba *hba); int (*phy_initialization)(struct ufs_hba *); int (*device_reset)(struct ufs_hba *hba); void (*config_scaling_param)(struct ufs_hba *hba, struct devfreq_dev_profile *profile, struct devfreq_simple_ondemand_data *data); int (*program_key)(struct ufs_hba *hba, const union ufs_crypto_cfg_entry *cfg, int slot); void (*event_notify)(struct ufs_hba *hba, enum ufs_event_type evt, void *data); void (*reinit_notify)(struct ufs_hba *); int (*mcq_config_resource)(struct ufs_hba *hba); int (*get_hba_mac)(struct ufs_hba *hba); int (*op_runtime_config)(struct ufs_hba *hba); int (*get_outstanding_cqs)(struct ufs_hba *hba, unsigned long *ocqs); int (*config_esi)(struct ufs_hba *hba); }; /* clock gating state */ enum clk_gating_state { CLKS_OFF, CLKS_ON, REQ_CLKS_OFF, REQ_CLKS_ON, }; /** * struct ufs_clk_gating - UFS clock gating related info * @gate_work: worker to turn off clocks after some delay as specified in * delay_ms * @ungate_work: worker to turn on clocks that will be used in case of * interrupt context * @state: the current clocks state * @delay_ms: gating delay in ms * @is_suspended: clk gating is suspended when set to 1 which can be used * during suspend/resume * @delay_attr: sysfs attribute to control delay_attr * @enable_attr: sysfs attribute to enable/disable clock gating * @is_enabled: Indicates the current status of clock gating * @is_initialized: Indicates whether clock gating is initialized or not * @active_reqs: number of requests that are pending and should be waited for * completion before gating clocks. * @clk_gating_workq: workqueue for clock gating work. */ struct ufs_clk_gating { struct delayed_work gate_work; struct work_struct ungate_work; enum clk_gating_state state; unsigned long delay_ms; bool is_suspended; struct device_attribute delay_attr; struct device_attribute enable_attr; bool is_enabled; bool is_initialized; int active_reqs; struct workqueue_struct *clk_gating_workq; }; /** * struct ufs_clk_scaling - UFS clock scaling related data * @active_reqs: number of requests that are pending. If this is zero when * devfreq ->target() function is called then schedule "suspend_work" to * suspend devfreq. * @tot_busy_t: Total busy time in current polling window * @window_start_t: Start time (in jiffies) of the current polling window * @busy_start_t: Start time of current busy period * @enable_attr: sysfs attribute to enable/disable clock scaling * @saved_pwr_info: UFS power mode may also be changed during scaling and this * one keeps track of previous power mode. * @workq: workqueue to schedule devfreq suspend/resume work * @suspend_work: worker to suspend devfreq * @resume_work: worker to resume devfreq * @min_gear: lowest HS gear to scale down to * @is_enabled: tracks if scaling is currently enabled or not, controlled by * clkscale_enable sysfs node * @is_allowed: tracks if scaling is currently allowed or not, used to block * clock scaling which is not invoked from devfreq governor * @is_initialized: Indicates whether clock scaling is initialized or not * @is_busy_started: tracks if busy period has started or not * @is_suspended: tracks if devfreq is suspended or not */ struct ufs_clk_scaling { int active_reqs; unsigned long tot_busy_t; ktime_t window_start_t; ktime_t busy_start_t; struct device_attribute enable_attr; struct ufs_pa_layer_attr saved_pwr_info; struct workqueue_struct *workq; struct work_struct suspend_work; struct work_struct resume_work; u32 min_gear; bool is_enabled; bool is_allowed; bool is_initialized; bool is_busy_started; bool is_suspended; }; #define UFS_EVENT_HIST_LENGTH 8 /** * struct ufs_event_hist - keeps history of errors * @pos: index to indicate cyclic buffer position * @val: cyclic buffer for registers value * @tstamp: cyclic buffer for time stamp * @cnt: error counter */ struct ufs_event_hist { int pos; u32 val[UFS_EVENT_HIST_LENGTH]; u64 tstamp[UFS_EVENT_HIST_LENGTH]; unsigned long long cnt; }; /** * struct ufs_stats - keeps usage/err statistics * @last_intr_status: record the last interrupt status. * @last_intr_ts: record the last interrupt timestamp. * @hibern8_exit_cnt: Counter to keep track of number of exits, * reset this after link-startup. * @last_hibern8_exit_tstamp: Set time after the hibern8 exit. * Clear after the first successful command completion. * @event: array with event history. */ struct ufs_stats { u32 last_intr_status; u64 last_intr_ts; u32 hibern8_exit_cnt; u64 last_hibern8_exit_tstamp; struct ufs_event_hist event[UFS_EVT_CNT]; }; /** * enum ufshcd_state - UFS host controller state * @UFSHCD_STATE_RESET: Link is not operational. Postpone SCSI command * processing. * @UFSHCD_STATE_OPERATIONAL: The host controller is operational and can process * SCSI commands. * @UFSHCD_STATE_EH_SCHEDULED_NON_FATAL: The error handler has been scheduled. * SCSI commands may be submitted to the controller. * @UFSHCD_STATE_EH_SCHEDULED_FATAL: The error handler has been scheduled. Fail * newly submitted SCSI commands with error code DID_BAD_TARGET. * @UFSHCD_STATE_ERROR: An unrecoverable error occurred, e.g. link recovery * failed. Fail all SCSI commands with error code DID_ERROR. */ enum ufshcd_state { UFSHCD_STATE_RESET, UFSHCD_STATE_OPERATIONAL, UFSHCD_STATE_EH_SCHEDULED_NON_FATAL, UFSHCD_STATE_EH_SCHEDULED_FATAL, UFSHCD_STATE_ERROR, }; enum ufshcd_quirks { /* Interrupt aggregation support is broken */ UFSHCD_QUIRK_BROKEN_INTR_AGGR = 1 << 0, /* * delay before each dme command is required as the unipro * layer has shown instabilities */ UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS = 1 << 1, /* * If UFS host controller is having issue in processing LCC (Line * Control Command) coming from device then enable this quirk. * When this quirk is enabled, host controller driver should disable * the LCC transmission on UFS device (by clearing TX_LCC_ENABLE * attribute of device to 0). */ UFSHCD_QUIRK_BROKEN_LCC = 1 << 2, /* * The attribute PA_RXHSUNTERMCAP specifies whether or not the * inbound Link supports unterminated line in HS mode. Setting this * attribute to 1 fixes moving to HS gear. */ UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP = 1 << 3, /* * This quirk needs to be enabled if the host controller only allows * accessing the peer dme attributes in AUTO mode (FAST AUTO or * SLOW AUTO). */ UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE = 1 << 4, /* * This quirk needs to be enabled if the host controller doesn't * advertise the correct version in UFS_VER register. If this quirk * is enabled, standard UFS host driver will call the vendor specific * ops (get_ufs_hci_version) to get the correct version. */ UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION = 1 << 5, /* * Clear handling for transfer/task request list is just opposite. */ UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR = 1 << 6, /* * This quirk needs to be enabled if host controller doesn't allow * that the interrupt aggregation timer and counter are reset by s/w. */ UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR = 1 << 7, /* * This quirks needs to be enabled if host controller cannot be * enabled via HCE register. */ UFSHCI_QUIRK_BROKEN_HCE = 1 << 8, /* * This quirk needs to be enabled if the host controller regards * resolution of the values of PRDTO and PRDTL in UTRD as byte. */ UFSHCD_QUIRK_PRDT_BYTE_GRAN = 1 << 9, /* * This quirk needs to be enabled if the host controller reports * OCS FATAL ERROR with device error through sense data */ UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR = 1 << 10, /* * This quirk needs to be enabled if the host controller has * auto-hibernate capability but it doesn't work. */ UFSHCD_QUIRK_BROKEN_AUTO_HIBERN8 = 1 << 11, /* * This quirk needs to disable manual flush for write booster */ UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL = 1 << 12, /* * This quirk needs to disable unipro timeout values * before power mode change */ UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING = 1 << 13, /* * Align DMA SG entries on a 4 KiB boundary. */ UFSHCD_QUIRK_4KB_DMA_ALIGNMENT = 1 << 14, /* * This quirk needs to be enabled if the host controller does not * support UIC command */ UFSHCD_QUIRK_BROKEN_UIC_CMD = 1 << 15, /* * This quirk needs to be enabled if the host controller cannot * support physical host configuration. */ UFSHCD_QUIRK_SKIP_PH_CONFIGURATION = 1 << 16, /* * This quirk needs to be enabled if the host controller has * 64-bit addressing supported capability but it doesn't work. */ UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS = 1 << 17, /* * This quirk needs to be enabled if the host controller has * auto-hibernate capability but it's FASTAUTO only. */ UFSHCD_QUIRK_HIBERN_FASTAUTO = 1 << 18, /* * This quirk needs to be enabled if the host controller needs * to reinit the device after switching to maximum gear. */ UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH = 1 << 19, /* * Some host raises interrupt (per queue) in addition to * CQES (traditional) when ESI is disabled. * Enable this quirk will disable CQES and use per queue interrupt. */ UFSHCD_QUIRK_MCQ_BROKEN_INTR = 1 << 20, /* * Some host does not implement SQ Run Time Command (SQRTC) register * thus need this quirk to skip related flow. */ UFSHCD_QUIRK_MCQ_BROKEN_RTC = 1 << 21, }; enum ufshcd_caps { /* Allow dynamic clk gating */ UFSHCD_CAP_CLK_GATING = 1 << 0, /* Allow hiberb8 with clk gating */ UFSHCD_CAP_HIBERN8_WITH_CLK_GATING = 1 << 1, /* Allow dynamic clk scaling */ UFSHCD_CAP_CLK_SCALING = 1 << 2, /* Allow auto bkops to enabled during runtime suspend */ UFSHCD_CAP_AUTO_BKOPS_SUSPEND = 1 << 3, /* * This capability allows host controller driver to use the UFS HCI's * interrupt aggregation capability. * CAUTION: Enabling this might reduce overall UFS throughput. */ UFSHCD_CAP_INTR_AGGR = 1 << 4, /* * This capability allows the device auto-bkops to be always enabled * except during suspend (both runtime and suspend). * Enabling this capability means that device will always be allowed * to do background operation when it's active but it might degrade * the performance of ongoing read/write operations. */ UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND = 1 << 5, /* * This capability allows host controller driver to automatically * enable runtime power management by itself instead of waiting * for userspace to control the power management. */ UFSHCD_CAP_RPM_AUTOSUSPEND = 1 << 6, /* * This capability allows the host controller driver to turn-on * WriteBooster, if the underlying device supports it and is * provisioned to be used. This would increase the write performance. */ UFSHCD_CAP_WB_EN = 1 << 7, /* * This capability allows the host controller driver to use the * inline crypto engine, if it is present */ UFSHCD_CAP_CRYPTO = 1 << 8, /* * This capability allows the controller regulators to be put into * lpm mode aggressively during clock gating. * This would increase power savings. */ UFSHCD_CAP_AGGR_POWER_COLLAPSE = 1 << 9, /* * This capability allows the host controller driver to use DeepSleep, * if it is supported by the UFS device. The host controller driver must * support device hardware reset via the hba->device_reset() callback, * in order to exit DeepSleep state. */ UFSHCD_CAP_DEEPSLEEP = 1 << 10, /* * This capability allows the host controller driver to use temperature * notification if it is supported by the UFS device. */ UFSHCD_CAP_TEMP_NOTIF = 1 << 11, /* * Enable WriteBooster when scaling up the clock and disable * WriteBooster when scaling the clock down. */ UFSHCD_CAP_WB_WITH_CLK_SCALING = 1 << 12, }; struct ufs_hba_variant_params { struct devfreq_dev_profile devfreq_profile; struct devfreq_simple_ondemand_data ondemand_data; u16 hba_enable_delay_us; u32 wb_flush_threshold; }; struct ufs_hba_monitor { unsigned long chunk_size; unsigned long nr_sec_rw[2]; ktime_t total_busy[2]; unsigned long nr_req[2]; /* latencies*/ ktime_t lat_sum[2]; ktime_t lat_max[2]; ktime_t lat_min[2]; u32 nr_queued[2]; ktime_t busy_start_ts[2]; ktime_t enabled_ts; bool enabled; }; /** * struct ufshcd_res_info_t - MCQ related resource regions * * @name: resource name * @resource: pointer to resource region * @base: register base address */ struct ufshcd_res_info { const char *name; struct resource *resource; void __iomem *base; }; enum ufshcd_res { RES_UFS, RES_MCQ, RES_MCQ_SQD, RES_MCQ_SQIS, RES_MCQ_CQD, RES_MCQ_CQIS, RES_MCQ_VS, RES_MAX, }; /** * struct ufshcd_mcq_opr_info_t - Operation and Runtime registers * * @offset: Doorbell Address Offset * @stride: Steps proportional to queue [0...31] * @base: base address */ struct ufshcd_mcq_opr_info_t { unsigned long offset; unsigned long stride; void __iomem *base; }; enum ufshcd_mcq_opr { OPR_SQD, OPR_SQIS, OPR_CQD, OPR_CQIS, OPR_MAX, }; /** * struct ufs_hba - per adapter private structure * @mmio_base: UFSHCI base register address * @ucdl_base_addr: UFS Command Descriptor base address * @utrdl_base_addr: UTP Transfer Request Descriptor base address * @utmrdl_base_addr: UTP Task Management Descriptor base address * @ucdl_dma_addr: UFS Command Descriptor DMA address * @utrdl_dma_addr: UTRDL DMA address * @utmrdl_dma_addr: UTMRDL DMA address * @host: Scsi_Host instance of the driver * @dev: device handle * @ufs_device_wlun: WLUN that controls the entire UFS device. * @hwmon_device: device instance registered with the hwmon core. * @curr_dev_pwr_mode: active UFS device power mode. * @uic_link_state: active state of the link to the UFS device. * @rpm_lvl: desired UFS power management level during runtime PM. * @spm_lvl: desired UFS power management level during system PM. * @pm_op_in_progress: whether or not a PM operation is in progress. * @ahit: value of Auto-Hibernate Idle Timer register. * @lrb: local reference block * @outstanding_tasks: Bits representing outstanding task requests * @outstanding_lock: Protects @outstanding_reqs. * @outstanding_reqs: Bits representing outstanding transfer requests * @capabilities: UFS Controller Capabilities * @mcq_capabilities: UFS Multi Circular Queue capabilities * @nutrs: Transfer Request Queue depth supported by controller * @nutmrs: Task Management Queue depth supported by controller * @reserved_slot: Used to submit device commands. Protected by @dev_cmd.lock. * @ufs_version: UFS Version to which controller complies * @vops: pointer to variant specific operations * @vps: pointer to variant specific parameters * @priv: pointer to variant specific private data * @sg_entry_size: size of struct ufshcd_sg_entry (may include variant fields) * @irq: Irq number of the controller * @is_irq_enabled: whether or not the UFS controller interrupt is enabled. * @dev_ref_clk_freq: reference clock frequency * @quirks: bitmask with information about deviations from the UFSHCI standard. * @dev_quirks: bitmask with information about deviations from the UFS standard. * @tmf_tag_set: TMF tag set. * @tmf_queue: Used to allocate TMF tags. * @tmf_rqs: array with pointers to TMF requests while these are in progress. * @active_uic_cmd: handle of active UIC command * @uic_cmd_mutex: mutex for UIC command * @uic_async_done: completion used during UIC processing * @ufshcd_state: UFSHCD state * @eh_flags: Error handling flags * @intr_mask: Interrupt Mask Bits * @ee_ctrl_mask: Exception event control mask * @ee_drv_mask: Exception event mask for driver * @ee_usr_mask: Exception event mask for user (set via debugfs) * @ee_ctrl_mutex: Used to serialize exception event information. * @is_powered: flag to check if HBA is powered * @shutting_down: flag to check if shutdown has been invoked * @host_sem: semaphore used to serialize concurrent contexts * @eh_wq: Workqueue that eh_work works on * @eh_work: Worker to handle UFS errors that require s/w attention * @eeh_work: Worker to handle exception events * @errors: HBA errors * @uic_error: UFS interconnect layer error status * @saved_err: sticky error mask * @saved_uic_err: sticky UIC error mask * @ufs_stats: various error counters * @force_reset: flag to force eh_work perform a full reset * @force_pmc: flag to force a power mode change * @silence_err_logs: flag to silence error logs * @dev_cmd: ufs device management command information * @last_dme_cmd_tstamp: time stamp of the last completed DME command * @nop_out_timeout: NOP OUT timeout value * @dev_info: information about the UFS device * @auto_bkops_enabled: to track whether bkops is enabled in device * @vreg_info: UFS device voltage regulator information * @clk_list_head: UFS host controller clocks list node head * @req_abort_count: number of times ufshcd_abort() has been called * @lanes_per_direction: number of lanes per data direction between the UFS * controller and the UFS device. * @pwr_info: holds current power mode * @max_pwr_info: keeps the device max valid pwm * @clk_gating: information related to clock gating * @caps: bitmask with information about UFS controller capabilities * @devfreq: frequency scaling information owned by the devfreq core * @clk_scaling: frequency scaling information owned by the UFS driver * @system_suspending: system suspend has been started and system resume has * not yet finished. * @is_sys_suspended: UFS device has been suspended because of system suspend * @urgent_bkops_lvl: keeps track of urgent bkops level for device * @is_urgent_bkops_lvl_checked: keeps track if the urgent bkops level for * device is known or not. * @wb_mutex: used to serialize devfreq and sysfs write booster toggling * @clk_scaling_lock: used to serialize device commands and clock scaling * @desc_size: descriptor sizes reported by device * @scsi_block_reqs_cnt: reference counting for scsi block requests * @bsg_dev: struct device associated with the BSG queue * @bsg_queue: BSG queue associated with the UFS controller * @rpm_dev_flush_recheck_work: used to suspend from RPM (runtime power * management) after the UFS device has finished a WriteBooster buffer * flush or auto BKOP. * @monitor: statistics about UFS commands * @crypto_capabilities: Content of crypto capabilities register (0x100) * @crypto_cap_array: Array of crypto capabilities * @crypto_cfg_register: Start of the crypto cfg array * @crypto_profile: the crypto profile of this hba (if applicable) * @debugfs_root: UFS controller debugfs root directory * @debugfs_ee_work: used to restore ee_ctrl_mask after a delay * @debugfs_ee_rate_limit_ms: user configurable delay after which to restore * ee_ctrl_mask * @luns_avail: number of regular and well known LUNs supported by the UFS * device * @nr_hw_queues: number of hardware queues configured * @nr_queues: number of Queues of different queue types * @complete_put: whether or not to call ufshcd_rpm_put() from inside * ufshcd_resume_complete() * @ext_iid_sup: is EXT_IID is supported by UFSHC * @mcq_sup: is mcq supported by UFSHC * @mcq_enabled: is mcq ready to accept requests * @res: array of resource info of MCQ registers * @mcq_base: Multi circular queue registers base address * @uhq: array of supported hardware queues * @dev_cmd_queue: Queue for issuing device management commands */ struct ufs_hba { void __iomem *mmio_base; /* Virtual memory reference */ struct utp_transfer_cmd_desc *ucdl_base_addr; struct utp_transfer_req_desc *utrdl_base_addr; struct utp_task_req_desc *utmrdl_base_addr; /* DMA memory reference */ dma_addr_t ucdl_dma_addr; dma_addr_t utrdl_dma_addr; dma_addr_t utmrdl_dma_addr; struct Scsi_Host *host; struct device *dev; struct scsi_device *ufs_device_wlun; #ifdef CONFIG_SCSI_UFS_HWMON struct device *hwmon_device; #endif enum ufs_dev_pwr_mode curr_dev_pwr_mode; enum uic_link_state uic_link_state; /* Desired UFS power management level during runtime PM */ enum ufs_pm_level rpm_lvl; /* Desired UFS power management level during system PM */ enum ufs_pm_level spm_lvl; int pm_op_in_progress; /* Auto-Hibernate Idle Timer register value */ u32 ahit; struct ufshcd_lrb *lrb; unsigned long outstanding_tasks; spinlock_t outstanding_lock; unsigned long outstanding_reqs; u32 capabilities; int nutrs; u32 mcq_capabilities; int nutmrs; u32 reserved_slot; u32 ufs_version; const struct ufs_hba_variant_ops *vops; struct ufs_hba_variant_params *vps; void *priv; #ifdef CONFIG_SCSI_UFS_VARIABLE_SG_ENTRY_SIZE size_t sg_entry_size; #endif unsigned int irq; bool is_irq_enabled; enum ufs_ref_clk_freq dev_ref_clk_freq; unsigned int quirks; /* Deviations from standard UFSHCI spec. */ /* Device deviations from standard UFS device spec. */ unsigned int dev_quirks; struct blk_mq_tag_set tmf_tag_set; struct request_queue *tmf_queue; struct request **tmf_rqs; struct uic_command *active_uic_cmd; struct mutex uic_cmd_mutex; struct completion *uic_async_done; enum ufshcd_state ufshcd_state; u32 eh_flags; u32 intr_mask; u16 ee_ctrl_mask; u16 ee_drv_mask; u16 ee_usr_mask; struct mutex ee_ctrl_mutex; bool is_powered; bool shutting_down; struct semaphore host_sem; /* Work Queues */ struct workqueue_struct *eh_wq; struct work_struct eh_work; struct work_struct eeh_work; /* HBA Errors */ u32 errors; u32 uic_error; u32 saved_err; u32 saved_uic_err; struct ufs_stats ufs_stats; bool force_reset; bool force_pmc; bool silence_err_logs; /* Device management request data */ struct ufs_dev_cmd dev_cmd; ktime_t last_dme_cmd_tstamp; int nop_out_timeout; /* Keeps information of the UFS device connected to this host */ struct ufs_dev_info dev_info; bool auto_bkops_enabled; struct ufs_vreg_info vreg_info; struct list_head clk_list_head; /* Number of requests aborts */ int req_abort_count; /* Number of lanes available (1 or 2) for Rx/Tx */ u32 lanes_per_direction; struct ufs_pa_layer_attr pwr_info; struct ufs_pwr_mode_info max_pwr_info; struct ufs_clk_gating clk_gating; /* Control to enable/disable host capabilities */ u32 caps; struct devfreq *devfreq; struct ufs_clk_scaling clk_scaling; bool system_suspending; bool is_sys_suspended; enum bkops_status urgent_bkops_lvl; bool is_urgent_bkops_lvl_checked; struct mutex wb_mutex; struct rw_semaphore clk_scaling_lock; atomic_t scsi_block_reqs_cnt; struct device bsg_dev; struct request_queue *bsg_queue; struct delayed_work rpm_dev_flush_recheck_work; struct ufs_hba_monitor monitor; #ifdef CONFIG_SCSI_UFS_CRYPTO union ufs_crypto_capabilities crypto_capabilities; union ufs_crypto_cap_entry *crypto_cap_array; u32 crypto_cfg_register; struct blk_crypto_profile crypto_profile; #endif #ifdef CONFIG_DEBUG_FS struct dentry *debugfs_root; struct delayed_work debugfs_ee_work; u32 debugfs_ee_rate_limit_ms; #endif u32 luns_avail; unsigned int nr_hw_queues; unsigned int nr_queues[HCTX_MAX_TYPES]; bool complete_put; bool ext_iid_sup; bool scsi_host_added; bool mcq_sup; bool lsdb_sup; bool mcq_enabled; struct ufshcd_res_info res[RES_MAX]; void __iomem *mcq_base; struct ufs_hw_queue *uhq; struct ufs_hw_queue *dev_cmd_queue; struct ufshcd_mcq_opr_info_t mcq_opr[OPR_MAX]; }; /** * struct ufs_hw_queue - per hardware queue structure * @mcq_sq_head: base address of submission queue head pointer * @mcq_sq_tail: base address of submission queue tail pointer * @mcq_cq_head: base address of completion queue head pointer * @mcq_cq_tail: base address of completion queue tail pointer * @sqe_base_addr: submission queue entry base address * @sqe_dma_addr: submission queue dma address * @cqe_base_addr: completion queue base address * @cqe_dma_addr: completion queue dma address * @max_entries: max number of slots in this hardware queue * @id: hardware queue ID * @sq_tp_slot: current slot to which SQ tail pointer is pointing * @sq_lock: serialize submission queue access * @cq_tail_slot: current slot to which CQ tail pointer is pointing * @cq_head_slot: current slot to which CQ head pointer is pointing * @cq_lock: Synchronize between multiple polling instances * @sq_mutex: prevent submission queue concurrent access */ struct ufs_hw_queue { void __iomem *mcq_sq_head; void __iomem *mcq_sq_tail; void __iomem *mcq_cq_head; void __iomem *mcq_cq_tail; struct utp_transfer_req_desc *sqe_base_addr; dma_addr_t sqe_dma_addr; struct cq_entry *cqe_base_addr; dma_addr_t cqe_dma_addr; u32 max_entries; u32 id; u32 sq_tail_slot; spinlock_t sq_lock; u32 cq_tail_slot; u32 cq_head_slot; spinlock_t cq_lock; /* prevent concurrent access to submission queue */ struct mutex sq_mutex; }; static inline bool is_mcq_enabled(struct ufs_hba *hba) { return hba->mcq_enabled; } static inline unsigned int ufshcd_mcq_opr_offset(struct ufs_hba *hba, enum ufshcd_mcq_opr opr, int idx) { return hba->mcq_opr[opr].offset + hba->mcq_opr[opr].stride * idx; } #ifdef CONFIG_SCSI_UFS_VARIABLE_SG_ENTRY_SIZE static inline size_t ufshcd_sg_entry_size(const struct ufs_hba *hba) { return hba->sg_entry_size; } static inline void ufshcd_set_sg_entry_size(struct ufs_hba *hba, size_t sg_entry_size) { WARN_ON_ONCE(sg_entry_size < sizeof(struct ufshcd_sg_entry)); hba->sg_entry_size = sg_entry_size; } #else static inline size_t ufshcd_sg_entry_size(const struct ufs_hba *hba) { return sizeof(struct ufshcd_sg_entry); } #define ufshcd_set_sg_entry_size(hba, sg_entry_size) \ ({ (void)(hba); BUILD_BUG_ON(sg_entry_size != sizeof(struct ufshcd_sg_entry)); }) #endif static inline size_t ufshcd_get_ucd_size(const struct ufs_hba *hba) { return sizeof(struct utp_transfer_cmd_desc) + SG_ALL * ufshcd_sg_entry_size(hba); } /* Returns true if clocks can be gated. Otherwise false */ static inline bool ufshcd_is_clkgating_allowed(struct ufs_hba *hba) { return hba->caps & UFSHCD_CAP_CLK_GATING; } static inline bool ufshcd_can_hibern8_during_gating(struct ufs_hba *hba) { return hba->caps & UFSHCD_CAP_HIBERN8_WITH_CLK_GATING; } static inline int ufshcd_is_clkscaling_supported(struct ufs_hba *hba) { return hba->caps & UFSHCD_CAP_CLK_SCALING; } static inline bool ufshcd_can_autobkops_during_suspend(struct ufs_hba *hba) { return hba->caps & UFSHCD_CAP_AUTO_BKOPS_SUSPEND; } static inline bool ufshcd_is_rpm_autosuspend_allowed(struct ufs_hba *hba) { return hba->caps & UFSHCD_CAP_RPM_AUTOSUSPEND; } static inline bool ufshcd_is_intr_aggr_allowed(struct ufs_hba *hba) { return (hba->caps & UFSHCD_CAP_INTR_AGGR) && !(hba->quirks & UFSHCD_QUIRK_BROKEN_INTR_AGGR); } static inline bool ufshcd_can_aggressive_pc(struct ufs_hba *hba) { return !!(ufshcd_is_link_hibern8(hba) && (hba->caps & UFSHCD_CAP_AGGR_POWER_COLLAPSE)); } static inline bool ufshcd_is_auto_hibern8_supported(struct ufs_hba *hba) { return (hba->capabilities & MASK_AUTO_HIBERN8_SUPPORT) && !(hba->quirks & UFSHCD_QUIRK_BROKEN_AUTO_HIBERN8); } static inline bool ufshcd_is_auto_hibern8_enabled(struct ufs_hba *hba) { return FIELD_GET(UFSHCI_AHIBERN8_TIMER_MASK, hba->ahit); } static inline bool ufshcd_is_wb_allowed(struct ufs_hba *hba) { return hba->caps & UFSHCD_CAP_WB_EN; } static inline bool ufshcd_enable_wb_if_scaling_up(struct ufs_hba *hba) { return hba->caps & UFSHCD_CAP_WB_WITH_CLK_SCALING; } #define ufsmcq_writel(hba, val, reg) \ writel((val), (hba)->mcq_base + (reg)) #define ufsmcq_readl(hba, reg) \ readl((hba)->mcq_base + (reg)) #define ufsmcq_writelx(hba, val, reg) \ writel_relaxed((val), (hba)->mcq_base + (reg)) #define ufsmcq_readlx(hba, reg) \ readl_relaxed((hba)->mcq_base + (reg)) #define ufshcd_writel(hba, val, reg) \ writel((val), (hba)->mmio_base + (reg)) #define ufshcd_readl(hba, reg) \ readl((hba)->mmio_base + (reg)) /** * ufshcd_rmwl - perform read/modify/write for a controller register * @hba: per adapter instance * @mask: mask to apply on read value * @val: actual value to write * @reg: register address */ static inline void ufshcd_rmwl(struct ufs_hba *hba, u32 mask, u32 val, u32 reg) { u32 tmp; tmp = ufshcd_readl(hba, reg); tmp &= ~mask; tmp |= (val & mask); ufshcd_writel(hba, tmp, reg); } int ufshcd_alloc_host(struct device *, struct ufs_hba **); void ufshcd_dealloc_host(struct ufs_hba *); int ufshcd_hba_enable(struct ufs_hba *hba); int ufshcd_init(struct ufs_hba *, void __iomem *, unsigned int); int ufshcd_link_recovery(struct ufs_hba *hba); int ufshcd_make_hba_operational(struct ufs_hba *hba); void ufshcd_remove(struct ufs_hba *); int ufshcd_uic_hibern8_enter(struct ufs_hba *hba); int ufshcd_uic_hibern8_exit(struct ufs_hba *hba); void ufshcd_delay_us(unsigned long us, unsigned long tolerance); void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk); void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val); void ufshcd_hba_stop(struct ufs_hba *hba); void ufshcd_schedule_eh_work(struct ufs_hba *hba); void ufshcd_mcq_config_mac(struct ufs_hba *hba, u32 max_active_cmds); u32 ufshcd_mcq_read_cqis(struct ufs_hba *hba, int i); void ufshcd_mcq_write_cqis(struct ufs_hba *hba, u32 val, int i); unsigned long ufshcd_mcq_poll_cqe_lock(struct ufs_hba *hba, struct ufs_hw_queue *hwq); void ufshcd_mcq_make_queues_operational(struct ufs_hba *hba); void ufshcd_mcq_enable_esi(struct ufs_hba *hba); void ufshcd_mcq_config_esi(struct ufs_hba *hba, struct msi_msg *msg); /** * ufshcd_set_variant - set variant specific data to the hba * @hba: per adapter instance * @variant: pointer to variant specific data */ static inline void ufshcd_set_variant(struct ufs_hba *hba, void *variant) { BUG_ON(!hba); hba->priv = variant; } /** * ufshcd_get_variant - get variant specific data from the hba * @hba: per adapter instance */ static inline void *ufshcd_get_variant(struct ufs_hba *hba) { BUG_ON(!hba); return hba->priv; } #ifdef CONFIG_PM extern int ufshcd_runtime_suspend(struct device *dev); extern int ufshcd_runtime_resume(struct device *dev); #endif #ifdef CONFIG_PM_SLEEP extern int ufshcd_system_suspend(struct device *dev); extern int ufshcd_system_resume(struct device *dev); extern int ufshcd_system_freeze(struct device *dev); extern int ufshcd_system_thaw(struct device *dev); extern int ufshcd_system_restore(struct device *dev); #endif extern int ufshcd_dme_configure_adapt(struct ufs_hba *hba, int agreed_gear, int adapt_val); extern int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, u8 attr_set, u32 mib_val, u8 peer); extern int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel, u32 *mib_val, u8 peer); extern int ufshcd_config_pwr_mode(struct ufs_hba *hba, struct ufs_pa_layer_attr *desired_pwr_mode); extern int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode); /* UIC command interfaces for DME primitives */ #define DME_LOCAL 0 #define DME_PEER 1 #define ATTR_SET_NOR 0 /* NORMAL */ #define ATTR_SET_ST 1 /* STATIC */ static inline int ufshcd_dme_set(struct ufs_hba *hba, u32 attr_sel, u32 mib_val) { return ufshcd_dme_set_attr(hba, attr_sel, ATTR_SET_NOR, mib_val, DME_LOCAL); } static inline int ufshcd_dme_st_set(struct ufs_hba *hba, u32 attr_sel, u32 mib_val) { return ufshcd_dme_set_attr(hba, attr_sel, ATTR_SET_ST, mib_val, DME_LOCAL); } static inline int ufshcd_dme_peer_set(struct ufs_hba *hba, u32 attr_sel, u32 mib_val) { return ufshcd_dme_set_attr(hba, attr_sel, ATTR_SET_NOR, mib_val, DME_PEER); } static inline int ufshcd_dme_peer_st_set(struct ufs_hba *hba, u32 attr_sel, u32 mib_val) { return ufshcd_dme_set_attr(hba, attr_sel, ATTR_SET_ST, mib_val, DME_PEER); } static inline int ufshcd_dme_get(struct ufs_hba *hba, u32 attr_sel, u32 *mib_val) { return ufshcd_dme_get_attr(hba, attr_sel, mib_val, DME_LOCAL); } static inline int ufshcd_dme_peer_get(struct ufs_hba *hba, u32 attr_sel, u32 *mib_val) { return ufshcd_dme_get_attr(hba, attr_sel, mib_val, DME_PEER); } static inline bool ufshcd_is_hs_mode(struct ufs_pa_layer_attr *pwr_info) { return (pwr_info->pwr_rx == FAST_MODE || pwr_info->pwr_rx == FASTAUTO_MODE) && (pwr_info->pwr_tx == FAST_MODE || pwr_info->pwr_tx == FASTAUTO_MODE); } static inline int ufshcd_disable_host_tx_lcc(struct ufs_hba *hba) { return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_LOCAL_TX_LCC_ENABLE), 0); } void ufshcd_auto_hibern8_enable(struct ufs_hba *hba); void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit); void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, const struct ufs_dev_quirk *fixups); #define SD_ASCII_STD true #define SD_RAW false int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, u8 **buf, bool ascii); void ufshcd_hold(struct ufs_hba *hba); void ufshcd_release(struct ufs_hba *hba); void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value); u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba); int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg); int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd); int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu, struct utp_upiu_req *rsp_upiu, struct ufs_ehs *ehs_req, struct ufs_ehs *ehs_rsp, int sg_cnt, struct scatterlist *sg_list, enum dma_data_direction dir); int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable); int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable); int ufshcd_suspend_prepare(struct device *dev); int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm); void ufshcd_resume_complete(struct device *dev); bool ufshcd_is_hba_active(struct ufs_hba *hba); /* Wrapper functions for safely calling variant operations */ static inline int ufshcd_vops_init(struct ufs_hba *hba) { if (hba->vops && hba->vops->init) return hba->vops->init(hba); return 0; } static inline int ufshcd_vops_phy_initialization(struct ufs_hba *hba) { if (hba->vops && hba->vops->phy_initialization) return hba->vops->phy_initialization(hba); return 0; } extern const struct ufs_pm_lvl_states ufs_pm_lvl_states[]; int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len, const char *prefix); int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask); int ufshcd_write_ee_control(struct ufs_hba *hba); int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask, const u16 *other_mask, u16 set, u16 clr); #endif /* End of Header */