/* * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. * Copyright (c) 2016-2017, Dave Watson . All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef _TLS_OFFLOAD_H #define _TLS_OFFLOAD_H #include #include #include #include #include #include #include #include #include #include #include #include #include struct tls_rec; /* Maximum data size carried in a TLS record */ #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) #define TLS_HEADER_SIZE 5 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) #define TLS_AAD_SPACE_SIZE 13 #define MAX_IV_SIZE 16 #define TLS_TAG_SIZE 16 #define TLS_MAX_REC_SEQ_SIZE 8 #define TLS_MAX_AAD_SIZE TLS_AAD_SPACE_SIZE /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes. * * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3] * * The field 'length' is encoded in field 'b0' as '(length width - 1)'. * Hence b0 contains (3 - 1) = 2. */ #define TLS_AES_CCM_IV_B0_BYTE 2 #define TLS_SM4_CCM_IV_B0_BYTE 2 enum { TLS_BASE, TLS_SW, TLS_HW, TLS_HW_RECORD, TLS_NUM_CONFIG, }; struct tx_work { struct delayed_work work; struct sock *sk; }; struct tls_sw_context_tx { struct crypto_aead *aead_send; struct crypto_wait async_wait; struct tx_work tx_work; struct tls_rec *open_rec; struct list_head tx_list; atomic_t encrypt_pending; u8 async_capable:1; #define BIT_TX_SCHEDULED 0 #define BIT_TX_CLOSING 1 unsigned long tx_bitmask; }; struct tls_strparser { struct sock *sk; u32 mark : 8; u32 stopped : 1; u32 copy_mode : 1; u32 mixed_decrypted : 1; bool msg_ready; struct strp_msg stm; struct sk_buff *anchor; struct work_struct work; }; struct tls_sw_context_rx { struct crypto_aead *aead_recv; struct crypto_wait async_wait; struct sk_buff_head rx_list; /* list of decrypted 'data' records */ void (*saved_data_ready)(struct sock *sk); u8 reader_present; u8 async_capable:1; u8 zc_capable:1; u8 reader_contended:1; struct tls_strparser strp; atomic_t decrypt_pending; struct sk_buff_head async_hold; struct wait_queue_head wq; }; struct tls_record_info { struct list_head list; u32 end_seq; int len; int num_frags; skb_frag_t frags[MAX_SKB_FRAGS]; }; struct tls_offload_context_tx { struct crypto_aead *aead_send; spinlock_t lock; /* protects records list */ struct list_head records_list; struct tls_record_info *open_record; struct tls_record_info *retransmit_hint; u64 hint_record_sn; u64 unacked_record_sn; struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; void (*sk_destruct)(struct sock *sk); struct work_struct destruct_work; struct tls_context *ctx; u8 driver_state[] __aligned(8); /* The TLS layer reserves room for driver specific state * Currently the belief is that there is not enough * driver specific state to justify another layer of indirection */ #define TLS_DRIVER_STATE_SIZE_TX 16 }; #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX) enum tls_context_flags { /* tls_device_down was called after the netdev went down, device state * was released, and kTLS works in software, even though rx_conf is * still TLS_HW (needed for transition). */ TLS_RX_DEV_DEGRADED = 0, /* Unlike RX where resync is driven entirely by the core in TX only * the driver knows when things went out of sync, so we need the flag * to be atomic. */ TLS_TX_SYNC_SCHED = 1, /* tls_dev_del was called for the RX side, device state was released, * but tls_ctx->netdev might still be kept, because TX-side driver * resources might not be released yet. Used to prevent the second * tls_dev_del call in tls_device_down if it happens simultaneously. */ TLS_RX_DEV_CLOSED = 2, }; struct cipher_context { char *iv; char *rec_seq; }; union tls_crypto_context { struct tls_crypto_info info; union { struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; struct tls12_crypto_info_aes_gcm_256 aes_gcm_256; struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305; struct tls12_crypto_info_sm4_gcm sm4_gcm; struct tls12_crypto_info_sm4_ccm sm4_ccm; }; }; struct tls_prot_info { u16 version; u16 cipher_type; u16 prepend_size; u16 tag_size; u16 overhead_size; u16 iv_size; u16 salt_size; u16 rec_seq_size; u16 aad_size; u16 tail_size; }; struct tls_context { /* read-only cache line */ struct tls_prot_info prot_info; u8 tx_conf:3; u8 rx_conf:3; u8 zerocopy_sendfile:1; u8 rx_no_pad:1; int (*push_pending_record)(struct sock *sk, int flags); void (*sk_write_space)(struct sock *sk); void *priv_ctx_tx; void *priv_ctx_rx; struct net_device __rcu *netdev; /* rw cache line */ struct cipher_context tx; struct cipher_context rx; struct scatterlist *partially_sent_record; u16 partially_sent_offset; bool splicing_pages; bool pending_open_record_frags; struct mutex tx_lock; /* protects partially_sent_* fields and * per-type TX fields */ unsigned long flags; /* cache cold stuff */ struct proto *sk_proto; struct sock *sk; void (*sk_destruct)(struct sock *sk); union tls_crypto_context crypto_send; union tls_crypto_context crypto_recv; struct list_head list; refcount_t refcount; struct rcu_head rcu; }; enum tls_offload_ctx_dir { TLS_OFFLOAD_CTX_DIR_RX, TLS_OFFLOAD_CTX_DIR_TX, }; struct tlsdev_ops { int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, enum tls_offload_ctx_dir direction, struct tls_crypto_info *crypto_info, u32 start_offload_tcp_sn); void (*tls_dev_del)(struct net_device *netdev, struct tls_context *ctx, enum tls_offload_ctx_dir direction); int (*tls_dev_resync)(struct net_device *netdev, struct sock *sk, u32 seq, u8 *rcd_sn, enum tls_offload_ctx_dir direction); }; enum tls_offload_sync_type { TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0, TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1, TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2, }; #define TLS_DEVICE_RESYNC_NH_START_IVAL 2 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13 struct tls_offload_resync_async { atomic64_t req; u16 loglen; u16 rcd_delta; u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX]; }; struct tls_offload_context_rx { /* sw must be the first member of tls_offload_context_rx */ struct tls_sw_context_rx sw; enum tls_offload_sync_type resync_type; /* this member is set regardless of resync_type, to avoid branches */ u8 resync_nh_reset:1; /* CORE_NEXT_HINT-only member, but use the hole here */ u8 resync_nh_do_now:1; union { /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */ struct { atomic64_t resync_req; }; /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */ struct { u32 decrypted_failed; u32 decrypted_tgt; } resync_nh; /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */ struct { struct tls_offload_resync_async *resync_async; }; }; u8 driver_state[] __aligned(8); /* The TLS layer reserves room for driver specific state * Currently the belief is that there is not enough * driver specific state to justify another layer of indirection */ #define TLS_DRIVER_STATE_SIZE_RX 8 }; #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX) struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, u32 seq, u64 *p_record_sn); static inline bool tls_record_is_start_marker(struct tls_record_info *rec) { return rec->len == 0; } static inline u32 tls_record_start_seq(struct tls_record_info *rec) { return rec->end_seq - rec->len; } struct sk_buff * tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, struct sk_buff *skb); struct sk_buff * tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev, struct sk_buff *skb); static inline bool tls_is_skb_tx_device_offloaded(const struct sk_buff *skb) { #ifdef CONFIG_TLS_DEVICE struct sock *sk = skb->sk; return sk && sk_fullsock(sk) && (smp_load_acquire(&sk->sk_validate_xmit_skb) == &tls_validate_xmit_skb); #else return false; #endif } static inline struct tls_context *tls_get_ctx(const struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); /* Use RCU on icsk_ulp_data only for sock diag code, * TLS data path doesn't need rcu_dereference(). */ return (__force void *)icsk->icsk_ulp_data; } static inline struct tls_sw_context_rx *tls_sw_ctx_rx( const struct tls_context *tls_ctx) { return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; } static inline struct tls_sw_context_tx *tls_sw_ctx_tx( const struct tls_context *tls_ctx) { return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; } static inline struct tls_offload_context_tx * tls_offload_ctx_tx(const struct tls_context *tls_ctx) { return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; } static inline bool tls_sw_has_ctx_tx(const struct sock *sk) { struct tls_context *ctx = tls_get_ctx(sk); if (!ctx) return false; return !!tls_sw_ctx_tx(ctx); } static inline bool tls_sw_has_ctx_rx(const struct sock *sk) { struct tls_context *ctx = tls_get_ctx(sk); if (!ctx) return false; return !!tls_sw_ctx_rx(ctx); } static inline struct tls_offload_context_rx * tls_offload_ctx_rx(const struct tls_context *tls_ctx) { return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; } static inline void *__tls_driver_ctx(struct tls_context *tls_ctx, enum tls_offload_ctx_dir direction) { if (direction == TLS_OFFLOAD_CTX_DIR_TX) return tls_offload_ctx_tx(tls_ctx)->driver_state; else return tls_offload_ctx_rx(tls_ctx)->driver_state; } static inline void * tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction) { return __tls_driver_ctx(tls_get_ctx(sk), direction); } #define RESYNC_REQ BIT(0) #define RESYNC_REQ_ASYNC BIT(1) /* The TLS context is valid until sk_destruct is called */ static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ); } /* Log all TLS record header TCP sequences in [seq, seq+len] */ static inline void tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) | ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC); rx_ctx->resync_async->loglen = 0; rx_ctx->resync_async->rcd_delta = 0; } static inline void tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) | RESYNC_REQ); } static inline void tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type) { struct tls_context *tls_ctx = tls_get_ctx(sk); tls_offload_ctx_rx(tls_ctx)->resync_type = type; } /* Driver's seq tracking has to be disabled until resync succeeded */ static inline bool tls_offload_tx_resync_pending(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); bool ret; ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags); smp_mb__after_atomic(); return ret; } struct sk_buff *tls_encrypt_skb(struct sk_buff *skb); #ifdef CONFIG_TLS_DEVICE void tls_device_sk_destruct(struct sock *sk); void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq); static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk) { if (!sk_fullsock(sk) || smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct) return false; return tls_get_ctx(sk)->rx_conf == TLS_HW; } #endif #endif /* _TLS_OFFLOAD_H */