// SPDX-License-Identifier: GPL-2.0 /* * Simple file system for zoned block devices exposing zones as files. * * Copyright (C) 2022 Western Digital Corporation or its affiliates. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zonefs.h" #include "trace.h" static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset, loff_t length, unsigned int flags, struct iomap *iomap, struct iomap *srcmap) { struct zonefs_inode_info *zi = ZONEFS_I(inode); struct zonefs_zone *z = zonefs_inode_zone(inode); struct super_block *sb = inode->i_sb; loff_t isize; /* * All blocks are always mapped below EOF. If reading past EOF, * act as if there is a hole up to the file maximum size. */ mutex_lock(&zi->i_truncate_mutex); iomap->bdev = inode->i_sb->s_bdev; iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); isize = i_size_read(inode); if (iomap->offset >= isize) { iomap->type = IOMAP_HOLE; iomap->addr = IOMAP_NULL_ADDR; iomap->length = length; } else { iomap->type = IOMAP_MAPPED; iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset; iomap->length = isize - iomap->offset; } mutex_unlock(&zi->i_truncate_mutex); trace_zonefs_iomap_begin(inode, iomap); return 0; } static const struct iomap_ops zonefs_read_iomap_ops = { .iomap_begin = zonefs_read_iomap_begin, }; static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset, loff_t length, unsigned int flags, struct iomap *iomap, struct iomap *srcmap) { struct zonefs_inode_info *zi = ZONEFS_I(inode); struct zonefs_zone *z = zonefs_inode_zone(inode); struct super_block *sb = inode->i_sb; loff_t isize; /* All write I/Os should always be within the file maximum size */ if (WARN_ON_ONCE(offset + length > z->z_capacity)) return -EIO; /* * Sequential zones can only accept direct writes. This is already * checked when writes are issued, so warn if we see a page writeback * operation. */ if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT))) return -EIO; /* * For conventional zones, all blocks are always mapped. For sequential * zones, all blocks after always mapped below the inode size (zone * write pointer) and unwriten beyond. */ mutex_lock(&zi->i_truncate_mutex); iomap->bdev = inode->i_sb->s_bdev; iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset; isize = i_size_read(inode); if (iomap->offset >= isize) { iomap->type = IOMAP_UNWRITTEN; iomap->length = z->z_capacity - iomap->offset; } else { iomap->type = IOMAP_MAPPED; iomap->length = isize - iomap->offset; } mutex_unlock(&zi->i_truncate_mutex); trace_zonefs_iomap_begin(inode, iomap); return 0; } static const struct iomap_ops zonefs_write_iomap_ops = { .iomap_begin = zonefs_write_iomap_begin, }; static int zonefs_read_folio(struct file *unused, struct folio *folio) { return iomap_read_folio(folio, &zonefs_read_iomap_ops); } static void zonefs_readahead(struct readahead_control *rac) { iomap_readahead(rac, &zonefs_read_iomap_ops); } /* * Map blocks for page writeback. This is used only on conventional zone files, * which implies that the page range can only be within the fixed inode size. */ static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode, loff_t offset) { struct zonefs_zone *z = zonefs_inode_zone(inode); if (WARN_ON_ONCE(zonefs_zone_is_seq(z))) return -EIO; if (WARN_ON_ONCE(offset >= i_size_read(inode))) return -EIO; /* If the mapping is already OK, nothing needs to be done */ if (offset >= wpc->iomap.offset && offset < wpc->iomap.offset + wpc->iomap.length) return 0; return zonefs_write_iomap_begin(inode, offset, z->z_capacity - offset, IOMAP_WRITE, &wpc->iomap, NULL); } static const struct iomap_writeback_ops zonefs_writeback_ops = { .map_blocks = zonefs_write_map_blocks, }; static int zonefs_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct iomap_writepage_ctx wpc = { }; return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); } static int zonefs_swap_activate(struct swap_info_struct *sis, struct file *swap_file, sector_t *span) { struct inode *inode = file_inode(swap_file); if (zonefs_inode_is_seq(inode)) { zonefs_err(inode->i_sb, "swap file: not a conventional zone file\n"); return -EINVAL; } return iomap_swapfile_activate(sis, swap_file, span, &zonefs_read_iomap_ops); } const struct address_space_operations zonefs_file_aops = { .read_folio = zonefs_read_folio, .readahead = zonefs_readahead, .writepages = zonefs_writepages, .dirty_folio = filemap_dirty_folio, .release_folio = iomap_release_folio, .invalidate_folio = iomap_invalidate_folio, .migrate_folio = filemap_migrate_folio, .is_partially_uptodate = iomap_is_partially_uptodate, .error_remove_page = generic_error_remove_page, .direct_IO = noop_direct_IO, .swap_activate = zonefs_swap_activate, }; int zonefs_file_truncate(struct inode *inode, loff_t isize) { struct zonefs_inode_info *zi = ZONEFS_I(inode); struct zonefs_zone *z = zonefs_inode_zone(inode); loff_t old_isize; enum req_op op; int ret = 0; /* * Only sequential zone files can be truncated and truncation is allowed * only down to a 0 size, which is equivalent to a zone reset, and to * the maximum file size, which is equivalent to a zone finish. */ if (!zonefs_zone_is_seq(z)) return -EPERM; if (!isize) op = REQ_OP_ZONE_RESET; else if (isize == z->z_capacity) op = REQ_OP_ZONE_FINISH; else return -EPERM; inode_dio_wait(inode); /* Serialize against page faults */ filemap_invalidate_lock(inode->i_mapping); /* Serialize against zonefs_iomap_begin() */ mutex_lock(&zi->i_truncate_mutex); old_isize = i_size_read(inode); if (isize == old_isize) goto unlock; ret = zonefs_inode_zone_mgmt(inode, op); if (ret) goto unlock; /* * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set, * take care of open zones. */ if (z->z_flags & ZONEFS_ZONE_OPEN) { /* * Truncating a zone to EMPTY or FULL is the equivalent of * closing the zone. For a truncation to 0, we need to * re-open the zone to ensure new writes can be processed. * For a truncation to the maximum file size, the zone is * closed and writes cannot be accepted anymore, so clear * the open flag. */ if (!isize) ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN); else z->z_flags &= ~ZONEFS_ZONE_OPEN; } zonefs_update_stats(inode, isize); truncate_setsize(inode, isize); z->z_wpoffset = isize; zonefs_inode_account_active(inode); unlock: mutex_unlock(&zi->i_truncate_mutex); filemap_invalidate_unlock(inode->i_mapping); return ret; } static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct inode *inode = file_inode(file); int ret = 0; if (unlikely(IS_IMMUTABLE(inode))) return -EPERM; /* * Since only direct writes are allowed in sequential files, page cache * flush is needed only for conventional zone files. */ if (zonefs_inode_is_cnv(inode)) ret = file_write_and_wait_range(file, start, end); if (!ret) ret = blkdev_issue_flush(inode->i_sb->s_bdev); if (ret) zonefs_io_error(inode, true); return ret; } static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) { struct inode *inode = file_inode(vmf->vma->vm_file); vm_fault_t ret; if (unlikely(IS_IMMUTABLE(inode))) return VM_FAULT_SIGBUS; /* * Sanity check: only conventional zone files can have shared * writeable mappings. */ if (zonefs_inode_is_seq(inode)) return VM_FAULT_NOPAGE; sb_start_pagefault(inode->i_sb); file_update_time(vmf->vma->vm_file); /* Serialize against truncates */ filemap_invalidate_lock_shared(inode->i_mapping); ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops); filemap_invalidate_unlock_shared(inode->i_mapping); sb_end_pagefault(inode->i_sb); return ret; } static const struct vm_operations_struct zonefs_file_vm_ops = { .fault = filemap_fault, .map_pages = filemap_map_pages, .page_mkwrite = zonefs_filemap_page_mkwrite, }; static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) { /* * Conventional zones accept random writes, so their files can support * shared writable mappings. For sequential zone files, only read * mappings are possible since there are no guarantees for write * ordering between msync() and page cache writeback. */ if (zonefs_inode_is_seq(file_inode(file)) && (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) return -EINVAL; file_accessed(file); vma->vm_ops = &zonefs_file_vm_ops; return 0; } static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) { loff_t isize = i_size_read(file_inode(file)); /* * Seeks are limited to below the zone size for conventional zones * and below the zone write pointer for sequential zones. In both * cases, this limit is the inode size. */ return generic_file_llseek_size(file, offset, whence, isize, isize); } static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, int error, unsigned int flags) { struct inode *inode = file_inode(iocb->ki_filp); struct zonefs_inode_info *zi = ZONEFS_I(inode); if (error) { zonefs_io_error(inode, true); return error; } if (size && zonefs_inode_is_seq(inode)) { /* * Note that we may be seeing completions out of order, * but that is not a problem since a write completed * successfully necessarily means that all preceding writes * were also successful. So we can safely increase the inode * size to the write end location. */ mutex_lock(&zi->i_truncate_mutex); if (i_size_read(inode) < iocb->ki_pos + size) { zonefs_update_stats(inode, iocb->ki_pos + size); zonefs_i_size_write(inode, iocb->ki_pos + size); } mutex_unlock(&zi->i_truncate_mutex); } return 0; } static const struct iomap_dio_ops zonefs_write_dio_ops = { .end_io = zonefs_file_write_dio_end_io, }; static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from) { struct inode *inode = file_inode(iocb->ki_filp); struct zonefs_zone *z = zonefs_inode_zone(inode); struct block_device *bdev = inode->i_sb->s_bdev; unsigned int max = bdev_max_zone_append_sectors(bdev); pgoff_t start, end; struct bio *bio; ssize_t size = 0; int nr_pages; ssize_t ret; max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize); iov_iter_truncate(from, max); /* * If the inode block size (zone write granularity) is smaller than the * page size, we may be appending data belonging to the last page of the * inode straddling inode->i_size, with that page already cached due to * a buffered read or readahead. So make sure to invalidate that page. * This will always be a no-op for the case where the block size is * equal to the page size. */ start = iocb->ki_pos >> PAGE_SHIFT; end = (iocb->ki_pos + iov_iter_count(from) - 1) >> PAGE_SHIFT; if (invalidate_inode_pages2_range(inode->i_mapping, start, end)) return -EBUSY; nr_pages = iov_iter_npages(from, BIO_MAX_VECS); if (!nr_pages) return 0; bio = bio_alloc(bdev, nr_pages, REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS); bio->bi_iter.bi_sector = z->z_sector; bio->bi_ioprio = iocb->ki_ioprio; if (iocb_is_dsync(iocb)) bio->bi_opf |= REQ_FUA; ret = bio_iov_iter_get_pages(bio, from); if (unlikely(ret)) goto out_release; size = bio->bi_iter.bi_size; task_io_account_write(size); if (iocb->ki_flags & IOCB_HIPRI) bio_set_polled(bio, iocb); ret = submit_bio_wait(bio); /* * If the file zone was written underneath the file system, the zone * write pointer may not be where we expect it to be, but the zone * append write can still succeed. So check manually that we wrote where * we intended to, that is, at zi->i_wpoffset. */ if (!ret) { sector_t wpsector = z->z_sector + (z->z_wpoffset >> SECTOR_SHIFT); if (bio->bi_iter.bi_sector != wpsector) { zonefs_warn(inode->i_sb, "Corrupted write pointer %llu for zone at %llu\n", bio->bi_iter.bi_sector, z->z_sector); ret = -EIO; } } zonefs_file_write_dio_end_io(iocb, size, ret, 0); trace_zonefs_file_dio_append(inode, size, ret); out_release: bio_release_pages(bio, false); bio_put(bio); if (ret >= 0) { iocb->ki_pos += size; return size; } return ret; } /* * Do not exceed the LFS limits nor the file zone size. If pos is under the * limit it becomes a short access. If it exceeds the limit, return -EFBIG. */ static loff_t zonefs_write_check_limits(struct file *file, loff_t pos, loff_t count) { struct inode *inode = file_inode(file); struct zonefs_zone *z = zonefs_inode_zone(inode); loff_t limit = rlimit(RLIMIT_FSIZE); loff_t max_size = z->z_capacity; if (limit != RLIM_INFINITY) { if (pos >= limit) { send_sig(SIGXFSZ, current, 0); return -EFBIG; } count = min(count, limit - pos); } if (!(file->f_flags & O_LARGEFILE)) max_size = min_t(loff_t, MAX_NON_LFS, max_size); if (unlikely(pos >= max_size)) return -EFBIG; return min(count, max_size - pos); } static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct inode *inode = file_inode(file); struct zonefs_inode_info *zi = ZONEFS_I(inode); struct zonefs_zone *z = zonefs_inode_zone(inode); loff_t count; if (IS_SWAPFILE(inode)) return -ETXTBSY; if (!iov_iter_count(from)) return 0; if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) return -EINVAL; if (iocb->ki_flags & IOCB_APPEND) { if (zonefs_zone_is_cnv(z)) return -EINVAL; mutex_lock(&zi->i_truncate_mutex); iocb->ki_pos = z->z_wpoffset; mutex_unlock(&zi->i_truncate_mutex); } count = zonefs_write_check_limits(file, iocb->ki_pos, iov_iter_count(from)); if (count < 0) return count; iov_iter_truncate(from, count); return iov_iter_count(from); } /* * Handle direct writes. For sequential zone files, this is the only possible * write path. For these files, check that the user is issuing writes * sequentially from the end of the file. This code assumes that the block layer * delivers write requests to the device in sequential order. This is always the * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE * elevator feature is being used (e.g. mq-deadline). The block layer always * automatically select such an elevator for zoned block devices during the * device initialization. */ static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) { struct inode *inode = file_inode(iocb->ki_filp); struct zonefs_inode_info *zi = ZONEFS_I(inode); struct zonefs_zone *z = zonefs_inode_zone(inode); struct super_block *sb = inode->i_sb; bool sync = is_sync_kiocb(iocb); bool append = false; ssize_t ret, count; /* * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT * as this can cause write reordering (e.g. the first aio gets EAGAIN * on the inode lock but the second goes through but is now unaligned). */ if (zonefs_zone_is_seq(z) && !sync && (iocb->ki_flags & IOCB_NOWAIT)) return -EOPNOTSUPP; if (iocb->ki_flags & IOCB_NOWAIT) { if (!inode_trylock(inode)) return -EAGAIN; } else { inode_lock(inode); } count = zonefs_write_checks(iocb, from); if (count <= 0) { ret = count; goto inode_unlock; } if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { ret = -EINVAL; goto inode_unlock; } /* Enforce sequential writes (append only) in sequential zones */ if (zonefs_zone_is_seq(z)) { mutex_lock(&zi->i_truncate_mutex); if (iocb->ki_pos != z->z_wpoffset) { mutex_unlock(&zi->i_truncate_mutex); ret = -EINVAL; goto inode_unlock; } mutex_unlock(&zi->i_truncate_mutex); append = sync; } if (append) { ret = zonefs_file_dio_append(iocb, from); } else { /* * iomap_dio_rw() may return ENOTBLK if there was an issue with * page invalidation. Overwrite that error code with EBUSY to * be consistent with zonefs_file_dio_append() return value for * similar issues. */ ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops, &zonefs_write_dio_ops, 0, NULL, 0); if (ret == -ENOTBLK) ret = -EBUSY; } if (zonefs_zone_is_seq(z) && (ret > 0 || ret == -EIOCBQUEUED)) { if (ret > 0) count = ret; /* * Update the zone write pointer offset assuming the write * operation succeeded. If it did not, the error recovery path * will correct it. Also do active seq file accounting. */ mutex_lock(&zi->i_truncate_mutex); z->z_wpoffset += count; zonefs_inode_account_active(inode); mutex_unlock(&zi->i_truncate_mutex); } inode_unlock: inode_unlock(inode); return ret; } static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, struct iov_iter *from) { struct inode *inode = file_inode(iocb->ki_filp); ssize_t ret; /* * Direct IO writes are mandatory for sequential zone files so that the * write IO issuing order is preserved. */ if (zonefs_inode_is_seq(inode)) return -EIO; if (iocb->ki_flags & IOCB_NOWAIT) { if (!inode_trylock(inode)) return -EAGAIN; } else { inode_lock(inode); } ret = zonefs_write_checks(iocb, from); if (ret <= 0) goto inode_unlock; ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops); if (ret == -EIO) zonefs_io_error(inode, true); inode_unlock: inode_unlock(inode); if (ret > 0) ret = generic_write_sync(iocb, ret); return ret; } static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct inode *inode = file_inode(iocb->ki_filp); struct zonefs_zone *z = zonefs_inode_zone(inode); if (unlikely(IS_IMMUTABLE(inode))) return -EPERM; if (sb_rdonly(inode->i_sb)) return -EROFS; /* Write operations beyond the zone capacity are not allowed */ if (iocb->ki_pos >= z->z_capacity) return -EFBIG; if (iocb->ki_flags & IOCB_DIRECT) { ssize_t ret = zonefs_file_dio_write(iocb, from); if (ret != -ENOTBLK) return ret; } return zonefs_file_buffered_write(iocb, from); } static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, int error, unsigned int flags) { if (error) { zonefs_io_error(file_inode(iocb->ki_filp), false); return error; } return 0; } static const struct iomap_dio_ops zonefs_read_dio_ops = { .end_io = zonefs_file_read_dio_end_io, }; static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct inode *inode = file_inode(iocb->ki_filp); struct zonefs_inode_info *zi = ZONEFS_I(inode); struct zonefs_zone *z = zonefs_inode_zone(inode); struct super_block *sb = inode->i_sb; loff_t isize; ssize_t ret; /* Offline zones cannot be read */ if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) return -EPERM; if (iocb->ki_pos >= z->z_capacity) return 0; if (iocb->ki_flags & IOCB_NOWAIT) { if (!inode_trylock_shared(inode)) return -EAGAIN; } else { inode_lock_shared(inode); } /* Limit read operations to written data */ mutex_lock(&zi->i_truncate_mutex); isize = i_size_read(inode); if (iocb->ki_pos >= isize) { mutex_unlock(&zi->i_truncate_mutex); ret = 0; goto inode_unlock; } iov_iter_truncate(to, isize - iocb->ki_pos); mutex_unlock(&zi->i_truncate_mutex); if (iocb->ki_flags & IOCB_DIRECT) { size_t count = iov_iter_count(to); if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { ret = -EINVAL; goto inode_unlock; } file_accessed(iocb->ki_filp); ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops, &zonefs_read_dio_ops, 0, NULL, 0); } else { ret = generic_file_read_iter(iocb, to); if (ret == -EIO) zonefs_io_error(inode, false); } inode_unlock: inode_unlock_shared(inode); return ret; } /* * Write open accounting is done only for sequential files. */ static inline bool zonefs_seq_file_need_wro(struct inode *inode, struct file *file) { if (zonefs_inode_is_cnv(inode)) return false; if (!(file->f_mode & FMODE_WRITE)) return false; return true; } static int zonefs_seq_file_write_open(struct inode *inode) { struct zonefs_inode_info *zi = ZONEFS_I(inode); struct zonefs_zone *z = zonefs_inode_zone(inode); int ret = 0; mutex_lock(&zi->i_truncate_mutex); if (!zi->i_wr_refcnt) { struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files); if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { if (sbi->s_max_wro_seq_files && wro > sbi->s_max_wro_seq_files) { atomic_dec(&sbi->s_wro_seq_files); ret = -EBUSY; goto unlock; } if (i_size_read(inode) < z->z_capacity) { ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN); if (ret) { atomic_dec(&sbi->s_wro_seq_files); goto unlock; } z->z_flags |= ZONEFS_ZONE_OPEN; zonefs_inode_account_active(inode); } } } zi->i_wr_refcnt++; unlock: mutex_unlock(&zi->i_truncate_mutex); return ret; } static int zonefs_file_open(struct inode *inode, struct file *file) { int ret; ret = generic_file_open(inode, file); if (ret) return ret; if (zonefs_seq_file_need_wro(inode, file)) return zonefs_seq_file_write_open(inode); return 0; } static void zonefs_seq_file_write_close(struct inode *inode) { struct zonefs_inode_info *zi = ZONEFS_I(inode); struct zonefs_zone *z = zonefs_inode_zone(inode); struct super_block *sb = inode->i_sb; struct zonefs_sb_info *sbi = ZONEFS_SB(sb); int ret = 0; mutex_lock(&zi->i_truncate_mutex); zi->i_wr_refcnt--; if (zi->i_wr_refcnt) goto unlock; /* * The file zone may not be open anymore (e.g. the file was truncated to * its maximum size or it was fully written). For this case, we only * need to decrement the write open count. */ if (z->z_flags & ZONEFS_ZONE_OPEN) { ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); if (ret) { __zonefs_io_error(inode, false); /* * Leaving zones explicitly open may lead to a state * where most zones cannot be written (zone resources * exhausted). So take preventive action by remounting * read-only. */ if (z->z_flags & ZONEFS_ZONE_OPEN && !(sb->s_flags & SB_RDONLY)) { zonefs_warn(sb, "closing zone at %llu failed %d\n", z->z_sector, ret); zonefs_warn(sb, "remounting filesystem read-only\n"); sb->s_flags |= SB_RDONLY; } goto unlock; } z->z_flags &= ~ZONEFS_ZONE_OPEN; zonefs_inode_account_active(inode); } atomic_dec(&sbi->s_wro_seq_files); unlock: mutex_unlock(&zi->i_truncate_mutex); } static int zonefs_file_release(struct inode *inode, struct file *file) { /* * If we explicitly open a zone we must close it again as well, but the * zone management operation can fail (either due to an IO error or as * the zone has gone offline or read-only). Make sure we don't fail the * close(2) for user-space. */ if (zonefs_seq_file_need_wro(inode, file)) zonefs_seq_file_write_close(inode); return 0; } const struct file_operations zonefs_file_operations = { .open = zonefs_file_open, .release = zonefs_file_release, .fsync = zonefs_file_fsync, .mmap = zonefs_file_mmap, .llseek = zonefs_file_llseek, .read_iter = zonefs_file_read_iter, .write_iter = zonefs_file_write_iter, .splice_read = generic_file_splice_read, .splice_write = iter_file_splice_write, .iopoll = iocb_bio_iopoll, };