/* * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README */ #include <linux/time.h> #include <linux/slab.h> #include <linux/string.h> #include "reiserfs.h" #include <linux/buffer_head.h> /* * To make any changes in the tree we find a node that contains item * to be changed/deleted or position in the node we insert a new item * to. We call this node S. To do balancing we need to decide what we * will shift to left/right neighbor, or to a new node, where new item * will be etc. To make this analysis simpler we build virtual * node. Virtual node is an array of items, that will replace items of * node S. (For instance if we are going to delete an item, virtual * node does not contain it). Virtual node keeps information about * item sizes and types, mergeability of first and last items, sizes * of all entries in directory item. We use this array of items when * calculating what we can shift to neighbors and how many nodes we * have to have if we do not any shiftings, if we shift to left/right * neighbor or to both. */ /* * Takes item number in virtual node, returns number of item * that it has in source buffer */ static inline int old_item_num(int new_num, int affected_item_num, int mode) { if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num) return new_num; if (mode == M_INSERT) { RFALSE(new_num == 0, "vs-8005: for INSERT mode and item number of inserted item"); return new_num - 1; } RFALSE(mode != M_DELETE, "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'", mode); /* delete mode */ return new_num + 1; } static void create_virtual_node(struct tree_balance *tb, int h) { struct item_head *ih; struct virtual_node *vn = tb->tb_vn; int new_num; struct buffer_head *Sh; /* this comes from tb->S[h] */ Sh = PATH_H_PBUFFER(tb->tb_path, h); /* size of changed node */ vn->vn_size = MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h]; /* for internal nodes array if virtual items is not created */ if (h) { vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE); return; } /* number of items in virtual node */ vn->vn_nr_item = B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) - ((vn->vn_mode == M_DELETE) ? 1 : 0); /* first virtual item */ vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1); memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item)); vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item); /* first item in the node */ ih = item_head(Sh, 0); /* define the mergeability for 0-th item (if it is not being deleted) */ if (op_is_left_mergeable(&ih->ih_key, Sh->b_size) && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num)) vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE; /* * go through all items that remain in the virtual * node (except for the new (inserted) one) */ for (new_num = 0; new_num < vn->vn_nr_item; new_num++) { int j; struct virtual_item *vi = vn->vn_vi + new_num; int is_affected = ((new_num != vn->vn_affected_item_num) ? 0 : 1); if (is_affected && vn->vn_mode == M_INSERT) continue; /* get item number in source node */ j = old_item_num(new_num, vn->vn_affected_item_num, vn->vn_mode); vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE; vi->vi_ih = ih + j; vi->vi_item = ih_item_body(Sh, ih + j); vi->vi_uarea = vn->vn_free_ptr; /* * FIXME: there is no check that item operation did not * consume too much memory */ vn->vn_free_ptr += op_create_vi(vn, vi, is_affected, tb->insert_size[0]); if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr) reiserfs_panic(tb->tb_sb, "vs-8030", "virtual node space consumed"); if (!is_affected) /* this is not being changed */ continue; if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) { vn->vn_vi[new_num].vi_item_len += tb->insert_size[0]; /* pointer to data which is going to be pasted */ vi->vi_new_data = vn->vn_data; } } /* virtual inserted item is not defined yet */ if (vn->vn_mode == M_INSERT) { struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num; RFALSE(vn->vn_ins_ih == NULL, "vs-8040: item header of inserted item is not specified"); vi->vi_item_len = tb->insert_size[0]; vi->vi_ih = vn->vn_ins_ih; vi->vi_item = vn->vn_data; vi->vi_uarea = vn->vn_free_ptr; op_create_vi(vn, vi, 0 /*not pasted or cut */ , tb->insert_size[0]); } /* * set right merge flag we take right delimiting key and * check whether it is a mergeable item */ if (tb->CFR[0]) { struct reiserfs_key *key; key = internal_key(tb->CFR[0], tb->rkey[0]); if (op_is_left_mergeable(key, Sh->b_size) && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) vn->vn_vi[vn->vn_nr_item - 1].vi_type |= VI_TYPE_RIGHT_MERGEABLE; #ifdef CONFIG_REISERFS_CHECK if (op_is_left_mergeable(key, Sh->b_size) && !(vn->vn_mode != M_DELETE || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) { /* * we delete last item and it could be merged * with right neighbor's first item */ if (! (B_NR_ITEMS(Sh) == 1 && is_direntry_le_ih(item_head(Sh, 0)) && ih_entry_count(item_head(Sh, 0)) == 1)) { /* * node contains more than 1 item, or item * is not directory item, or this item * contains more than 1 entry */ print_block(Sh, 0, -1, -1); reiserfs_panic(tb->tb_sb, "vs-8045", "rdkey %k, affected item==%d " "(mode==%c) Must be %c", key, vn->vn_affected_item_num, vn->vn_mode, M_DELETE); } } #endif } } /* * Using virtual node check, how many items can be * shifted to left neighbor */ static void check_left(struct tree_balance *tb, int h, int cur_free) { int i; struct virtual_node *vn = tb->tb_vn; struct virtual_item *vi; int d_size, ih_size; RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free); /* internal level */ if (h > 0) { tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE); return; } /* leaf level */ if (!cur_free || !vn->vn_nr_item) { /* no free space or nothing to move */ tb->lnum[h] = 0; tb->lbytes = -1; return; } RFALSE(!PATH_H_PPARENT(tb->tb_path, 0), "vs-8055: parent does not exist or invalid"); vi = vn->vn_vi; if ((unsigned int)cur_free >= (vn->vn_size - ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) { /* all contents of S[0] fits into L[0] */ RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, "vs-8055: invalid mode or balance condition failed"); tb->lnum[0] = vn->vn_nr_item; tb->lbytes = -1; return; } d_size = 0, ih_size = IH_SIZE; /* first item may be merge with last item in left neighbor */ if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE) d_size = -((int)IH_SIZE), ih_size = 0; tb->lnum[0] = 0; for (i = 0; i < vn->vn_nr_item; i++, ih_size = IH_SIZE, d_size = 0, vi++) { d_size += vi->vi_item_len; if (cur_free >= d_size) { /* the item can be shifted entirely */ cur_free -= d_size; tb->lnum[0]++; continue; } /* the item cannot be shifted entirely, try to split it */ /* * check whether L[0] can hold ih and at least one byte * of the item body */ /* cannot shift even a part of the current item */ if (cur_free <= ih_size) { tb->lbytes = -1; return; } cur_free -= ih_size; tb->lbytes = op_check_left(vi, cur_free, 0, 0); if (tb->lbytes != -1) /* count partially shifted item */ tb->lnum[0]++; break; } return; } /* * Using virtual node check, how many items can be * shifted to right neighbor */ static void check_right(struct tree_balance *tb, int h, int cur_free) { int i; struct virtual_node *vn = tb->tb_vn; struct virtual_item *vi; int d_size, ih_size; RFALSE(cur_free < 0, "vs-8070: cur_free < 0"); /* internal level */ if (h > 0) { tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE); return; } /* leaf level */ if (!cur_free || !vn->vn_nr_item) { /* no free space */ tb->rnum[h] = 0; tb->rbytes = -1; return; } RFALSE(!PATH_H_PPARENT(tb->tb_path, 0), "vs-8075: parent does not exist or invalid"); vi = vn->vn_vi + vn->vn_nr_item - 1; if ((unsigned int)cur_free >= (vn->vn_size - ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) { /* all contents of S[0] fits into R[0] */ RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, "vs-8080: invalid mode or balance condition failed"); tb->rnum[h] = vn->vn_nr_item; tb->rbytes = -1; return; } d_size = 0, ih_size = IH_SIZE; /* last item may be merge with first item in right neighbor */ if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) d_size = -(int)IH_SIZE, ih_size = 0; tb->rnum[0] = 0; for (i = vn->vn_nr_item - 1; i >= 0; i--, d_size = 0, ih_size = IH_SIZE, vi--) { d_size += vi->vi_item_len; if (cur_free >= d_size) { /* the item can be shifted entirely */ cur_free -= d_size; tb->rnum[0]++; continue; } /* * check whether R[0] can hold ih and at least one * byte of the item body */ /* cannot shift even a part of the current item */ if (cur_free <= ih_size) { tb->rbytes = -1; return; } /* * R[0] can hold the header of the item and at least * one byte of its body */ cur_free -= ih_size; /* cur_free is still > 0 */ tb->rbytes = op_check_right(vi, cur_free); if (tb->rbytes != -1) /* count partially shifted item */ tb->rnum[0]++; break; } return; } /* * from - number of items, which are shifted to left neighbor entirely * to - number of item, which are shifted to right neighbor entirely * from_bytes - number of bytes of boundary item (or directory entries) * which are shifted to left neighbor * to_bytes - number of bytes of boundary item (or directory entries) * which are shifted to right neighbor */ static int get_num_ver(int mode, struct tree_balance *tb, int h, int from, int from_bytes, int to, int to_bytes, short *snum012, int flow) { int i; int units; struct virtual_node *vn = tb->tb_vn; int total_node_size, max_node_size, current_item_size; int needed_nodes; /* position of item we start filling node from */ int start_item; /* position of item we finish filling node by */ int end_item; /* * number of first bytes (entries for directory) of start_item-th item * we do not include into node that is being filled */ int start_bytes; /* * number of last bytes (entries for directory) of end_item-th item * we do node include into node that is being filled */ int end_bytes; /* * these are positions in virtual item of items, that are split * between S[0] and S1new and S1new and S2new */ int split_item_positions[2]; split_item_positions[0] = -1; split_item_positions[1] = -1; /* * We only create additional nodes if we are in insert or paste mode * or we are in replace mode at the internal level. If h is 0 and * the mode is M_REPLACE then in fix_nodes we change the mode to * paste or insert before we get here in the code. */ RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE), "vs-8100: insert_size < 0 in overflow"); max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h)); /* * snum012 [0-2] - number of items, that lay * to S[0], first new node and second new node */ snum012[3] = -1; /* s1bytes */ snum012[4] = -1; /* s2bytes */ /* internal level */ if (h > 0) { i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE); if (i == max_node_size) return 1; return (i / max_node_size + 1); } /* leaf level */ needed_nodes = 1; total_node_size = 0; /* start from 'from'-th item */ start_item = from; /* skip its first 'start_bytes' units */ start_bytes = ((from_bytes != -1) ? from_bytes : 0); /* last included item is the 'end_item'-th one */ end_item = vn->vn_nr_item - to - 1; /* do not count last 'end_bytes' units of 'end_item'-th item */ end_bytes = (to_bytes != -1) ? to_bytes : 0; /* * go through all item beginning from the start_item-th item * and ending by the end_item-th item. Do not count first * 'start_bytes' units of 'start_item'-th item and last * 'end_bytes' of 'end_item'-th item */ for (i = start_item; i <= end_item; i++) { struct virtual_item *vi = vn->vn_vi + i; int skip_from_end = ((i == end_item) ? end_bytes : 0); RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed"); /* get size of current item */ current_item_size = vi->vi_item_len; /* * do not take in calculation head part (from_bytes) * of from-th item */ current_item_size -= op_part_size(vi, 0 /*from start */ , start_bytes); /* do not take in calculation tail part of last item */ current_item_size -= op_part_size(vi, 1 /*from end */ , skip_from_end); /* if item fits into current node entierly */ if (total_node_size + current_item_size <= max_node_size) { snum012[needed_nodes - 1]++; total_node_size += current_item_size; start_bytes = 0; continue; } /* * virtual item length is longer, than max size of item in * a node. It is impossible for direct item */ if (current_item_size > max_node_size) { RFALSE(is_direct_le_ih(vi->vi_ih), "vs-8110: " "direct item length is %d. It can not be longer than %d", current_item_size, max_node_size); /* we will try to split it */ flow = 1; } /* as we do not split items, take new node and continue */ if (!flow) { needed_nodes++; i--; total_node_size = 0; continue; } /* * calculate number of item units which fit into node being * filled */ { int free_space; free_space = max_node_size - total_node_size - IH_SIZE; units = op_check_left(vi, free_space, start_bytes, skip_from_end); /* * nothing fits into current node, take new * node and continue */ if (units == -1) { needed_nodes++, i--, total_node_size = 0; continue; } } /* something fits into the current node */ start_bytes += units; snum012[needed_nodes - 1 + 3] = units; if (needed_nodes > 2) reiserfs_warning(tb->tb_sb, "vs-8111", "split_item_position is out of range"); snum012[needed_nodes - 1]++; split_item_positions[needed_nodes - 1] = i; needed_nodes++; /* continue from the same item with start_bytes != -1 */ start_item = i; i--; total_node_size = 0; } /* * sum012[4] (if it is not -1) contains number of units of which * are to be in S1new, snum012[3] - to be in S0. They are supposed * to be S1bytes and S2bytes correspondingly, so recalculate */ if (snum012[4] > 0) { int split_item_num; int bytes_to_r, bytes_to_l; int bytes_to_S1new; split_item_num = split_item_positions[1]; bytes_to_l = ((from == split_item_num && from_bytes != -1) ? from_bytes : 0); bytes_to_r = ((end_item == split_item_num && end_bytes != -1) ? end_bytes : 0); bytes_to_S1new = ((split_item_positions[0] == split_item_positions[1]) ? snum012[3] : 0); /* s2bytes */ snum012[4] = op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] - bytes_to_r - bytes_to_l - bytes_to_S1new; if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY && vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT) reiserfs_warning(tb->tb_sb, "vs-8115", "not directory or indirect item"); } /* now we know S2bytes, calculate S1bytes */ if (snum012[3] > 0) { int split_item_num; int bytes_to_r, bytes_to_l; int bytes_to_S2new; split_item_num = split_item_positions[0]; bytes_to_l = ((from == split_item_num && from_bytes != -1) ? from_bytes : 0); bytes_to_r = ((end_item == split_item_num && end_bytes != -1) ? end_bytes : 0); bytes_to_S2new = ((split_item_positions[0] == split_item_positions[1] && snum012[4] != -1) ? snum012[4] : 0); /* s1bytes */ snum012[3] = op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] - bytes_to_r - bytes_to_l - bytes_to_S2new; } return needed_nodes; } /* * Set parameters for balancing. * Performs write of results of analysis of balancing into structure tb, * where it will later be used by the functions that actually do the balancing. * Parameters: * tb tree_balance structure; * h current level of the node; * lnum number of items from S[h] that must be shifted to L[h]; * rnum number of items from S[h] that must be shifted to R[h]; * blk_num number of blocks that S[h] will be splitted into; * s012 number of items that fall into splitted nodes. * lbytes number of bytes which flow to the left neighbor from the * item that is not not shifted entirely * rbytes number of bytes which flow to the right neighbor from the * item that is not not shifted entirely * s1bytes number of bytes which flow to the first new node when * S[0] splits (this number is contained in s012 array) */ static void set_parameters(struct tree_balance *tb, int h, int lnum, int rnum, int blk_num, short *s012, int lb, int rb) { tb->lnum[h] = lnum; tb->rnum[h] = rnum; tb->blknum[h] = blk_num; /* only for leaf level */ if (h == 0) { if (s012 != NULL) { tb->s0num = *s012++; tb->snum[0] = *s012++; tb->snum[1] = *s012++; tb->sbytes[0] = *s012++; tb->sbytes[1] = *s012; } tb->lbytes = lb; tb->rbytes = rb; } PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum); PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum); PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb); PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb); } /* * check if node disappears if we shift tb->lnum[0] items to left * neighbor and tb->rnum[0] to the right one. */ static int is_leaf_removable(struct tree_balance *tb) { struct virtual_node *vn = tb->tb_vn; int to_left, to_right; int size; int remain_items; /* * number of items that will be shifted to left (right) neighbor * entirely */ to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0); to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0); remain_items = vn->vn_nr_item; /* how many items remain in S[0] after shiftings to neighbors */ remain_items -= (to_left + to_right); /* all content of node can be shifted to neighbors */ if (remain_items < 1) { set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0, NULL, -1, -1); return 1; } /* S[0] is not removable */ if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1) return 0; /* check whether we can divide 1 remaining item between neighbors */ /* get size of remaining item (in item units) */ size = op_unit_num(&vn->vn_vi[to_left]); if (tb->lbytes + tb->rbytes >= size) { set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL, tb->lbytes, -1); return 1; } return 0; } /* check whether L, S, R can be joined in one node */ static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree) { struct virtual_node *vn = tb->tb_vn; int ih_size; struct buffer_head *S0; S0 = PATH_H_PBUFFER(tb->tb_path, 0); ih_size = 0; if (vn->vn_nr_item) { if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE) ih_size += IH_SIZE; if (vn->vn_vi[vn->vn_nr_item - 1]. vi_type & VI_TYPE_RIGHT_MERGEABLE) ih_size += IH_SIZE; } else { /* there was only one item and it will be deleted */ struct item_head *ih; RFALSE(B_NR_ITEMS(S0) != 1, "vs-8125: item number must be 1: it is %d", B_NR_ITEMS(S0)); ih = item_head(S0, 0); if (tb->CFR[0] && !comp_short_le_keys(&ih->ih_key, internal_key(tb->CFR[0], tb->rkey[0]))) /* * Directory must be in correct state here: that is * somewhere at the left side should exist first * directory item. But the item being deleted can * not be that first one because its right neighbor * is item of the same directory. (But first item * always gets deleted in last turn). So, neighbors * of deleted item can be merged, so we can save * ih_size */ if (is_direntry_le_ih(ih)) { ih_size = IH_SIZE; /* * we might check that left neighbor exists * and is of the same directory */ RFALSE(le_ih_k_offset(ih) == DOT_OFFSET, "vs-8130: first directory item can not be removed until directory is not empty"); } } if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) { set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1); PROC_INFO_INC(tb->tb_sb, leaves_removable); return 1; } return 0; } /* when we do not split item, lnum and rnum are numbers of entire items */ #define SET_PAR_SHIFT_LEFT \ if (h)\ {\ int to_l;\ \ to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\ (MAX_NR_KEY(Sh) + 1 - lpar);\ \ set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\ }\ else \ {\ if (lset==LEFT_SHIFT_FLOW)\ set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\ tb->lbytes, -1);\ else\ set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\ -1, -1);\ } #define SET_PAR_SHIFT_RIGHT \ if (h)\ {\ int to_r;\ \ to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\ \ set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\ }\ else \ {\ if (rset==RIGHT_SHIFT_FLOW)\ set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\ -1, tb->rbytes);\ else\ set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\ -1, -1);\ } static void free_buffers_in_tb(struct tree_balance *tb) { int i; pathrelse(tb->tb_path); for (i = 0; i < MAX_HEIGHT; i++) { brelse(tb->L[i]); brelse(tb->R[i]); brelse(tb->FL[i]); brelse(tb->FR[i]); brelse(tb->CFL[i]); brelse(tb->CFR[i]); tb->L[i] = NULL; tb->R[i] = NULL; tb->FL[i] = NULL; tb->FR[i] = NULL; tb->CFL[i] = NULL; tb->CFR[i] = NULL; } } /* * Get new buffers for storing new nodes that are created while balancing. * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; * CARRY_ON - schedule didn't occur while the function worked; * NO_DISK_SPACE - no disk space. */ /* The function is NOT SCHEDULE-SAFE! */ static int get_empty_nodes(struct tree_balance *tb, int h) { struct buffer_head *new_bh, *Sh = PATH_H_PBUFFER(tb->tb_path, h); b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, }; int counter, number_of_freeblk; int amount_needed; /* number of needed empty blocks */ int retval = CARRY_ON; struct super_block *sb = tb->tb_sb; /* * number_of_freeblk is the number of empty blocks which have been * acquired for use by the balancing algorithm minus the number of * empty blocks used in the previous levels of the analysis, * number_of_freeblk = tb->cur_blknum can be non-zero if a schedule * occurs after empty blocks are acquired, and the balancing analysis * is then restarted, amount_needed is the number needed by this * level (h) of the balancing analysis. * * Note that for systems with many processes writing, it would be * more layout optimal to calculate the total number needed by all * levels and then to run reiserfs_new_blocks to get all of them at * once. */ /* * Initiate number_of_freeblk to the amount acquired prior to the * restart of the analysis or 0 if not restarted, then subtract the * amount needed by all of the levels of the tree below h. */ /* blknum includes S[h], so we subtract 1 in this calculation */ for (counter = 0, number_of_freeblk = tb->cur_blknum; counter < h; counter++) number_of_freeblk -= (tb->blknum[counter]) ? (tb->blknum[counter] - 1) : 0; /* Allocate missing empty blocks. */ /* if Sh == 0 then we are getting a new root */ amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1; /* * Amount_needed = the amount that we need more than the * amount that we have. */ if (amount_needed > number_of_freeblk) amount_needed -= number_of_freeblk; else /* If we have enough already then there is nothing to do. */ return CARRY_ON; /* * No need to check quota - is not allocated for blocks used * for formatted nodes */ if (reiserfs_new_form_blocknrs(tb, blocknrs, amount_needed) == NO_DISK_SPACE) return NO_DISK_SPACE; /* for each blocknumber we just got, get a buffer and stick it on FEB */ for (blocknr = blocknrs, counter = 0; counter < amount_needed; blocknr++, counter++) { RFALSE(!*blocknr, "PAP-8135: reiserfs_new_blocknrs failed when got new blocks"); new_bh = sb_getblk(sb, *blocknr); RFALSE(buffer_dirty(new_bh) || buffer_journaled(new_bh) || buffer_journal_dirty(new_bh), "PAP-8140: journaled or dirty buffer %b for the new block", new_bh); /* Put empty buffers into the array. */ RFALSE(tb->FEB[tb->cur_blknum], "PAP-8141: busy slot for new buffer"); set_buffer_journal_new(new_bh); tb->FEB[tb->cur_blknum++] = new_bh; } if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb)) retval = REPEAT_SEARCH; return retval; } /* * Get free space of the left neighbor, which is stored in the parent * node of the left neighbor. */ static int get_lfree(struct tree_balance *tb, int h) { struct buffer_head *l, *f; int order; if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL || (l = tb->FL[h]) == NULL) return 0; if (f == l) order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1; else { order = B_NR_ITEMS(l); f = l; } return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order))); } /* * Get free space of the right neighbor, * which is stored in the parent node of the right neighbor. */ static int get_rfree(struct tree_balance *tb, int h) { struct buffer_head *r, *f; int order; if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL || (r = tb->FR[h]) == NULL) return 0; if (f == r) order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1; else { order = 0; f = r; } return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order))); } /* Check whether left neighbor is in memory. */ static int is_left_neighbor_in_cache(struct tree_balance *tb, int h) { struct buffer_head *father, *left; struct super_block *sb = tb->tb_sb; b_blocknr_t left_neighbor_blocknr; int left_neighbor_position; /* Father of the left neighbor does not exist. */ if (!tb->FL[h]) return 0; /* Calculate father of the node to be balanced. */ father = PATH_H_PBUFFER(tb->tb_path, h + 1); RFALSE(!father || !B_IS_IN_TREE(father) || !B_IS_IN_TREE(tb->FL[h]) || !buffer_uptodate(father) || !buffer_uptodate(tb->FL[h]), "vs-8165: F[h] (%b) or FL[h] (%b) is invalid", father, tb->FL[h]); /* * Get position of the pointer to the left neighbor * into the left father. */ left_neighbor_position = (father == tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->FL[h]); /* Get left neighbor block number. */ left_neighbor_blocknr = B_N_CHILD_NUM(tb->FL[h], left_neighbor_position); /* Look for the left neighbor in the cache. */ if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) { RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left), "vs-8170: left neighbor (%b %z) is not in the tree", left, left); put_bh(left); return 1; } return 0; } #define LEFT_PARENTS 'l' #define RIGHT_PARENTS 'r' static void decrement_key(struct cpu_key *key) { /* call item specific function for this key */ item_ops[cpu_key_k_type(key)]->decrement_key(key); } /* * Calculate far left/right parent of the left/right neighbor of the * current node, that is calculate the left/right (FL[h]/FR[h]) neighbor * of the parent F[h]. * Calculate left/right common parent of the current node and L[h]/R[h]. * Calculate left/right delimiting key position. * Returns: PATH_INCORRECT - path in the tree is not correct * SCHEDULE_OCCURRED - schedule occurred while the function worked * CARRY_ON - schedule didn't occur while the function * worked */ static int get_far_parent(struct tree_balance *tb, int h, struct buffer_head **pfather, struct buffer_head **pcom_father, char c_lr_par) { struct buffer_head *parent; INITIALIZE_PATH(s_path_to_neighbor_father); struct treepath *path = tb->tb_path; struct cpu_key s_lr_father_key; int counter, position = INT_MAX, first_last_position = 0, path_offset = PATH_H_PATH_OFFSET(path, h); /* * Starting from F[h] go upwards in the tree, and look for the common * ancestor of F[h], and its neighbor l/r, that should be obtained. */ counter = path_offset; RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET, "PAP-8180: invalid path length"); for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) { /* * Check whether parent of the current buffer in the path * is really parent in the tree. */ if (!B_IS_IN_TREE (parent = PATH_OFFSET_PBUFFER(path, counter - 1))) return REPEAT_SEARCH; /* Check whether position in the parent is correct. */ if ((position = PATH_OFFSET_POSITION(path, counter - 1)) > B_NR_ITEMS(parent)) return REPEAT_SEARCH; /* * Check whether parent at the path really points * to the child. */ if (B_N_CHILD_NUM(parent, position) != PATH_OFFSET_PBUFFER(path, counter)->b_blocknr) return REPEAT_SEARCH; /* * Return delimiting key if position in the parent is not * equal to first/last one. */ if (c_lr_par == RIGHT_PARENTS) first_last_position = B_NR_ITEMS(parent); if (position != first_last_position) { *pcom_father = parent; get_bh(*pcom_father); /*(*pcom_father = parent)->b_count++; */ break; } } /* if we are in the root of the tree, then there is no common father */ if (counter == FIRST_PATH_ELEMENT_OFFSET) { /* * Check whether first buffer in the path is the * root of the tree. */ if (PATH_OFFSET_PBUFFER (tb->tb_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) { *pfather = *pcom_father = NULL; return CARRY_ON; } return REPEAT_SEARCH; } RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL, "PAP-8185: (%b %z) level too small", *pcom_father, *pcom_father); /* Check whether the common parent is locked. */ if (buffer_locked(*pcom_father)) { /* Release the write lock while the buffer is busy */ int depth = reiserfs_write_unlock_nested(tb->tb_sb); __wait_on_buffer(*pcom_father); reiserfs_write_lock_nested(tb->tb_sb, depth); if (FILESYSTEM_CHANGED_TB(tb)) { brelse(*pcom_father); return REPEAT_SEARCH; } } /* * So, we got common parent of the current node and its * left/right neighbor. Now we are getting the parent of the * left/right neighbor. */ /* Form key to get parent of the left/right neighbor. */ le_key2cpu_key(&s_lr_father_key, internal_key(*pcom_father, (c_lr_par == LEFT_PARENTS) ? (tb->lkey[h - 1] = position - 1) : (tb->rkey[h - 1] = position))); if (c_lr_par == LEFT_PARENTS) decrement_key(&s_lr_father_key); if (search_by_key (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father, h + 1) == IO_ERROR) /* path is released */ return IO_ERROR; if (FILESYSTEM_CHANGED_TB(tb)) { pathrelse(&s_path_to_neighbor_father); brelse(*pcom_father); return REPEAT_SEARCH; } *pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father); RFALSE(B_LEVEL(*pfather) != h + 1, "PAP-8190: (%b %z) level too small", *pfather, *pfather); RFALSE(s_path_to_neighbor_father.path_length < FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small"); s_path_to_neighbor_father.path_length--; pathrelse(&s_path_to_neighbor_father); return CARRY_ON; } /* * Get parents of neighbors of node in the path(S[path_offset]) and * common parents of S[path_offset] and L[path_offset]/R[path_offset]: * F[path_offset], FL[path_offset], FR[path_offset], CFL[path_offset], * CFR[path_offset]. * Calculate numbers of left and right delimiting keys position: * lkey[path_offset], rkey[path_offset]. * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked * CARRY_ON - schedule didn't occur while the function worked */ static int get_parents(struct tree_balance *tb, int h) { struct treepath *path = tb->tb_path; int position, ret, path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h); struct buffer_head *curf, *curcf; /* Current node is the root of the tree or will be root of the tree */ if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) { /* * The root can not have parents. * Release nodes which previously were obtained as * parents of the current node neighbors. */ brelse(tb->FL[h]); brelse(tb->CFL[h]); brelse(tb->FR[h]); brelse(tb->CFR[h]); tb->FL[h] = NULL; tb->CFL[h] = NULL; tb->FR[h] = NULL; tb->CFR[h] = NULL; return CARRY_ON; } /* Get parent FL[path_offset] of L[path_offset]. */ position = PATH_OFFSET_POSITION(path, path_offset - 1); if (position) { /* Current node is not the first child of its parent. */ curf = PATH_OFFSET_PBUFFER(path, path_offset - 1); curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1); get_bh(curf); get_bh(curf); tb->lkey[h] = position - 1; } else { /* * Calculate current parent of L[path_offset], which is the * left neighbor of the current node. Calculate current * common parent of L[path_offset] and the current node. * Note that CFL[path_offset] not equal FL[path_offset] and * CFL[path_offset] not equal F[path_offset]. * Calculate lkey[path_offset]. */ if ((ret = get_far_parent(tb, h + 1, &curf, &curcf, LEFT_PARENTS)) != CARRY_ON) return ret; } brelse(tb->FL[h]); tb->FL[h] = curf; /* New initialization of FL[h]. */ brelse(tb->CFL[h]); tb->CFL[h] = curcf; /* New initialization of CFL[h]. */ RFALSE((curf && !B_IS_IN_TREE(curf)) || (curcf && !B_IS_IN_TREE(curcf)), "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf); /* Get parent FR[h] of R[h]. */ /* Current node is the last child of F[h]. FR[h] != F[h]. */ if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) { /* * Calculate current parent of R[h], which is the right * neighbor of F[h]. Calculate current common parent of * R[h] and current node. Note that CFR[h] not equal * FR[path_offset] and CFR[h] not equal F[h]. */ if ((ret = get_far_parent(tb, h + 1, &curf, &curcf, RIGHT_PARENTS)) != CARRY_ON) return ret; } else { /* Current node is not the last child of its parent F[h]. */ curf = PATH_OFFSET_PBUFFER(path, path_offset - 1); curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1); get_bh(curf); get_bh(curf); tb->rkey[h] = position; } brelse(tb->FR[h]); /* New initialization of FR[path_offset]. */ tb->FR[h] = curf; brelse(tb->CFR[h]); /* New initialization of CFR[path_offset]. */ tb->CFR[h] = curcf; RFALSE((curf && !B_IS_IN_TREE(curf)) || (curcf && !B_IS_IN_TREE(curcf)), "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf); return CARRY_ON; } /* * it is possible to remove node as result of shiftings to * neighbors even when we insert or paste item. */ static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree, struct tree_balance *tb, int h) { struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h); int levbytes = tb->insert_size[h]; struct item_head *ih; struct reiserfs_key *r_key = NULL; ih = item_head(Sh, 0); if (tb->CFR[h]) r_key = internal_key(tb->CFR[h], tb->rkey[h]); if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes /* shifting may merge items which might save space */ - ((!h && op_is_left_mergeable(&ih->ih_key, Sh->b_size)) ? IH_SIZE : 0) - ((!h && r_key && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0) + ((h) ? KEY_SIZE : 0)) { /* node can not be removed */ if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */ if (!h) tb->s0num = B_NR_ITEMS(Sh) + ((mode == M_INSERT) ? 1 : 0); set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); return NO_BALANCING_NEEDED; } } PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]); return !NO_BALANCING_NEEDED; } /* * Check whether current node S[h] is balanced when increasing its size by * Inserting or Pasting. * Calculate parameters for balancing for current level h. * Parameters: * tb tree_balance structure; * h current level of the node; * inum item number in S[h]; * mode i - insert, p - paste; * Returns: 1 - schedule occurred; * 0 - balancing for higher levels needed; * -1 - no balancing for higher levels needed; * -2 - no disk space. */ /* ip means Inserting or Pasting */ static int ip_check_balance(struct tree_balance *tb, int h) { struct virtual_node *vn = tb->tb_vn; /* * Number of bytes that must be inserted into (value is negative * if bytes are deleted) buffer which contains node being balanced. * The mnemonic is that the attempted change in node space used * level is levbytes bytes. */ int levbytes; int ret; int lfree, sfree, rfree /* free space in L, S and R */ ; /* * nver is short for number of vertixes, and lnver is the number if * we shift to the left, rnver is the number if we shift to the * right, and lrnver is the number if we shift in both directions. * The goal is to minimize first the number of vertixes, and second, * the number of vertixes whose contents are changed by shifting, * and third the number of uncached vertixes whose contents are * changed by shifting and must be read from disk. */ int nver, lnver, rnver, lrnver; /* * used at leaf level only, S0 = S[0] is the node being balanced, * sInum [ I = 0,1,2 ] is the number of items that will * remain in node SI after balancing. S1 and S2 are new * nodes that might be created. */ /* * we perform 8 calls to get_num_ver(). For each call we * calculate five parameters. where 4th parameter is s1bytes * and 5th - s2bytes * * s0num, s1num, s2num for 8 cases * 0,1 - do not shift and do not shift but bottle * 2 - shift only whole item to left * 3 - shift to left and bottle as much as possible * 4,5 - shift to right (whole items and as much as possible * 6,7 - shift to both directions (whole items and as much as possible) */ short snum012[40] = { 0, }; /* Sh is the node whose balance is currently being checked */ struct buffer_head *Sh; Sh = PATH_H_PBUFFER(tb->tb_path, h); levbytes = tb->insert_size[h]; /* Calculate balance parameters for creating new root. */ if (!Sh) { if (!h) reiserfs_panic(tb->tb_sb, "vs-8210", "S[0] can not be 0"); switch (ret = get_empty_nodes(tb, h)) { /* no balancing for higher levels needed */ case CARRY_ON: set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); return NO_BALANCING_NEEDED; case NO_DISK_SPACE: case REPEAT_SEARCH: return ret; default: reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect " "return value of get_empty_nodes"); } } /* get parents of S[h] neighbors. */ ret = get_parents(tb, h); if (ret != CARRY_ON) return ret; sfree = B_FREE_SPACE(Sh); /* get free space of neighbors */ rfree = get_rfree(tb, h); lfree = get_lfree(tb, h); /* and new item fits into node S[h] without any shifting */ if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) == NO_BALANCING_NEEDED) return NO_BALANCING_NEEDED; create_virtual_node(tb, h); /* * determine maximal number of items we can shift to the left * neighbor (in tb structure) and the maximal number of bytes * that can flow to the left neighbor from the left most liquid * item that cannot be shifted from S[0] entirely (returned value) */ check_left(tb, h, lfree); /* * determine maximal number of items we can shift to the right * neighbor (in tb structure) and the maximal number of bytes * that can flow to the right neighbor from the right most liquid * item that cannot be shifted from S[0] entirely (returned value) */ check_right(tb, h, rfree); /* * all contents of internal node S[h] can be moved into its * neighbors, S[h] will be removed after balancing */ if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) { int to_r; /* * Since we are working on internal nodes, and our internal * nodes have fixed size entries, then we can balance by the * number of items rather than the space they consume. In this * routine we set the left node equal to the right node, * allowing a difference of less than or equal to 1 child * pointer. */ to_r = ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1); return CARRY_ON; } /* * this checks balance condition, that any two neighboring nodes * can not fit in one node */ RFALSE(h && (tb->lnum[h] >= vn->vn_nr_item + 1 || tb->rnum[h] >= vn->vn_nr_item + 1), "vs-8220: tree is not balanced on internal level"); RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) || (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))), "vs-8225: tree is not balanced on leaf level"); /* * all contents of S[0] can be moved into its neighbors * S[0] will be removed after balancing. */ if (!h && is_leaf_removable(tb)) return CARRY_ON; /* * why do we perform this check here rather than earlier?? * Answer: we can win 1 node in some cases above. Moreover we * checked it above, when we checked, that S[0] is not removable * in principle */ /* new item fits into node S[h] without any shifting */ if (sfree >= levbytes) { if (!h) tb->s0num = vn->vn_nr_item; set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); return NO_BALANCING_NEEDED; } { int lpar, rpar, nset, lset, rset, lrset; /* regular overflowing of the node */ /* * get_num_ver works in 2 modes (FLOW & NO_FLOW) * lpar, rpar - number of items we can shift to left/right * neighbor (including splitting item) * nset, lset, rset, lrset - shows, whether flowing items * give better packing */ #define FLOW 1 #define NO_FLOW 0 /* do not any splitting */ /* we choose one of the following */ #define NOTHING_SHIFT_NO_FLOW 0 #define NOTHING_SHIFT_FLOW 5 #define LEFT_SHIFT_NO_FLOW 10 #define LEFT_SHIFT_FLOW 15 #define RIGHT_SHIFT_NO_FLOW 20 #define RIGHT_SHIFT_FLOW 25 #define LR_SHIFT_NO_FLOW 30 #define LR_SHIFT_FLOW 35 lpar = tb->lnum[h]; rpar = tb->rnum[h]; /* * calculate number of blocks S[h] must be split into when * nothing is shifted to the neighbors, as well as number of * items in each part of the split node (s012 numbers), * and number of bytes (s1bytes) of the shared drop which * flow to S1 if any */ nset = NOTHING_SHIFT_NO_FLOW; nver = get_num_ver(vn->vn_mode, tb, h, 0, -1, h ? vn->vn_nr_item : 0, -1, snum012, NO_FLOW); if (!h) { int nver1; /* * note, that in this case we try to bottle * between S[0] and S1 (S1 - the first new node) */ nver1 = get_num_ver(vn->vn_mode, tb, h, 0, -1, 0, -1, snum012 + NOTHING_SHIFT_FLOW, FLOW); if (nver > nver1) nset = NOTHING_SHIFT_FLOW, nver = nver1; } /* * calculate number of blocks S[h] must be split into when * l_shift_num first items and l_shift_bytes of the right * most liquid item to be shifted are shifted to the left * neighbor, as well as number of items in each part of the * splitted node (s012 numbers), and number of bytes * (s1bytes) of the shared drop which flow to S1 if any */ lset = LEFT_SHIFT_NO_FLOW; lnver = get_num_ver(vn->vn_mode, tb, h, lpar - ((h || tb->lbytes == -1) ? 0 : 1), -1, h ? vn->vn_nr_item : 0, -1, snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW); if (!h) { int lnver1; lnver1 = get_num_ver(vn->vn_mode, tb, h, lpar - ((tb->lbytes != -1) ? 1 : 0), tb->lbytes, 0, -1, snum012 + LEFT_SHIFT_FLOW, FLOW); if (lnver > lnver1) lset = LEFT_SHIFT_FLOW, lnver = lnver1; } /* * calculate number of blocks S[h] must be split into when * r_shift_num first items and r_shift_bytes of the left most * liquid item to be shifted are shifted to the right neighbor, * as well as number of items in each part of the splitted * node (s012 numbers), and number of bytes (s1bytes) of the * shared drop which flow to S1 if any */ rset = RIGHT_SHIFT_NO_FLOW; rnver = get_num_ver(vn->vn_mode, tb, h, 0, -1, h ? (vn->vn_nr_item - rpar) : (rpar - ((tb-> rbytes != -1) ? 1 : 0)), -1, snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW); if (!h) { int rnver1; rnver1 = get_num_ver(vn->vn_mode, tb, h, 0, -1, (rpar - ((tb->rbytes != -1) ? 1 : 0)), tb->rbytes, snum012 + RIGHT_SHIFT_FLOW, FLOW); if (rnver > rnver1) rset = RIGHT_SHIFT_FLOW, rnver = rnver1; } /* * calculate number of blocks S[h] must be split into when * items are shifted in both directions, as well as number * of items in each part of the splitted node (s012 numbers), * and number of bytes (s1bytes) of the shared drop which * flow to S1 if any */ lrset = LR_SHIFT_NO_FLOW; lrnver = get_num_ver(vn->vn_mode, tb, h, lpar - ((h || tb->lbytes == -1) ? 0 : 1), -1, h ? (vn->vn_nr_item - rpar) : (rpar - ((tb-> rbytes != -1) ? 1 : 0)), -1, snum012 + LR_SHIFT_NO_FLOW, NO_FLOW); if (!h) { int lrnver1; lrnver1 = get_num_ver(vn->vn_mode, tb, h, lpar - ((tb->lbytes != -1) ? 1 : 0), tb->lbytes, (rpar - ((tb->rbytes != -1) ? 1 : 0)), tb->rbytes, snum012 + LR_SHIFT_FLOW, FLOW); if (lrnver > lrnver1) lrset = LR_SHIFT_FLOW, lrnver = lrnver1; } /* * Our general shifting strategy is: * 1) to minimized number of new nodes; * 2) to minimized number of neighbors involved in shifting; * 3) to minimized number of disk reads; */ /* we can win TWO or ONE nodes by shifting in both directions */ if (lrnver < lnver && lrnver < rnver) { RFALSE(h && (tb->lnum[h] != 1 || tb->rnum[h] != 1 || lrnver != 1 || rnver != 2 || lnver != 2 || h != 1), "vs-8230: bad h"); if (lrset == LR_SHIFT_FLOW) set_parameters(tb, h, tb->lnum[h], tb->rnum[h], lrnver, snum012 + lrset, tb->lbytes, tb->rbytes); else set_parameters(tb, h, tb->lnum[h] - ((tb->lbytes == -1) ? 0 : 1), tb->rnum[h] - ((tb->rbytes == -1) ? 0 : 1), lrnver, snum012 + lrset, -1, -1); return CARRY_ON; } /* * if shifting doesn't lead to better packing * then don't shift */ if (nver == lrnver) { set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1, -1); return CARRY_ON; } /* * now we know that for better packing shifting in only one * direction either to the left or to the right is required */ /* * if shifting to the left is better than * shifting to the right */ if (lnver < rnver) { SET_PAR_SHIFT_LEFT; return CARRY_ON; } /* * if shifting to the right is better than * shifting to the left */ if (lnver > rnver) { SET_PAR_SHIFT_RIGHT; return CARRY_ON; } /* * now shifting in either direction gives the same number * of nodes and we can make use of the cached neighbors */ if (is_left_neighbor_in_cache(tb, h)) { SET_PAR_SHIFT_LEFT; return CARRY_ON; } /* * shift to the right independently on whether the * right neighbor in cache or not */ SET_PAR_SHIFT_RIGHT; return CARRY_ON; } } /* * Check whether current node S[h] is balanced when Decreasing its size by * Deleting or Cutting for INTERNAL node of S+tree. * Calculate parameters for balancing for current level h. * Parameters: * tb tree_balance structure; * h current level of the node; * inum item number in S[h]; * mode i - insert, p - paste; * Returns: 1 - schedule occurred; * 0 - balancing for higher levels needed; * -1 - no balancing for higher levels needed; * -2 - no disk space. * * Note: Items of internal nodes have fixed size, so the balance condition for * the internal part of S+tree is as for the B-trees. */ static int dc_check_balance_internal(struct tree_balance *tb, int h) { struct virtual_node *vn = tb->tb_vn; /* * Sh is the node whose balance is currently being checked, * and Fh is its father. */ struct buffer_head *Sh, *Fh; int ret; int lfree, rfree /* free space in L and R */ ; Sh = PATH_H_PBUFFER(tb->tb_path, h); Fh = PATH_H_PPARENT(tb->tb_path, h); /* * using tb->insert_size[h], which is negative in this case, * create_virtual_node calculates: * new_nr_item = number of items node would have if operation is * performed without balancing (new_nr_item); */ create_virtual_node(tb, h); if (!Fh) { /* S[h] is the root. */ /* no balancing for higher levels needed */ if (vn->vn_nr_item > 0) { set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); return NO_BALANCING_NEEDED; } /* * new_nr_item == 0. * Current root will be deleted resulting in * decrementing the tree height. */ set_parameters(tb, h, 0, 0, 0, NULL, -1, -1); return CARRY_ON; } if ((ret = get_parents(tb, h)) != CARRY_ON) return ret; /* get free space of neighbors */ rfree = get_rfree(tb, h); lfree = get_lfree(tb, h); /* determine maximal number of items we can fit into neighbors */ check_left(tb, h, lfree); check_right(tb, h, rfree); /* * Balance condition for the internal node is valid. * In this case we balance only if it leads to better packing. */ if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) { /* * Here we join S[h] with one of its neighbors, * which is impossible with greater values of new_nr_item. */ if (vn->vn_nr_item == MIN_NR_KEY(Sh)) { /* All contents of S[h] can be moved to L[h]. */ if (tb->lnum[h] >= vn->vn_nr_item + 1) { int n; int order_L; order_L = ((n = PATH_H_B_ITEM_ORDER(tb->tb_path, h)) == 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE + KEY_SIZE); set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1); return CARRY_ON; } /* All contents of S[h] can be moved to R[h]. */ if (tb->rnum[h] >= vn->vn_nr_item + 1) { int n; int order_R; order_R = ((n = PATH_H_B_ITEM_ORDER(tb->tb_path, h)) == B_NR_ITEMS(Fh)) ? 0 : n + 1; n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE + KEY_SIZE); set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1); return CARRY_ON; } } /* * All contents of S[h] can be moved to the neighbors * (L[h] & R[h]). */ if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) { int to_r; to_r = ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1); return CARRY_ON; } /* Balancing does not lead to better packing. */ set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); return NO_BALANCING_NEEDED; } /* * Current node contain insufficient number of items. * Balancing is required. */ /* Check whether we can merge S[h] with left neighbor. */ if (tb->lnum[h] >= vn->vn_nr_item + 1) if (is_left_neighbor_in_cache(tb, h) || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) { int n; int order_L; order_L = ((n = PATH_H_B_ITEM_ORDER(tb->tb_path, h)) == 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE + KEY_SIZE); set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1); return CARRY_ON; } /* Check whether we can merge S[h] with right neighbor. */ if (tb->rnum[h] >= vn->vn_nr_item + 1) { int n; int order_R; order_R = ((n = PATH_H_B_ITEM_ORDER(tb->tb_path, h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1); n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE + KEY_SIZE); set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1); return CARRY_ON; } /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) { int to_r; to_r = ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1); return CARRY_ON; } /* For internal nodes try to borrow item from a neighbor */ RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root"); /* Borrow one or two items from caching neighbor */ if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) { int from_l; from_l = (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item + 1) / 2 - (vn->vn_nr_item + 1); set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1); return CARRY_ON; } set_parameters(tb, h, 0, -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item + 1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1); return CARRY_ON; } /* * Check whether current node S[h] is balanced when Decreasing its size by * Deleting or Truncating for LEAF node of S+tree. * Calculate parameters for balancing for current level h. * Parameters: * tb tree_balance structure; * h current level of the node; * inum item number in S[h]; * mode i - insert, p - paste; * Returns: 1 - schedule occurred; * 0 - balancing for higher levels needed; * -1 - no balancing for higher levels needed; * -2 - no disk space. */ static int dc_check_balance_leaf(struct tree_balance *tb, int h) { struct virtual_node *vn = tb->tb_vn; /* * Number of bytes that must be deleted from * (value is negative if bytes are deleted) buffer which * contains node being balanced. The mnemonic is that the * attempted change in node space used level is levbytes bytes. */ int levbytes; /* the maximal item size */ int maxsize, ret; /* * S0 is the node whose balance is currently being checked, * and F0 is its father. */ struct buffer_head *S0, *F0; int lfree, rfree /* free space in L and R */ ; S0 = PATH_H_PBUFFER(tb->tb_path, 0); F0 = PATH_H_PPARENT(tb->tb_path, 0); levbytes = tb->insert_size[h]; maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */ if (!F0) { /* S[0] is the root now. */ RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0), "vs-8240: attempt to create empty buffer tree"); set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); return NO_BALANCING_NEEDED; } if ((ret = get_parents(tb, h)) != CARRY_ON) return ret; /* get free space of neighbors */ rfree = get_rfree(tb, h); lfree = get_lfree(tb, h); create_virtual_node(tb, h); /* if 3 leaves can be merge to one, set parameters and return */ if (are_leaves_removable(tb, lfree, rfree)) return CARRY_ON; /* * determine maximal number of items we can shift to the left/right * neighbor and the maximal number of bytes that can flow to the * left/right neighbor from the left/right most liquid item that * cannot be shifted from S[0] entirely */ check_left(tb, h, lfree); check_right(tb, h, rfree); /* check whether we can merge S with left neighbor. */ if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1) if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */ !tb->FR[h]) { RFALSE(!tb->FL[h], "vs-8245: dc_check_balance_leaf: FL[h] must exist"); /* set parameter to merge S[0] with its left neighbor */ set_parameters(tb, h, -1, 0, 0, NULL, -1, -1); return CARRY_ON; } /* check whether we can merge S[0] with right neighbor. */ if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) { set_parameters(tb, h, 0, -1, 0, NULL, -1, -1); return CARRY_ON; } /* * All contents of S[0] can be moved to the neighbors (L[0] & R[0]). * Set parameters and return */ if (is_leaf_removable(tb)) return CARRY_ON; /* Balancing is not required. */ tb->s0num = vn->vn_nr_item; set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); return NO_BALANCING_NEEDED; } /* * Check whether current node S[h] is balanced when Decreasing its size by * Deleting or Cutting. * Calculate parameters for balancing for current level h. * Parameters: * tb tree_balance structure; * h current level of the node; * inum item number in S[h]; * mode d - delete, c - cut. * Returns: 1 - schedule occurred; * 0 - balancing for higher levels needed; * -1 - no balancing for higher levels needed; * -2 - no disk space. */ static int dc_check_balance(struct tree_balance *tb, int h) { RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)), "vs-8250: S is not initialized"); if (h) return dc_check_balance_internal(tb, h); else return dc_check_balance_leaf(tb, h); } /* * Check whether current node S[h] is balanced. * Calculate parameters for balancing for current level h. * Parameters: * * tb tree_balance structure: * * tb is a large structure that must be read about in the header * file at the same time as this procedure if the reader is * to successfully understand this procedure * * h current level of the node; * inum item number in S[h]; * mode i - insert, p - paste, d - delete, c - cut. * Returns: 1 - schedule occurred; * 0 - balancing for higher levels needed; * -1 - no balancing for higher levels needed; * -2 - no disk space. */ static int check_balance(int mode, struct tree_balance *tb, int h, int inum, int pos_in_item, struct item_head *ins_ih, const void *data) { struct virtual_node *vn; vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf); vn->vn_free_ptr = (char *)(tb->tb_vn + 1); vn->vn_mode = mode; vn->vn_affected_item_num = inum; vn->vn_pos_in_item = pos_in_item; vn->vn_ins_ih = ins_ih; vn->vn_data = data; RFALSE(mode == M_INSERT && !vn->vn_ins_ih, "vs-8255: ins_ih can not be 0 in insert mode"); /* Calculate balance parameters when size of node is increasing. */ if (tb->insert_size[h] > 0) return ip_check_balance(tb, h); /* Calculate balance parameters when size of node is decreasing. */ return dc_check_balance(tb, h); } /* Check whether parent at the path is the really parent of the current node.*/ static int get_direct_parent(struct tree_balance *tb, int h) { struct buffer_head *bh; struct treepath *path = tb->tb_path; int position, path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h); /* We are in the root or in the new root. */ if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) { RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1, "PAP-8260: invalid offset in the path"); if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)-> b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) { /* Root is not changed. */ PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL; PATH_OFFSET_POSITION(path, path_offset - 1) = 0; return CARRY_ON; } /* Root is changed and we must recalculate the path. */ return REPEAT_SEARCH; } /* Parent in the path is not in the tree. */ if (!B_IS_IN_TREE (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1))) return REPEAT_SEARCH; if ((position = PATH_OFFSET_POSITION(path, path_offset - 1)) > B_NR_ITEMS(bh)) return REPEAT_SEARCH; /* Parent in the path is not parent of the current node in the tree. */ if (B_N_CHILD_NUM(bh, position) != PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr) return REPEAT_SEARCH; if (buffer_locked(bh)) { int depth = reiserfs_write_unlock_nested(tb->tb_sb); __wait_on_buffer(bh); reiserfs_write_lock_nested(tb->tb_sb, depth); if (FILESYSTEM_CHANGED_TB(tb)) return REPEAT_SEARCH; } /* * Parent in the path is unlocked and really parent * of the current node. */ return CARRY_ON; } /* * Using lnum[h] and rnum[h] we should determine what neighbors * of S[h] we * need in order to balance S[h], and get them if necessary. * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; * CARRY_ON - schedule didn't occur while the function worked; */ static int get_neighbors(struct tree_balance *tb, int h) { int child_position, path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1); unsigned long son_number; struct super_block *sb = tb->tb_sb; struct buffer_head *bh; int depth; PROC_INFO_INC(sb, get_neighbors[h]); if (tb->lnum[h]) { /* We need left neighbor to balance S[h]. */ PROC_INFO_INC(sb, need_l_neighbor[h]); bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset); RFALSE(bh == tb->FL[h] && !PATH_OFFSET_POSITION(tb->tb_path, path_offset), "PAP-8270: invalid position in the parent"); child_position = (bh == tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb-> FL[h]); son_number = B_N_CHILD_NUM(tb->FL[h], child_position); depth = reiserfs_write_unlock_nested(tb->tb_sb); bh = sb_bread(sb, son_number); reiserfs_write_lock_nested(tb->tb_sb, depth); if (!bh) return IO_ERROR; if (FILESYSTEM_CHANGED_TB(tb)) { brelse(bh); PROC_INFO_INC(sb, get_neighbors_restart[h]); return REPEAT_SEARCH; } RFALSE(!B_IS_IN_TREE(tb->FL[h]) || child_position > B_NR_ITEMS(tb->FL[h]) || B_N_CHILD_NUM(tb->FL[h], child_position) != bh->b_blocknr, "PAP-8275: invalid parent"); RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child"); RFALSE(!h && B_FREE_SPACE(bh) != MAX_CHILD_SIZE(bh) - dc_size(B_N_CHILD(tb->FL[0], child_position)), "PAP-8290: invalid child size of left neighbor"); brelse(tb->L[h]); tb->L[h] = bh; } /* We need right neighbor to balance S[path_offset]. */ if (tb->rnum[h]) { PROC_INFO_INC(sb, need_r_neighbor[h]); bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset); RFALSE(bh == tb->FR[h] && PATH_OFFSET_POSITION(tb->tb_path, path_offset) >= B_NR_ITEMS(bh), "PAP-8295: invalid position in the parent"); child_position = (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0; son_number = B_N_CHILD_NUM(tb->FR[h], child_position); depth = reiserfs_write_unlock_nested(tb->tb_sb); bh = sb_bread(sb, son_number); reiserfs_write_lock_nested(tb->tb_sb, depth); if (!bh) return IO_ERROR; if (FILESYSTEM_CHANGED_TB(tb)) { brelse(bh); PROC_INFO_INC(sb, get_neighbors_restart[h]); return REPEAT_SEARCH; } brelse(tb->R[h]); tb->R[h] = bh; RFALSE(!h && B_FREE_SPACE(bh) != MAX_CHILD_SIZE(bh) - dc_size(B_N_CHILD(tb->FR[0], child_position)), "PAP-8300: invalid child size of right neighbor (%d != %d - %d)", B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh), dc_size(B_N_CHILD(tb->FR[0], child_position))); } return CARRY_ON; } static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh) { int max_num_of_items; int max_num_of_entries; unsigned long blocksize = sb->s_blocksize; #define MIN_NAME_LEN 1 max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN); max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) / (DEH_SIZE + MIN_NAME_LEN); return sizeof(struct virtual_node) + max(max_num_of_items * sizeof(struct virtual_item), sizeof(struct virtual_item) + sizeof(struct direntry_uarea) + (max_num_of_entries - 1) * sizeof(__u16)); } /* * maybe we should fail balancing we are going to perform when kmalloc * fails several times. But now it will loop until kmalloc gets * required memory */ static int get_mem_for_virtual_node(struct tree_balance *tb) { int check_fs = 0; int size; char *buf; size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path)); /* we have to allocate more memory for virtual node */ if (size > tb->vn_buf_size) { if (tb->vn_buf) { /* free memory allocated before */ kfree(tb->vn_buf); /* this is not needed if kfree is atomic */ check_fs = 1; } /* virtual node requires now more memory */ tb->vn_buf_size = size; /* get memory for virtual item */ buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN); if (!buf) { /* * getting memory with GFP_KERNEL priority may involve * balancing now (due to indirect_to_direct conversion * on dcache shrinking). So, release path and collected * resources here */ free_buffers_in_tb(tb); buf = kmalloc(size, GFP_NOFS); if (!buf) { tb->vn_buf_size = 0; } tb->vn_buf = buf; schedule(); return REPEAT_SEARCH; } tb->vn_buf = buf; } if (check_fs && FILESYSTEM_CHANGED_TB(tb)) return REPEAT_SEARCH; return CARRY_ON; } #ifdef CONFIG_REISERFS_CHECK static void tb_buffer_sanity_check(struct super_block *sb, struct buffer_head *bh, const char *descr, int level) { if (bh) { if (atomic_read(&(bh->b_count)) <= 0) reiserfs_panic(sb, "jmacd-1", "negative or zero " "reference counter for buffer %s[%d] " "(%b)", descr, level, bh); if (!buffer_uptodate(bh)) reiserfs_panic(sb, "jmacd-2", "buffer is not up " "to date %s[%d] (%b)", descr, level, bh); if (!B_IS_IN_TREE(bh)) reiserfs_panic(sb, "jmacd-3", "buffer is not " "in tree %s[%d] (%b)", descr, level, bh); if (bh->b_bdev != sb->s_bdev) reiserfs_panic(sb, "jmacd-4", "buffer has wrong " "device %s[%d] (%b)", descr, level, bh); if (bh->b_size != sb->s_blocksize) reiserfs_panic(sb, "jmacd-5", "buffer has wrong " "blocksize %s[%d] (%b)", descr, level, bh); if (bh->b_blocknr > SB_BLOCK_COUNT(sb)) reiserfs_panic(sb, "jmacd-6", "buffer block " "number too high %s[%d] (%b)", descr, level, bh); } } #else static void tb_buffer_sanity_check(struct super_block *sb, struct buffer_head *bh, const char *descr, int level) {; } #endif static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh) { return reiserfs_prepare_for_journal(s, bh, 0); } static int wait_tb_buffers_until_unlocked(struct tree_balance *tb) { struct buffer_head *locked; #ifdef CONFIG_REISERFS_CHECK int repeat_counter = 0; #endif int i; do { locked = NULL; for (i = tb->tb_path->path_length; !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) { if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) { /* * if I understand correctly, we can only * be sure the last buffer in the path is * in the tree --clm */ #ifdef CONFIG_REISERFS_CHECK if (PATH_PLAST_BUFFER(tb->tb_path) == PATH_OFFSET_PBUFFER(tb->tb_path, i)) tb_buffer_sanity_check(tb->tb_sb, PATH_OFFSET_PBUFFER (tb->tb_path, i), "S", tb->tb_path-> path_length - i); #endif if (!clear_all_dirty_bits(tb->tb_sb, PATH_OFFSET_PBUFFER (tb->tb_path, i))) { locked = PATH_OFFSET_PBUFFER(tb->tb_path, i); } } } for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i]; i++) { if (tb->lnum[i]) { if (tb->L[i]) { tb_buffer_sanity_check(tb->tb_sb, tb->L[i], "L", i); if (!clear_all_dirty_bits (tb->tb_sb, tb->L[i])) locked = tb->L[i]; } if (!locked && tb->FL[i]) { tb_buffer_sanity_check(tb->tb_sb, tb->FL[i], "FL", i); if (!clear_all_dirty_bits (tb->tb_sb, tb->FL[i])) locked = tb->FL[i]; } if (!locked && tb->CFL[i]) { tb_buffer_sanity_check(tb->tb_sb, tb->CFL[i], "CFL", i); if (!clear_all_dirty_bits (tb->tb_sb, tb->CFL[i])) locked = tb->CFL[i]; } } if (!locked && (tb->rnum[i])) { if (tb->R[i]) { tb_buffer_sanity_check(tb->tb_sb, tb->R[i], "R", i); if (!clear_all_dirty_bits (tb->tb_sb, tb->R[i])) locked = tb->R[i]; } if (!locked && tb->FR[i]) { tb_buffer_sanity_check(tb->tb_sb, tb->FR[i], "FR", i); if (!clear_all_dirty_bits (tb->tb_sb, tb->FR[i])) locked = tb->FR[i]; } if (!locked && tb->CFR[i]) { tb_buffer_sanity_check(tb->tb_sb, tb->CFR[i], "CFR", i); if (!clear_all_dirty_bits (tb->tb_sb, tb->CFR[i])) locked = tb->CFR[i]; } } } /* * as far as I can tell, this is not required. The FEB list * seems to be full of newly allocated nodes, which will * never be locked, dirty, or anything else. * To be safe, I'm putting in the checks and waits in. * For the moment, they are needed to keep the code in * journal.c from complaining about the buffer. * That code is inside CONFIG_REISERFS_CHECK as well. --clm */ for (i = 0; !locked && i < MAX_FEB_SIZE; i++) { if (tb->FEB[i]) { if (!clear_all_dirty_bits (tb->tb_sb, tb->FEB[i])) locked = tb->FEB[i]; } } if (locked) { int depth; #ifdef CONFIG_REISERFS_CHECK repeat_counter++; if ((repeat_counter % 10000) == 0) { reiserfs_warning(tb->tb_sb, "reiserfs-8200", "too many iterations waiting " "for buffer to unlock " "(%b)", locked); /* Don't loop forever. Try to recover from possible error. */ return (FILESYSTEM_CHANGED_TB(tb)) ? REPEAT_SEARCH : CARRY_ON; } #endif depth = reiserfs_write_unlock_nested(tb->tb_sb); __wait_on_buffer(locked); reiserfs_write_lock_nested(tb->tb_sb, depth); if (FILESYSTEM_CHANGED_TB(tb)) return REPEAT_SEARCH; } } while (locked); return CARRY_ON; } /* * Prepare for balancing, that is * get all necessary parents, and neighbors; * analyze what and where should be moved; * get sufficient number of new nodes; * Balancing will start only after all resources will be collected at a time. * * When ported to SMP kernels, only at the last moment after all needed nodes * are collected in cache, will the resources be locked using the usual * textbook ordered lock acquisition algorithms. Note that ensuring that * this code neither write locks what it does not need to write lock nor locks * out of order will be a pain in the butt that could have been avoided. * Grumble grumble. -Hans * * fix is meant in the sense of render unchanging * * Latency might be improved by first gathering a list of what buffers * are needed and then getting as many of them in parallel as possible? -Hans * * Parameters: * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append) * tb tree_balance structure; * inum item number in S[h]; * pos_in_item - comment this if you can * ins_ih item head of item being inserted * data inserted item or data to be pasted * Returns: 1 - schedule occurred while the function worked; * 0 - schedule didn't occur while the function worked; * -1 - if no_disk_space */ int fix_nodes(int op_mode, struct tree_balance *tb, struct item_head *ins_ih, const void *data) { int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path); int pos_in_item; /* * we set wait_tb_buffers_run when we have to restore any dirty * bits cleared during wait_tb_buffers_run */ int wait_tb_buffers_run = 0; struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); ++REISERFS_SB(tb->tb_sb)->s_fix_nodes; pos_in_item = tb->tb_path->pos_in_item; tb->fs_gen = get_generation(tb->tb_sb); /* * we prepare and log the super here so it will already be in the * transaction when do_balance needs to change it. * This way do_balance won't have to schedule when trying to prepare * the super for logging */ reiserfs_prepare_for_journal(tb->tb_sb, SB_BUFFER_WITH_SB(tb->tb_sb), 1); journal_mark_dirty(tb->transaction_handle, SB_BUFFER_WITH_SB(tb->tb_sb)); if (FILESYSTEM_CHANGED_TB(tb)) return REPEAT_SEARCH; /* if it possible in indirect_to_direct conversion */ if (buffer_locked(tbS0)) { int depth = reiserfs_write_unlock_nested(tb->tb_sb); __wait_on_buffer(tbS0); reiserfs_write_lock_nested(tb->tb_sb, depth); if (FILESYSTEM_CHANGED_TB(tb)) return REPEAT_SEARCH; } #ifdef CONFIG_REISERFS_CHECK if (REISERFS_SB(tb->tb_sb)->cur_tb) { print_cur_tb("fix_nodes"); reiserfs_panic(tb->tb_sb, "PAP-8305", "there is pending do_balance"); } if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0)) reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is " "not uptodate at the beginning of fix_nodes " "or not in tree (mode %c)", tbS0, tbS0, op_mode); /* Check parameters. */ switch (op_mode) { case M_INSERT: if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0)) reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect " "item number %d (in S0 - %d) in case " "of insert", item_num, B_NR_ITEMS(tbS0)); break; case M_PASTE: case M_DELETE: case M_CUT: if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) { print_block(tbS0, 0, -1, -1); reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect " "item number(%d); mode = %c " "insert_size = %d", item_num, op_mode, tb->insert_size[0]); } break; default: reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode " "of operation"); } #endif if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH) /* FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat */ return REPEAT_SEARCH; /* Starting from the leaf level; for all levels h of the tree. */ for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) { ret = get_direct_parent(tb, h); if (ret != CARRY_ON) goto repeat; ret = check_balance(op_mode, tb, h, item_num, pos_in_item, ins_ih, data); if (ret != CARRY_ON) { if (ret == NO_BALANCING_NEEDED) { /* No balancing for higher levels needed. */ ret = get_neighbors(tb, h); if (ret != CARRY_ON) goto repeat; if (h != MAX_HEIGHT - 1) tb->insert_size[h + 1] = 0; /* * ok, analysis and resource gathering * are complete */ break; } goto repeat; } ret = get_neighbors(tb, h); if (ret != CARRY_ON) goto repeat; /* * No disk space, or schedule occurred and analysis may be * invalid and needs to be redone. */ ret = get_empty_nodes(tb, h); if (ret != CARRY_ON) goto repeat; /* * We have a positive insert size but no nodes exist on this * level, this means that we are creating a new root. */ if (!PATH_H_PBUFFER(tb->tb_path, h)) { RFALSE(tb->blknum[h] != 1, "PAP-8350: creating new empty root"); if (h < MAX_HEIGHT - 1) tb->insert_size[h + 1] = 0; } else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) { /* * The tree needs to be grown, so this node S[h] * which is the root node is split into two nodes, * and a new node (S[h+1]) will be created to * become the root node. */ if (tb->blknum[h] > 1) { RFALSE(h == MAX_HEIGHT - 1, "PAP-8355: attempt to create too high of a tree"); tb->insert_size[h + 1] = (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1) + DC_SIZE; } else if (h < MAX_HEIGHT - 1) tb->insert_size[h + 1] = 0; } else tb->insert_size[h + 1] = (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1); } ret = wait_tb_buffers_until_unlocked(tb); if (ret == CARRY_ON) { if (FILESYSTEM_CHANGED_TB(tb)) { wait_tb_buffers_run = 1; ret = REPEAT_SEARCH; goto repeat; } else { return CARRY_ON; } } else { wait_tb_buffers_run = 1; goto repeat; } repeat: /* * fix_nodes was unable to perform its calculation due to * filesystem got changed under us, lack of free disk space or i/o * failure. If the first is the case - the search will be * repeated. For now - free all resources acquired so far except * for the new allocated nodes */ { int i; /* Release path buffers. */ if (wait_tb_buffers_run) { pathrelse_and_restore(tb->tb_sb, tb->tb_path); } else { pathrelse(tb->tb_path); } /* brelse all resources collected for balancing */ for (i = 0; i < MAX_HEIGHT; i++) { if (wait_tb_buffers_run) { reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]); reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]); reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]); reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]); reiserfs_restore_prepared_buffer(tb->tb_sb, tb-> CFL[i]); reiserfs_restore_prepared_buffer(tb->tb_sb, tb-> CFR[i]); } brelse(tb->L[i]); brelse(tb->R[i]); brelse(tb->FL[i]); brelse(tb->FR[i]); brelse(tb->CFL[i]); brelse(tb->CFR[i]); tb->L[i] = NULL; tb->R[i] = NULL; tb->FL[i] = NULL; tb->FR[i] = NULL; tb->CFL[i] = NULL; tb->CFR[i] = NULL; } if (wait_tb_buffers_run) { for (i = 0; i < MAX_FEB_SIZE; i++) { if (tb->FEB[i]) reiserfs_restore_prepared_buffer (tb->tb_sb, tb->FEB[i]); } } return ret; } } void unfix_nodes(struct tree_balance *tb) { int i; /* Release path buffers. */ pathrelse_and_restore(tb->tb_sb, tb->tb_path); /* brelse all resources collected for balancing */ for (i = 0; i < MAX_HEIGHT; i++) { reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]); reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]); reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]); reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]); reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]); reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]); brelse(tb->L[i]); brelse(tb->R[i]); brelse(tb->FL[i]); brelse(tb->FR[i]); brelse(tb->CFL[i]); brelse(tb->CFR[i]); } /* deal with list of allocated (used and unused) nodes */ for (i = 0; i < MAX_FEB_SIZE; i++) { if (tb->FEB[i]) { b_blocknr_t blocknr = tb->FEB[i]->b_blocknr; /* * de-allocated block which was not used by * balancing and bforget about buffer for it */ brelse(tb->FEB[i]); reiserfs_free_block(tb->transaction_handle, NULL, blocknr, 0); } if (tb->used[i]) { /* release used as new nodes including a new root */ brelse(tb->used[i]); } } kfree(tb->vn_buf); }