// SPDX-License-Identifier: GPL-2.0 #include <linux/mm.h> #include <linux/vmacache.h> #include <linux/hugetlb.h> #include <linux/huge_mm.h> #include <linux/mount.h> #include <linux/seq_file.h> #include <linux/highmem.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/pagemap.h> #include <linux/mempolicy.h> #include <linux/rmap.h> #include <linux/swap.h> #include <linux/sched/mm.h> #include <linux/swapops.h> #include <linux/mmu_notifier.h> #include <linux/page_idle.h> #include <linux/shmem_fs.h> #include <linux/uaccess.h> #include <linux/pkeys.h> #include <asm/elf.h> #include <asm/tlb.h> #include <asm/tlbflush.h> #include "internal.h" #define SEQ_PUT_DEC(str, val) \ seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8) void task_mem(struct seq_file *m, struct mm_struct *mm) { unsigned long text, lib, swap, anon, file, shmem; unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; anon = get_mm_counter(mm, MM_ANONPAGES); file = get_mm_counter(mm, MM_FILEPAGES); shmem = get_mm_counter(mm, MM_SHMEMPAGES); /* * Note: to minimize their overhead, mm maintains hiwater_vm and * hiwater_rss only when about to *lower* total_vm or rss. Any * collector of these hiwater stats must therefore get total_vm * and rss too, which will usually be the higher. Barriers? not * worth the effort, such snapshots can always be inconsistent. */ hiwater_vm = total_vm = mm->total_vm; if (hiwater_vm < mm->hiwater_vm) hiwater_vm = mm->hiwater_vm; hiwater_rss = total_rss = anon + file + shmem; if (hiwater_rss < mm->hiwater_rss) hiwater_rss = mm->hiwater_rss; /* split executable areas between text and lib */ text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK); text = min(text, mm->exec_vm << PAGE_SHIFT); lib = (mm->exec_vm << PAGE_SHIFT) - text; swap = get_mm_counter(mm, MM_SWAPENTS); SEQ_PUT_DEC("VmPeak:\t", hiwater_vm); SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm); SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm); SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm)); SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss); SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss); SEQ_PUT_DEC(" kB\nRssAnon:\t", anon); SEQ_PUT_DEC(" kB\nRssFile:\t", file); SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem); SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm); SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm); seq_put_decimal_ull_width(m, " kB\nVmExe:\t", text >> 10, 8); seq_put_decimal_ull_width(m, " kB\nVmLib:\t", lib >> 10, 8); seq_put_decimal_ull_width(m, " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8); SEQ_PUT_DEC(" kB\nVmSwap:\t", swap); seq_puts(m, " kB\n"); hugetlb_report_usage(m, mm); } #undef SEQ_PUT_DEC unsigned long task_vsize(struct mm_struct *mm) { return PAGE_SIZE * mm->total_vm; } unsigned long task_statm(struct mm_struct *mm, unsigned long *shared, unsigned long *text, unsigned long *data, unsigned long *resident) { *shared = get_mm_counter(mm, MM_FILEPAGES) + get_mm_counter(mm, MM_SHMEMPAGES); *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> PAGE_SHIFT; *data = mm->data_vm + mm->stack_vm; *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); return mm->total_vm; } #ifdef CONFIG_NUMA /* * Save get_task_policy() for show_numa_map(). */ static void hold_task_mempolicy(struct proc_maps_private *priv) { struct task_struct *task = priv->task; task_lock(task); priv->task_mempolicy = get_task_policy(task); mpol_get(priv->task_mempolicy); task_unlock(task); } static void release_task_mempolicy(struct proc_maps_private *priv) { mpol_put(priv->task_mempolicy); } #else static void hold_task_mempolicy(struct proc_maps_private *priv) { } static void release_task_mempolicy(struct proc_maps_private *priv) { } #endif static void vma_stop(struct proc_maps_private *priv) { struct mm_struct *mm = priv->mm; release_task_mempolicy(priv); up_read(&mm->mmap_sem); mmput(mm); } static struct vm_area_struct * m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma) { if (vma == priv->tail_vma) return NULL; return vma->vm_next ?: priv->tail_vma; } static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma) { if (m->count < m->size) /* vma is copied successfully */ m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL; } static void *m_start(struct seq_file *m, loff_t *ppos) { struct proc_maps_private *priv = m->private; unsigned long last_addr = m->version; struct mm_struct *mm; struct vm_area_struct *vma; unsigned int pos = *ppos; /* See m_cache_vma(). Zero at the start or after lseek. */ if (last_addr == -1UL) return NULL; priv->task = get_proc_task(priv->inode); if (!priv->task) return ERR_PTR(-ESRCH); mm = priv->mm; if (!mm || !mmget_not_zero(mm)) return NULL; if (down_read_killable(&mm->mmap_sem)) { mmput(mm); return ERR_PTR(-EINTR); } hold_task_mempolicy(priv); priv->tail_vma = get_gate_vma(mm); if (last_addr) { vma = find_vma(mm, last_addr - 1); if (vma && vma->vm_start <= last_addr) vma = m_next_vma(priv, vma); if (vma) return vma; } m->version = 0; if (pos < mm->map_count) { for (vma = mm->mmap; pos; pos--) { m->version = vma->vm_start; vma = vma->vm_next; } return vma; } /* we do not bother to update m->version in this case */ if (pos == mm->map_count && priv->tail_vma) return priv->tail_vma; vma_stop(priv); return NULL; } static void *m_next(struct seq_file *m, void *v, loff_t *pos) { struct proc_maps_private *priv = m->private; struct vm_area_struct *next; (*pos)++; next = m_next_vma(priv, v); if (!next) vma_stop(priv); return next; } static void m_stop(struct seq_file *m, void *v) { struct proc_maps_private *priv = m->private; if (!IS_ERR_OR_NULL(v)) vma_stop(priv); if (priv->task) { put_task_struct(priv->task); priv->task = NULL; } } static int proc_maps_open(struct inode *inode, struct file *file, const struct seq_operations *ops, int psize) { struct proc_maps_private *priv = __seq_open_private(file, ops, psize); if (!priv) return -ENOMEM; priv->inode = inode; priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); if (IS_ERR(priv->mm)) { int err = PTR_ERR(priv->mm); seq_release_private(inode, file); return err; } return 0; } static int proc_map_release(struct inode *inode, struct file *file) { struct seq_file *seq = file->private_data; struct proc_maps_private *priv = seq->private; if (priv->mm) mmdrop(priv->mm); return seq_release_private(inode, file); } static int do_maps_open(struct inode *inode, struct file *file, const struct seq_operations *ops) { return proc_maps_open(inode, file, ops, sizeof(struct proc_maps_private)); } /* * Indicate if the VMA is a stack for the given task; for * /proc/PID/maps that is the stack of the main task. */ static int is_stack(struct vm_area_struct *vma) { /* * We make no effort to guess what a given thread considers to be * its "stack". It's not even well-defined for programs written * languages like Go. */ return vma->vm_start <= vma->vm_mm->start_stack && vma->vm_end >= vma->vm_mm->start_stack; } static void show_vma_header_prefix(struct seq_file *m, unsigned long start, unsigned long end, vm_flags_t flags, unsigned long long pgoff, dev_t dev, unsigned long ino) { seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); seq_put_hex_ll(m, NULL, start, 8); seq_put_hex_ll(m, "-", end, 8); seq_putc(m, ' '); seq_putc(m, flags & VM_READ ? 'r' : '-'); seq_putc(m, flags & VM_WRITE ? 'w' : '-'); seq_putc(m, flags & VM_EXEC ? 'x' : '-'); seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p'); seq_put_hex_ll(m, " ", pgoff, 8); seq_put_hex_ll(m, " ", MAJOR(dev), 2); seq_put_hex_ll(m, ":", MINOR(dev), 2); seq_put_decimal_ull(m, " ", ino); seq_putc(m, ' '); } static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma) { struct mm_struct *mm = vma->vm_mm; struct file *file = vma->vm_file; vm_flags_t flags = vma->vm_flags; unsigned long ino = 0; unsigned long long pgoff = 0; unsigned long start, end; dev_t dev = 0; const char *name = NULL; if (file) { struct inode *inode = file_inode(vma->vm_file); dev = inode->i_sb->s_dev; ino = inode->i_ino; pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; } start = vma->vm_start; end = vma->vm_end; show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino); /* * Print the dentry name for named mappings, and a * special [heap] marker for the heap: */ if (file) { seq_pad(m, ' '); seq_file_path(m, file, "\n"); goto done; } if (vma->vm_ops && vma->vm_ops->name) { name = vma->vm_ops->name(vma); if (name) goto done; } name = arch_vma_name(vma); if (!name) { if (!mm) { name = "[vdso]"; goto done; } if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { name = "[heap]"; goto done; } if (is_stack(vma)) name = "[stack]"; } done: if (name) { seq_pad(m, ' '); seq_puts(m, name); } seq_putc(m, '\n'); } static int show_map(struct seq_file *m, void *v) { show_map_vma(m, v); m_cache_vma(m, v); return 0; } static const struct seq_operations proc_pid_maps_op = { .start = m_start, .next = m_next, .stop = m_stop, .show = show_map }; static int pid_maps_open(struct inode *inode, struct file *file) { return do_maps_open(inode, file, &proc_pid_maps_op); } const struct file_operations proc_pid_maps_operations = { .open = pid_maps_open, .read = seq_read, .llseek = seq_lseek, .release = proc_map_release, }; /* * Proportional Set Size(PSS): my share of RSS. * * PSS of a process is the count of pages it has in memory, where each * page is divided by the number of processes sharing it. So if a * process has 1000 pages all to itself, and 1000 shared with one other * process, its PSS will be 1500. * * To keep (accumulated) division errors low, we adopt a 64bit * fixed-point pss counter to minimize division errors. So (pss >> * PSS_SHIFT) would be the real byte count. * * A shift of 12 before division means (assuming 4K page size): * - 1M 3-user-pages add up to 8KB errors; * - supports mapcount up to 2^24, or 16M; * - supports PSS up to 2^52 bytes, or 4PB. */ #define PSS_SHIFT 12 #ifdef CONFIG_PROC_PAGE_MONITOR struct mem_size_stats { unsigned long resident; unsigned long shared_clean; unsigned long shared_dirty; unsigned long private_clean; unsigned long private_dirty; unsigned long referenced; unsigned long anonymous; unsigned long lazyfree; unsigned long anonymous_thp; unsigned long shmem_thp; unsigned long swap; unsigned long shared_hugetlb; unsigned long private_hugetlb; u64 pss; u64 pss_anon; u64 pss_file; u64 pss_shmem; u64 pss_locked; u64 swap_pss; bool check_shmem_swap; }; static void smaps_page_accumulate(struct mem_size_stats *mss, struct page *page, unsigned long size, unsigned long pss, bool dirty, bool locked, bool private) { mss->pss += pss; if (PageAnon(page)) mss->pss_anon += pss; else if (PageSwapBacked(page)) mss->pss_shmem += pss; else mss->pss_file += pss; if (locked) mss->pss_locked += pss; if (dirty || PageDirty(page)) { if (private) mss->private_dirty += size; else mss->shared_dirty += size; } else { if (private) mss->private_clean += size; else mss->shared_clean += size; } } static void smaps_account(struct mem_size_stats *mss, struct page *page, bool compound, bool young, bool dirty, bool locked) { int i, nr = compound ? 1 << compound_order(page) : 1; unsigned long size = nr * PAGE_SIZE; /* * First accumulate quantities that depend only on |size| and the type * of the compound page. */ if (PageAnon(page)) { mss->anonymous += size; if (!PageSwapBacked(page) && !dirty && !PageDirty(page)) mss->lazyfree += size; } mss->resident += size; /* Accumulate the size in pages that have been accessed. */ if (young || page_is_young(page) || PageReferenced(page)) mss->referenced += size; /* * Then accumulate quantities that may depend on sharing, or that may * differ page-by-page. * * page_count(page) == 1 guarantees the page is mapped exactly once. * If any subpage of the compound page mapped with PTE it would elevate * page_count(). */ if (page_count(page) == 1) { smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty, locked, true); return; } for (i = 0; i < nr; i++, page++) { int mapcount = page_mapcount(page); unsigned long pss = PAGE_SIZE << PSS_SHIFT; if (mapcount >= 2) pss /= mapcount; smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked, mapcount < 2); } } #ifdef CONFIG_SHMEM static int smaps_pte_hole(unsigned long addr, unsigned long end, struct mm_walk *walk) { struct mem_size_stats *mss = walk->private; mss->swap += shmem_partial_swap_usage( walk->vma->vm_file->f_mapping, addr, end); return 0; } #endif static void smaps_pte_entry(pte_t *pte, unsigned long addr, struct mm_walk *walk) { struct mem_size_stats *mss = walk->private; struct vm_area_struct *vma = walk->vma; bool locked = !!(vma->vm_flags & VM_LOCKED); struct page *page = NULL; if (pte_present(*pte)) { page = vm_normal_page(vma, addr, *pte); } else if (is_swap_pte(*pte)) { swp_entry_t swpent = pte_to_swp_entry(*pte); if (!non_swap_entry(swpent)) { int mapcount; mss->swap += PAGE_SIZE; mapcount = swp_swapcount(swpent); if (mapcount >= 2) { u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; do_div(pss_delta, mapcount); mss->swap_pss += pss_delta; } else { mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; } } else if (is_migration_entry(swpent)) page = migration_entry_to_page(swpent); else if (is_device_private_entry(swpent)) page = device_private_entry_to_page(swpent); } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap && pte_none(*pte))) { page = find_get_entry(vma->vm_file->f_mapping, linear_page_index(vma, addr)); if (!page) return; if (xa_is_value(page)) mss->swap += PAGE_SIZE; else put_page(page); return; } if (!page) return; smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, struct mm_walk *walk) { struct mem_size_stats *mss = walk->private; struct vm_area_struct *vma = walk->vma; bool locked = !!(vma->vm_flags & VM_LOCKED); struct page *page; /* FOLL_DUMP will return -EFAULT on huge zero page */ page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP); if (IS_ERR_OR_NULL(page)) return; if (PageAnon(page)) mss->anonymous_thp += HPAGE_PMD_SIZE; else if (PageSwapBacked(page)) mss->shmem_thp += HPAGE_PMD_SIZE; else if (is_zone_device_page(page)) /* pass */; else VM_BUG_ON_PAGE(1, page); smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked); } #else static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, struct mm_walk *walk) { } #endif static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; pte_t *pte; spinlock_t *ptl; ptl = pmd_trans_huge_lock(pmd, vma); if (ptl) { if (pmd_present(*pmd)) smaps_pmd_entry(pmd, addr, walk); spin_unlock(ptl); goto out; } if (pmd_trans_unstable(pmd)) goto out; /* * The mmap_sem held all the way back in m_start() is what * keeps khugepaged out of here and from collapsing things * in here. */ pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); for (; addr != end; pte++, addr += PAGE_SIZE) smaps_pte_entry(pte, addr, walk); pte_unmap_unlock(pte - 1, ptl); out: cond_resched(); return 0; } static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) { /* * Don't forget to update Documentation/ on changes. */ static const char mnemonics[BITS_PER_LONG][2] = { /* * In case if we meet a flag we don't know about. */ [0 ... (BITS_PER_LONG-1)] = "??", [ilog2(VM_READ)] = "rd", [ilog2(VM_WRITE)] = "wr", [ilog2(VM_EXEC)] = "ex", [ilog2(VM_SHARED)] = "sh", [ilog2(VM_MAYREAD)] = "mr", [ilog2(VM_MAYWRITE)] = "mw", [ilog2(VM_MAYEXEC)] = "me", [ilog2(VM_MAYSHARE)] = "ms", [ilog2(VM_GROWSDOWN)] = "gd", [ilog2(VM_PFNMAP)] = "pf", [ilog2(VM_DENYWRITE)] = "dw", #ifdef CONFIG_X86_INTEL_MPX [ilog2(VM_MPX)] = "mp", #endif [ilog2(VM_LOCKED)] = "lo", [ilog2(VM_IO)] = "io", [ilog2(VM_SEQ_READ)] = "sr", [ilog2(VM_RAND_READ)] = "rr", [ilog2(VM_DONTCOPY)] = "dc", [ilog2(VM_DONTEXPAND)] = "de", [ilog2(VM_ACCOUNT)] = "ac", [ilog2(VM_NORESERVE)] = "nr", [ilog2(VM_HUGETLB)] = "ht", [ilog2(VM_SYNC)] = "sf", [ilog2(VM_ARCH_1)] = "ar", [ilog2(VM_WIPEONFORK)] = "wf", [ilog2(VM_DONTDUMP)] = "dd", #ifdef CONFIG_MEM_SOFT_DIRTY [ilog2(VM_SOFTDIRTY)] = "sd", #endif [ilog2(VM_MIXEDMAP)] = "mm", [ilog2(VM_HUGEPAGE)] = "hg", [ilog2(VM_NOHUGEPAGE)] = "nh", [ilog2(VM_MERGEABLE)] = "mg", [ilog2(VM_UFFD_MISSING)]= "um", [ilog2(VM_UFFD_WP)] = "uw", #ifdef CONFIG_ARCH_HAS_PKEYS /* These come out via ProtectionKey: */ [ilog2(VM_PKEY_BIT0)] = "", [ilog2(VM_PKEY_BIT1)] = "", [ilog2(VM_PKEY_BIT2)] = "", [ilog2(VM_PKEY_BIT3)] = "", #if VM_PKEY_BIT4 [ilog2(VM_PKEY_BIT4)] = "", #endif #endif /* CONFIG_ARCH_HAS_PKEYS */ }; size_t i; seq_puts(m, "VmFlags: "); for (i = 0; i < BITS_PER_LONG; i++) { if (!mnemonics[i][0]) continue; if (vma->vm_flags & (1UL << i)) { seq_putc(m, mnemonics[i][0]); seq_putc(m, mnemonics[i][1]); seq_putc(m, ' '); } } seq_putc(m, '\n'); } #ifdef CONFIG_HUGETLB_PAGE static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct mem_size_stats *mss = walk->private; struct vm_area_struct *vma = walk->vma; struct page *page = NULL; if (pte_present(*pte)) { page = vm_normal_page(vma, addr, *pte); } else if (is_swap_pte(*pte)) { swp_entry_t swpent = pte_to_swp_entry(*pte); if (is_migration_entry(swpent)) page = migration_entry_to_page(swpent); else if (is_device_private_entry(swpent)) page = device_private_entry_to_page(swpent); } if (page) { int mapcount = page_mapcount(page); if (mapcount >= 2) mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); else mss->private_hugetlb += huge_page_size(hstate_vma(vma)); } return 0; } #endif /* HUGETLB_PAGE */ static void smap_gather_stats(struct vm_area_struct *vma, struct mem_size_stats *mss) { struct mm_walk smaps_walk = { .pmd_entry = smaps_pte_range, #ifdef CONFIG_HUGETLB_PAGE .hugetlb_entry = smaps_hugetlb_range, #endif .mm = vma->vm_mm, }; smaps_walk.private = mss; #ifdef CONFIG_SHMEM /* In case of smaps_rollup, reset the value from previous vma */ mss->check_shmem_swap = false; if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { /* * For shared or readonly shmem mappings we know that all * swapped out pages belong to the shmem object, and we can * obtain the swap value much more efficiently. For private * writable mappings, we might have COW pages that are * not affected by the parent swapped out pages of the shmem * object, so we have to distinguish them during the page walk. * Unless we know that the shmem object (or the part mapped by * our VMA) has no swapped out pages at all. */ unsigned long shmem_swapped = shmem_swap_usage(vma); if (!shmem_swapped || (vma->vm_flags & VM_SHARED) || !(vma->vm_flags & VM_WRITE)) { mss->swap += shmem_swapped; } else { mss->check_shmem_swap = true; smaps_walk.pte_hole = smaps_pte_hole; } } #endif /* mmap_sem is held in m_start */ walk_page_vma(vma, &smaps_walk); } #define SEQ_PUT_DEC(str, val) \ seq_put_decimal_ull_width(m, str, (val) >> 10, 8) /* Show the contents common for smaps and smaps_rollup */ static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss, bool rollup_mode) { SEQ_PUT_DEC("Rss: ", mss->resident); SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT); if (rollup_mode) { /* * These are meaningful only for smaps_rollup, otherwise two of * them are zero, and the other one is the same as Pss. */ SEQ_PUT_DEC(" kB\nPss_Anon: ", mss->pss_anon >> PSS_SHIFT); SEQ_PUT_DEC(" kB\nPss_File: ", mss->pss_file >> PSS_SHIFT); SEQ_PUT_DEC(" kB\nPss_Shmem: ", mss->pss_shmem >> PSS_SHIFT); } SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean); SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty); SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean); SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty); SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced); SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous); SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree); SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp); SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp); SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb); seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ", mss->private_hugetlb >> 10, 7); SEQ_PUT_DEC(" kB\nSwap: ", mss->swap); SEQ_PUT_DEC(" kB\nSwapPss: ", mss->swap_pss >> PSS_SHIFT); SEQ_PUT_DEC(" kB\nLocked: ", mss->pss_locked >> PSS_SHIFT); seq_puts(m, " kB\n"); } static int show_smap(struct seq_file *m, void *v) { struct vm_area_struct *vma = v; struct mem_size_stats mss; memset(&mss, 0, sizeof(mss)); smap_gather_stats(vma, &mss); show_map_vma(m, vma); SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start); SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma)); SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma)); seq_puts(m, " kB\n"); __show_smap(m, &mss, false); seq_printf(m, "THPeligible: %d\n", transparent_hugepage_enabled(vma)); if (arch_pkeys_enabled()) seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma)); show_smap_vma_flags(m, vma); m_cache_vma(m, vma); return 0; } static int show_smaps_rollup(struct seq_file *m, void *v) { struct proc_maps_private *priv = m->private; struct mem_size_stats mss; struct mm_struct *mm; struct vm_area_struct *vma; unsigned long last_vma_end = 0; int ret = 0; priv->task = get_proc_task(priv->inode); if (!priv->task) return -ESRCH; mm = priv->mm; if (!mm || !mmget_not_zero(mm)) { ret = -ESRCH; goto out_put_task; } memset(&mss, 0, sizeof(mss)); ret = down_read_killable(&mm->mmap_sem); if (ret) goto out_put_mm; hold_task_mempolicy(priv); for (vma = priv->mm->mmap; vma; vma = vma->vm_next) { smap_gather_stats(vma, &mss); last_vma_end = vma->vm_end; } show_vma_header_prefix(m, priv->mm->mmap->vm_start, last_vma_end, 0, 0, 0, 0); seq_pad(m, ' '); seq_puts(m, "[rollup]\n"); __show_smap(m, &mss, true); release_task_mempolicy(priv); up_read(&mm->mmap_sem); out_put_mm: mmput(mm); out_put_task: put_task_struct(priv->task); priv->task = NULL; return ret; } #undef SEQ_PUT_DEC static const struct seq_operations proc_pid_smaps_op = { .start = m_start, .next = m_next, .stop = m_stop, .show = show_smap }; static int pid_smaps_open(struct inode *inode, struct file *file) { return do_maps_open(inode, file, &proc_pid_smaps_op); } static int smaps_rollup_open(struct inode *inode, struct file *file) { int ret; struct proc_maps_private *priv; priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT); if (!priv) return -ENOMEM; ret = single_open(file, show_smaps_rollup, priv); if (ret) goto out_free; priv->inode = inode; priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); if (IS_ERR(priv->mm)) { ret = PTR_ERR(priv->mm); single_release(inode, file); goto out_free; } return 0; out_free: kfree(priv); return ret; } static int smaps_rollup_release(struct inode *inode, struct file *file) { struct seq_file *seq = file->private_data; struct proc_maps_private *priv = seq->private; if (priv->mm) mmdrop(priv->mm); kfree(priv); return single_release(inode, file); } const struct file_operations proc_pid_smaps_operations = { .open = pid_smaps_open, .read = seq_read, .llseek = seq_lseek, .release = proc_map_release, }; const struct file_operations proc_pid_smaps_rollup_operations = { .open = smaps_rollup_open, .read = seq_read, .llseek = seq_lseek, .release = smaps_rollup_release, }; enum clear_refs_types { CLEAR_REFS_ALL = 1, CLEAR_REFS_ANON, CLEAR_REFS_MAPPED, CLEAR_REFS_SOFT_DIRTY, CLEAR_REFS_MM_HIWATER_RSS, CLEAR_REFS_LAST, }; struct clear_refs_private { enum clear_refs_types type; }; #ifdef CONFIG_MEM_SOFT_DIRTY static inline void clear_soft_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *pte) { /* * The soft-dirty tracker uses #PF-s to catch writes * to pages, so write-protect the pte as well. See the * Documentation/admin-guide/mm/soft-dirty.rst for full description * of how soft-dirty works. */ pte_t ptent = *pte; if (pte_present(ptent)) { pte_t old_pte; old_pte = ptep_modify_prot_start(vma, addr, pte); ptent = pte_wrprotect(old_pte); ptent = pte_clear_soft_dirty(ptent); ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); } else if (is_swap_pte(ptent)) { ptent = pte_swp_clear_soft_dirty(ptent); set_pte_at(vma->vm_mm, addr, pte, ptent); } } #else static inline void clear_soft_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *pte) { } #endif #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp) { pmd_t old, pmd = *pmdp; if (pmd_present(pmd)) { /* See comment in change_huge_pmd() */ old = pmdp_invalidate(vma, addr, pmdp); if (pmd_dirty(old)) pmd = pmd_mkdirty(pmd); if (pmd_young(old)) pmd = pmd_mkyoung(pmd); pmd = pmd_wrprotect(pmd); pmd = pmd_clear_soft_dirty(pmd); set_pmd_at(vma->vm_mm, addr, pmdp, pmd); } else if (is_migration_entry(pmd_to_swp_entry(pmd))) { pmd = pmd_swp_clear_soft_dirty(pmd); set_pmd_at(vma->vm_mm, addr, pmdp, pmd); } } #else static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp) { } #endif static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct clear_refs_private *cp = walk->private; struct vm_area_struct *vma = walk->vma; pte_t *pte, ptent; spinlock_t *ptl; struct page *page; ptl = pmd_trans_huge_lock(pmd, vma); if (ptl) { if (cp->type == CLEAR_REFS_SOFT_DIRTY) { clear_soft_dirty_pmd(vma, addr, pmd); goto out; } if (!pmd_present(*pmd)) goto out; page = pmd_page(*pmd); /* Clear accessed and referenced bits. */ pmdp_test_and_clear_young(vma, addr, pmd); test_and_clear_page_young(page); ClearPageReferenced(page); out: spin_unlock(ptl); return 0; } if (pmd_trans_unstable(pmd)) return 0; pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); for (; addr != end; pte++, addr += PAGE_SIZE) { ptent = *pte; if (cp->type == CLEAR_REFS_SOFT_DIRTY) { clear_soft_dirty(vma, addr, pte); continue; } if (!pte_present(ptent)) continue; page = vm_normal_page(vma, addr, ptent); if (!page) continue; /* Clear accessed and referenced bits. */ ptep_test_and_clear_young(vma, addr, pte); test_and_clear_page_young(page); ClearPageReferenced(page); } pte_unmap_unlock(pte - 1, ptl); cond_resched(); return 0; } static int clear_refs_test_walk(unsigned long start, unsigned long end, struct mm_walk *walk) { struct clear_refs_private *cp = walk->private; struct vm_area_struct *vma = walk->vma; if (vma->vm_flags & VM_PFNMAP) return 1; /* * Writing 1 to /proc/pid/clear_refs affects all pages. * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. * Writing 4 to /proc/pid/clear_refs affects all pages. */ if (cp->type == CLEAR_REFS_ANON && vma->vm_file) return 1; if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) return 1; return 0; } static ssize_t clear_refs_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct task_struct *task; char buffer[PROC_NUMBUF]; struct mm_struct *mm; struct vm_area_struct *vma; enum clear_refs_types type; struct mmu_gather tlb; int itype; int rv; memset(buffer, 0, sizeof(buffer)); if (count > sizeof(buffer) - 1) count = sizeof(buffer) - 1; if (copy_from_user(buffer, buf, count)) return -EFAULT; rv = kstrtoint(strstrip(buffer), 10, &itype); if (rv < 0) return rv; type = (enum clear_refs_types)itype; if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) return -EINVAL; task = get_proc_task(file_inode(file)); if (!task) return -ESRCH; mm = get_task_mm(task); if (mm) { struct mmu_notifier_range range; struct clear_refs_private cp = { .type = type, }; struct mm_walk clear_refs_walk = { .pmd_entry = clear_refs_pte_range, .test_walk = clear_refs_test_walk, .mm = mm, .private = &cp, }; if (type == CLEAR_REFS_MM_HIWATER_RSS) { if (down_write_killable(&mm->mmap_sem)) { count = -EINTR; goto out_mm; } /* * Writing 5 to /proc/pid/clear_refs resets the peak * resident set size to this mm's current rss value. */ reset_mm_hiwater_rss(mm); up_write(&mm->mmap_sem); goto out_mm; } if (down_read_killable(&mm->mmap_sem)) { count = -EINTR; goto out_mm; } tlb_gather_mmu(&tlb, mm, 0, -1); if (type == CLEAR_REFS_SOFT_DIRTY) { for (vma = mm->mmap; vma; vma = vma->vm_next) { if (!(vma->vm_flags & VM_SOFTDIRTY)) continue; up_read(&mm->mmap_sem); if (down_write_killable(&mm->mmap_sem)) { count = -EINTR; goto out_mm; } /* * Avoid to modify vma->vm_flags * without locked ops while the * coredump reads the vm_flags. */ if (!mmget_still_valid(mm)) { /* * Silently return "count" * like if get_task_mm() * failed. FIXME: should this * function have returned * -ESRCH if get_task_mm() * failed like if * get_proc_task() fails? */ up_write(&mm->mmap_sem); goto out_mm; } for (vma = mm->mmap; vma; vma = vma->vm_next) { vma->vm_flags &= ~VM_SOFTDIRTY; vma_set_page_prot(vma); } downgrade_write(&mm->mmap_sem); break; } mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY, 0, NULL, mm, 0, -1UL); mmu_notifier_invalidate_range_start(&range); } walk_page_range(0, mm->highest_vm_end, &clear_refs_walk); if (type == CLEAR_REFS_SOFT_DIRTY) mmu_notifier_invalidate_range_end(&range); tlb_finish_mmu(&tlb, 0, -1); up_read(&mm->mmap_sem); out_mm: mmput(mm); } put_task_struct(task); return count; } const struct file_operations proc_clear_refs_operations = { .write = clear_refs_write, .llseek = noop_llseek, }; typedef struct { u64 pme; } pagemap_entry_t; struct pagemapread { int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ pagemap_entry_t *buffer; bool show_pfn; }; #define PAGEMAP_WALK_SIZE (PMD_SIZE) #define PAGEMAP_WALK_MASK (PMD_MASK) #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) #define PM_PFRAME_BITS 55 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) #define PM_SOFT_DIRTY BIT_ULL(55) #define PM_MMAP_EXCLUSIVE BIT_ULL(56) #define PM_FILE BIT_ULL(61) #define PM_SWAP BIT_ULL(62) #define PM_PRESENT BIT_ULL(63) #define PM_END_OF_BUFFER 1 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) { return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; } static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, struct pagemapread *pm) { pm->buffer[pm->pos++] = *pme; if (pm->pos >= pm->len) return PM_END_OF_BUFFER; return 0; } static int pagemap_pte_hole(unsigned long start, unsigned long end, struct mm_walk *walk) { struct pagemapread *pm = walk->private; unsigned long addr = start; int err = 0; while (addr < end) { struct vm_area_struct *vma = find_vma(walk->mm, addr); pagemap_entry_t pme = make_pme(0, 0); /* End of address space hole, which we mark as non-present. */ unsigned long hole_end; if (vma) hole_end = min(end, vma->vm_start); else hole_end = end; for (; addr < hole_end; addr += PAGE_SIZE) { err = add_to_pagemap(addr, &pme, pm); if (err) goto out; } if (!vma) break; /* Addresses in the VMA. */ if (vma->vm_flags & VM_SOFTDIRTY) pme = make_pme(0, PM_SOFT_DIRTY); for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { err = add_to_pagemap(addr, &pme, pm); if (err) goto out; } } out: return err; } static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, struct vm_area_struct *vma, unsigned long addr, pte_t pte) { u64 frame = 0, flags = 0; struct page *page = NULL; if (pte_present(pte)) { if (pm->show_pfn) frame = pte_pfn(pte); flags |= PM_PRESENT; page = vm_normal_page(vma, addr, pte); if (pte_soft_dirty(pte)) flags |= PM_SOFT_DIRTY; } else if (is_swap_pte(pte)) { swp_entry_t entry; if (pte_swp_soft_dirty(pte)) flags |= PM_SOFT_DIRTY; entry = pte_to_swp_entry(pte); if (pm->show_pfn) frame = swp_type(entry) | (swp_offset(entry) << MAX_SWAPFILES_SHIFT); flags |= PM_SWAP; if (is_migration_entry(entry)) page = migration_entry_to_page(entry); if (is_device_private_entry(entry)) page = device_private_entry_to_page(entry); } if (page && !PageAnon(page)) flags |= PM_FILE; if (page && page_mapcount(page) == 1) flags |= PM_MMAP_EXCLUSIVE; if (vma->vm_flags & VM_SOFTDIRTY) flags |= PM_SOFT_DIRTY; return make_pme(frame, flags); } static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; struct pagemapread *pm = walk->private; spinlock_t *ptl; pte_t *pte, *orig_pte; int err = 0; #ifdef CONFIG_TRANSPARENT_HUGEPAGE ptl = pmd_trans_huge_lock(pmdp, vma); if (ptl) { u64 flags = 0, frame = 0; pmd_t pmd = *pmdp; struct page *page = NULL; if (vma->vm_flags & VM_SOFTDIRTY) flags |= PM_SOFT_DIRTY; if (pmd_present(pmd)) { page = pmd_page(pmd); flags |= PM_PRESENT; if (pmd_soft_dirty(pmd)) flags |= PM_SOFT_DIRTY; if (pm->show_pfn) frame = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); } #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION else if (is_swap_pmd(pmd)) { swp_entry_t entry = pmd_to_swp_entry(pmd); unsigned long offset; if (pm->show_pfn) { offset = swp_offset(entry) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); frame = swp_type(entry) | (offset << MAX_SWAPFILES_SHIFT); } flags |= PM_SWAP; if (pmd_swp_soft_dirty(pmd)) flags |= PM_SOFT_DIRTY; VM_BUG_ON(!is_pmd_migration_entry(pmd)); page = migration_entry_to_page(entry); } #endif if (page && page_mapcount(page) == 1) flags |= PM_MMAP_EXCLUSIVE; for (; addr != end; addr += PAGE_SIZE) { pagemap_entry_t pme = make_pme(frame, flags); err = add_to_pagemap(addr, &pme, pm); if (err) break; if (pm->show_pfn) { if (flags & PM_PRESENT) frame++; else if (flags & PM_SWAP) frame += (1 << MAX_SWAPFILES_SHIFT); } } spin_unlock(ptl); return err; } if (pmd_trans_unstable(pmdp)) return 0; #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /* * We can assume that @vma always points to a valid one and @end never * goes beyond vma->vm_end. */ orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); for (; addr < end; pte++, addr += PAGE_SIZE) { pagemap_entry_t pme; pme = pte_to_pagemap_entry(pm, vma, addr, *pte); err = add_to_pagemap(addr, &pme, pm); if (err) break; } pte_unmap_unlock(orig_pte, ptl); cond_resched(); return err; } #ifdef CONFIG_HUGETLB_PAGE /* This function walks within one hugetlb entry in the single call */ static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct pagemapread *pm = walk->private; struct vm_area_struct *vma = walk->vma; u64 flags = 0, frame = 0; int err = 0; pte_t pte; if (vma->vm_flags & VM_SOFTDIRTY) flags |= PM_SOFT_DIRTY; pte = huge_ptep_get(ptep); if (pte_present(pte)) { struct page *page = pte_page(pte); if (!PageAnon(page)) flags |= PM_FILE; if (page_mapcount(page) == 1) flags |= PM_MMAP_EXCLUSIVE; flags |= PM_PRESENT; if (pm->show_pfn) frame = pte_pfn(pte) + ((addr & ~hmask) >> PAGE_SHIFT); } for (; addr != end; addr += PAGE_SIZE) { pagemap_entry_t pme = make_pme(frame, flags); err = add_to_pagemap(addr, &pme, pm); if (err) return err; if (pm->show_pfn && (flags & PM_PRESENT)) frame++; } cond_resched(); return err; } #endif /* HUGETLB_PAGE */ /* * /proc/pid/pagemap - an array mapping virtual pages to pfns * * For each page in the address space, this file contains one 64-bit entry * consisting of the following: * * Bits 0-54 page frame number (PFN) if present * Bits 0-4 swap type if swapped * Bits 5-54 swap offset if swapped * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst) * Bit 56 page exclusively mapped * Bits 57-60 zero * Bit 61 page is file-page or shared-anon * Bit 62 page swapped * Bit 63 page present * * If the page is not present but in swap, then the PFN contains an * encoding of the swap file number and the page's offset into the * swap. Unmapped pages return a null PFN. This allows determining * precisely which pages are mapped (or in swap) and comparing mapped * pages between processes. * * Efficient users of this interface will use /proc/pid/maps to * determine which areas of memory are actually mapped and llseek to * skip over unmapped regions. */ static ssize_t pagemap_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct mm_struct *mm = file->private_data; struct pagemapread pm; struct mm_walk pagemap_walk = {}; unsigned long src; unsigned long svpfn; unsigned long start_vaddr; unsigned long end_vaddr; int ret = 0, copied = 0; if (!mm || !mmget_not_zero(mm)) goto out; ret = -EINVAL; /* file position must be aligned */ if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) goto out_mm; ret = 0; if (!count) goto out_mm; /* do not disclose physical addresses: attack vector */ pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL); ret = -ENOMEM; if (!pm.buffer) goto out_mm; pagemap_walk.pmd_entry = pagemap_pmd_range; pagemap_walk.pte_hole = pagemap_pte_hole; #ifdef CONFIG_HUGETLB_PAGE pagemap_walk.hugetlb_entry = pagemap_hugetlb_range; #endif pagemap_walk.mm = mm; pagemap_walk.private = ± src = *ppos; svpfn = src / PM_ENTRY_BYTES; start_vaddr = svpfn << PAGE_SHIFT; end_vaddr = mm->task_size; /* watch out for wraparound */ if (svpfn > mm->task_size >> PAGE_SHIFT) start_vaddr = end_vaddr; /* * The odds are that this will stop walking way * before end_vaddr, because the length of the * user buffer is tracked in "pm", and the walk * will stop when we hit the end of the buffer. */ ret = 0; while (count && (start_vaddr < end_vaddr)) { int len; unsigned long end; pm.pos = 0; end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; /* overflow ? */ if (end < start_vaddr || end > end_vaddr) end = end_vaddr; ret = down_read_killable(&mm->mmap_sem); if (ret) goto out_free; ret = walk_page_range(start_vaddr, end, &pagemap_walk); up_read(&mm->mmap_sem); start_vaddr = end; len = min(count, PM_ENTRY_BYTES * pm.pos); if (copy_to_user(buf, pm.buffer, len)) { ret = -EFAULT; goto out_free; } copied += len; buf += len; count -= len; } *ppos += copied; if (!ret || ret == PM_END_OF_BUFFER) ret = copied; out_free: kfree(pm.buffer); out_mm: mmput(mm); out: return ret; } static int pagemap_open(struct inode *inode, struct file *file) { struct mm_struct *mm; mm = proc_mem_open(inode, PTRACE_MODE_READ); if (IS_ERR(mm)) return PTR_ERR(mm); file->private_data = mm; return 0; } static int pagemap_release(struct inode *inode, struct file *file) { struct mm_struct *mm = file->private_data; if (mm) mmdrop(mm); return 0; } const struct file_operations proc_pagemap_operations = { .llseek = mem_lseek, /* borrow this */ .read = pagemap_read, .open = pagemap_open, .release = pagemap_release, }; #endif /* CONFIG_PROC_PAGE_MONITOR */ #ifdef CONFIG_NUMA struct numa_maps { unsigned long pages; unsigned long anon; unsigned long active; unsigned long writeback; unsigned long mapcount_max; unsigned long dirty; unsigned long swapcache; unsigned long node[MAX_NUMNODES]; }; struct numa_maps_private { struct proc_maps_private proc_maps; struct numa_maps md; }; static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, unsigned long nr_pages) { int count = page_mapcount(page); md->pages += nr_pages; if (pte_dirty || PageDirty(page)) md->dirty += nr_pages; if (PageSwapCache(page)) md->swapcache += nr_pages; if (PageActive(page) || PageUnevictable(page)) md->active += nr_pages; if (PageWriteback(page)) md->writeback += nr_pages; if (PageAnon(page)) md->anon += nr_pages; if (count > md->mapcount_max) md->mapcount_max = count; md->node[page_to_nid(page)] += nr_pages; } static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, unsigned long addr) { struct page *page; int nid; if (!pte_present(pte)) return NULL; page = vm_normal_page(vma, addr, pte); if (!page) return NULL; if (PageReserved(page)) return NULL; nid = page_to_nid(page); if (!node_isset(nid, node_states[N_MEMORY])) return NULL; return page; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static struct page *can_gather_numa_stats_pmd(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) { struct page *page; int nid; if (!pmd_present(pmd)) return NULL; page = vm_normal_page_pmd(vma, addr, pmd); if (!page) return NULL; if (PageReserved(page)) return NULL; nid = page_to_nid(page); if (!node_isset(nid, node_states[N_MEMORY])) return NULL; return page; } #endif static int gather_pte_stats(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct numa_maps *md = walk->private; struct vm_area_struct *vma = walk->vma; spinlock_t *ptl; pte_t *orig_pte; pte_t *pte; #ifdef CONFIG_TRANSPARENT_HUGEPAGE ptl = pmd_trans_huge_lock(pmd, vma); if (ptl) { struct page *page; page = can_gather_numa_stats_pmd(*pmd, vma, addr); if (page) gather_stats(page, md, pmd_dirty(*pmd), HPAGE_PMD_SIZE/PAGE_SIZE); spin_unlock(ptl); return 0; } if (pmd_trans_unstable(pmd)) return 0; #endif orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); do { struct page *page = can_gather_numa_stats(*pte, vma, addr); if (!page) continue; gather_stats(page, md, pte_dirty(*pte), 1); } while (pte++, addr += PAGE_SIZE, addr != end); pte_unmap_unlock(orig_pte, ptl); cond_resched(); return 0; } #ifdef CONFIG_HUGETLB_PAGE static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, unsigned long addr, unsigned long end, struct mm_walk *walk) { pte_t huge_pte = huge_ptep_get(pte); struct numa_maps *md; struct page *page; if (!pte_present(huge_pte)) return 0; page = pte_page(huge_pte); if (!page) return 0; md = walk->private; gather_stats(page, md, pte_dirty(huge_pte), 1); return 0; } #else static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, unsigned long addr, unsigned long end, struct mm_walk *walk) { return 0; } #endif /* * Display pages allocated per node and memory policy via /proc. */ static int show_numa_map(struct seq_file *m, void *v) { struct numa_maps_private *numa_priv = m->private; struct proc_maps_private *proc_priv = &numa_priv->proc_maps; struct vm_area_struct *vma = v; struct numa_maps *md = &numa_priv->md; struct file *file = vma->vm_file; struct mm_struct *mm = vma->vm_mm; struct mm_walk walk = { .hugetlb_entry = gather_hugetlb_stats, .pmd_entry = gather_pte_stats, .private = md, .mm = mm, }; struct mempolicy *pol; char buffer[64]; int nid; if (!mm) return 0; /* Ensure we start with an empty set of numa_maps statistics. */ memset(md, 0, sizeof(*md)); pol = __get_vma_policy(vma, vma->vm_start); if (pol) { mpol_to_str(buffer, sizeof(buffer), pol); mpol_cond_put(pol); } else { mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); } seq_printf(m, "%08lx %s", vma->vm_start, buffer); if (file) { seq_puts(m, " file="); seq_file_path(m, file, "\n\t= "); } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { seq_puts(m, " heap"); } else if (is_stack(vma)) { seq_puts(m, " stack"); } if (is_vm_hugetlb_page(vma)) seq_puts(m, " huge"); /* mmap_sem is held by m_start */ walk_page_vma(vma, &walk); if (!md->pages) goto out; if (md->anon) seq_printf(m, " anon=%lu", md->anon); if (md->dirty) seq_printf(m, " dirty=%lu", md->dirty); if (md->pages != md->anon && md->pages != md->dirty) seq_printf(m, " mapped=%lu", md->pages); if (md->mapcount_max > 1) seq_printf(m, " mapmax=%lu", md->mapcount_max); if (md->swapcache) seq_printf(m, " swapcache=%lu", md->swapcache); if (md->active < md->pages && !is_vm_hugetlb_page(vma)) seq_printf(m, " active=%lu", md->active); if (md->writeback) seq_printf(m, " writeback=%lu", md->writeback); for_each_node_state(nid, N_MEMORY) if (md->node[nid]) seq_printf(m, " N%d=%lu", nid, md->node[nid]); seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); out: seq_putc(m, '\n'); m_cache_vma(m, vma); return 0; } static const struct seq_operations proc_pid_numa_maps_op = { .start = m_start, .next = m_next, .stop = m_stop, .show = show_numa_map, }; static int pid_numa_maps_open(struct inode *inode, struct file *file) { return proc_maps_open(inode, file, &proc_pid_numa_maps_op, sizeof(struct numa_maps_private)); } const struct file_operations proc_pid_numa_maps_operations = { .open = pid_numa_maps_open, .read = seq_read, .llseek = seq_lseek, .release = proc_map_release, }; #endif /* CONFIG_NUMA */