// SPDX-License-Identifier: GPL-2.0 /* * * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. * */ #include #include #include #include #include "debug.h" #include "ntfs.h" #include "ntfs_fs.h" #ifdef CONFIG_NTFS3_LZX_XPRESS #include "lib/lib.h" #endif static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree, CLST ino, struct rb_node *ins) { struct rb_node **p = &tree->rb_node; struct rb_node *pr = NULL; while (*p) { struct mft_inode *mi; pr = *p; mi = rb_entry(pr, struct mft_inode, node); if (mi->rno > ino) p = &pr->rb_left; else if (mi->rno < ino) p = &pr->rb_right; else return mi; } if (!ins) return NULL; rb_link_node(ins, pr, p); rb_insert_color(ins, tree); return rb_entry(ins, struct mft_inode, node); } /* * ni_find_mi - Find mft_inode by record number. */ static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno) { return ni_ins_mi(ni, &ni->mi_tree, rno, NULL); } /* * ni_add_mi - Add new mft_inode into ntfs_inode. */ static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi) { ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node); } /* * ni_remove_mi - Remove mft_inode from ntfs_inode. */ void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi) { rb_erase(&mi->node, &ni->mi_tree); } /* * ni_std - Return: Pointer into std_info from primary record. */ struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni) { const struct ATTRIB *attr; attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) : NULL; } /* * ni_std5 * * Return: Pointer into std_info from primary record. */ struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni) { const struct ATTRIB *attr; attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) : NULL; } /* * ni_clear - Clear resources allocated by ntfs_inode. */ void ni_clear(struct ntfs_inode *ni) { struct rb_node *node; if (!ni->vfs_inode.i_nlink && ni->mi.mrec && is_rec_inuse(ni->mi.mrec) && !(ni->mi.sbi->flags & NTFS_FLAGS_LOG_REPLAYING)) ni_delete_all(ni); al_destroy(ni); for (node = rb_first(&ni->mi_tree); node;) { struct rb_node *next = rb_next(node); struct mft_inode *mi = rb_entry(node, struct mft_inode, node); rb_erase(node, &ni->mi_tree); mi_put(mi); node = next; } /* Bad inode always has mode == S_IFREG. */ if (ni->ni_flags & NI_FLAG_DIR) indx_clear(&ni->dir); else { run_close(&ni->file.run); #ifdef CONFIG_NTFS3_LZX_XPRESS if (ni->file.offs_page) { /* On-demand allocated page for offsets. */ put_page(ni->file.offs_page); ni->file.offs_page = NULL; } #endif } mi_clear(&ni->mi); } /* * ni_load_mi_ex - Find mft_inode by record number. */ int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) { int err; struct mft_inode *r; r = ni_find_mi(ni, rno); if (r) goto out; err = mi_get(ni->mi.sbi, rno, &r); if (err) return err; ni_add_mi(ni, r); out: if (mi) *mi = r; return 0; } /* * ni_load_mi - Load mft_inode corresponded list_entry. */ int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le, struct mft_inode **mi) { CLST rno; if (!le) { *mi = &ni->mi; return 0; } rno = ino_get(&le->ref); if (rno == ni->mi.rno) { *mi = &ni->mi; return 0; } return ni_load_mi_ex(ni, rno, mi); } /* * ni_find_attr * * Return: Attribute and record this attribute belongs to. */ struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr, struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type, const __le16 *name, u8 name_len, const CLST *vcn, struct mft_inode **mi) { struct ATTR_LIST_ENTRY *le; struct mft_inode *m; if (!ni->attr_list.size || (!name_len && (type == ATTR_LIST || type == ATTR_STD))) { if (le_o) *le_o = NULL; if (mi) *mi = &ni->mi; /* Look for required attribute in primary record. */ return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL); } /* First look for list entry of required type. */ le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn); if (!le) return NULL; if (le_o) *le_o = le; /* Load record that contains this attribute. */ if (ni_load_mi(ni, le, &m)) return NULL; /* Look for required attribute. */ attr = mi_find_attr(m, NULL, type, name, name_len, &le->id); if (!attr) goto out; if (!attr->non_res) { if (vcn && *vcn) goto out; } else if (!vcn) { if (attr->nres.svcn) goto out; } else if (le64_to_cpu(attr->nres.svcn) > *vcn || *vcn > le64_to_cpu(attr->nres.evcn)) { goto out; } if (mi) *mi = m; return attr; out: ntfs_inode_err(&ni->vfs_inode, "failed to parse mft record"); ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR); return NULL; } /* * ni_enum_attr_ex - Enumerates attributes in ntfs_inode. */ struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr, struct ATTR_LIST_ENTRY **le, struct mft_inode **mi) { struct mft_inode *mi2; struct ATTR_LIST_ENTRY *le2; /* Do we have an attribute list? */ if (!ni->attr_list.size) { *le = NULL; if (mi) *mi = &ni->mi; /* Enum attributes in primary record. */ return mi_enum_attr(&ni->mi, attr); } /* Get next list entry. */ le2 = *le = al_enumerate(ni, attr ? *le : NULL); if (!le2) return NULL; /* Load record that contains the required attribute. */ if (ni_load_mi(ni, le2, &mi2)) return NULL; if (mi) *mi = mi2; /* Find attribute in loaded record. */ return rec_find_attr_le(mi2, le2); } /* * ni_load_attr - Load attribute that contains given VCN. */ struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, const __le16 *name, u8 name_len, CLST vcn, struct mft_inode **pmi) { struct ATTR_LIST_ENTRY *le; struct ATTRIB *attr; struct mft_inode *mi; struct ATTR_LIST_ENTRY *next; if (!ni->attr_list.size) { if (pmi) *pmi = &ni->mi; return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL); } le = al_find_ex(ni, NULL, type, name, name_len, NULL); if (!le) return NULL; /* * Unfortunately ATTR_LIST_ENTRY contains only start VCN. * So to find the ATTRIB segment that contains 'vcn' we should * enumerate some entries. */ if (vcn) { for (;; le = next) { next = al_find_ex(ni, le, type, name, name_len, NULL); if (!next || le64_to_cpu(next->vcn) > vcn) break; } } if (ni_load_mi(ni, le, &mi)) return NULL; if (pmi) *pmi = mi; attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id); if (!attr) return NULL; if (!attr->non_res) return attr; if (le64_to_cpu(attr->nres.svcn) <= vcn && vcn <= le64_to_cpu(attr->nres.evcn)) return attr; return NULL; } /* * ni_load_all_mi - Load all subrecords. */ int ni_load_all_mi(struct ntfs_inode *ni) { int err; struct ATTR_LIST_ENTRY *le; if (!ni->attr_list.size) return 0; le = NULL; while ((le = al_enumerate(ni, le))) { CLST rno = ino_get(&le->ref); if (rno == ni->mi.rno) continue; err = ni_load_mi_ex(ni, rno, NULL); if (err) return err; } return 0; } /* * ni_add_subrecord - Allocate + format + attach a new subrecord. */ bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) { struct mft_inode *m; m = kzalloc(sizeof(struct mft_inode), GFP_NOFS); if (!m) return false; if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) { mi_put(m); return false; } mi_get_ref(&ni->mi, &m->mrec->parent_ref); ni_add_mi(ni, m); *mi = m; return true; } /* * ni_remove_attr - Remove all attributes for the given type/name/id. */ int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, const __le16 *name, u8 name_len, bool base_only, const __le16 *id) { int err; struct ATTRIB *attr; struct ATTR_LIST_ENTRY *le; struct mft_inode *mi; u32 type_in; int diff; if (base_only || type == ATTR_LIST || !ni->attr_list.size) { attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id); if (!attr) return -ENOENT; mi_remove_attr(ni, &ni->mi, attr); return 0; } type_in = le32_to_cpu(type); le = NULL; for (;;) { le = al_enumerate(ni, le); if (!le) return 0; next_le2: diff = le32_to_cpu(le->type) - type_in; if (diff < 0) continue; if (diff > 0) return 0; if (le->name_len != name_len) continue; if (name_len && memcmp(le_name(le), name, name_len * sizeof(short))) continue; if (id && le->id != *id) continue; err = ni_load_mi(ni, le, &mi); if (err) return err; al_remove_le(ni, le); attr = mi_find_attr(mi, NULL, type, name, name_len, id); if (!attr) return -ENOENT; mi_remove_attr(ni, mi, attr); if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size) return 0; goto next_le2; } } /* * ni_ins_new_attr - Insert the attribute into record. * * Return: Not full constructed attribute or NULL if not possible to create. */ static struct ATTRIB * ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi, struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type, const __le16 *name, u8 name_len, u32 asize, u16 name_off, CLST svcn, struct ATTR_LIST_ENTRY **ins_le) { int err; struct ATTRIB *attr; bool le_added = false; struct MFT_REF ref; mi_get_ref(mi, &ref); if (type != ATTR_LIST && !le && ni->attr_list.size) { err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1), &ref, &le); if (err) { /* No memory or no space. */ return ERR_PTR(err); } le_added = true; /* * al_add_le -> attr_set_size (list) -> ni_expand_list * which moves some attributes out of primary record * this means that name may point into moved memory * reinit 'name' from le. */ name = le->name; } attr = mi_insert_attr(mi, type, name, name_len, asize, name_off); if (!attr) { if (le_added) al_remove_le(ni, le); return NULL; } if (type == ATTR_LIST) { /* Attr list is not in list entry array. */ goto out; } if (!le) goto out; /* Update ATTRIB Id and record reference. */ le->id = attr->id; ni->attr_list.dirty = true; le->ref = ref; out: if (ins_le) *ins_le = le; return attr; } /* * ni_repack * * Random write access to sparsed or compressed file may result to * not optimized packed runs. * Here is the place to optimize it. */ static int ni_repack(struct ntfs_inode *ni) { #if 1 return 0; #else int err = 0; struct ntfs_sb_info *sbi = ni->mi.sbi; struct mft_inode *mi, *mi_p = NULL; struct ATTRIB *attr = NULL, *attr_p; struct ATTR_LIST_ENTRY *le = NULL, *le_p; CLST alloc = 0; u8 cluster_bits = sbi->cluster_bits; CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn; u32 roff, rs = sbi->record_size; struct runs_tree run; run_init(&run); while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) { if (!attr->non_res) continue; svcn = le64_to_cpu(attr->nres.svcn); if (svcn != le64_to_cpu(le->vcn)) { err = -EINVAL; break; } if (!svcn) { alloc = le64_to_cpu(attr->nres.alloc_size) >> cluster_bits; mi_p = NULL; } else if (svcn != evcn + 1) { err = -EINVAL; break; } evcn = le64_to_cpu(attr->nres.evcn); if (svcn > evcn + 1) { err = -EINVAL; break; } if (!mi_p) { /* Do not try if not enough free space. */ if (le32_to_cpu(mi->mrec->used) + 8 >= rs) continue; /* Do not try if last attribute segment. */ if (evcn + 1 == alloc) continue; run_close(&run); } roff = le16_to_cpu(attr->nres.run_off); if (roff > le32_to_cpu(attr->size)) { err = -EINVAL; break; } err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn, Add2Ptr(attr, roff), le32_to_cpu(attr->size) - roff); if (err < 0) break; if (!mi_p) { mi_p = mi; attr_p = attr; svcn_p = svcn; evcn_p = evcn; le_p = le; err = 0; continue; } /* * Run contains data from two records: mi_p and mi * Try to pack in one. */ err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p); if (err) break; next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1; if (next_svcn >= evcn + 1) { /* We can remove this attribute segment. */ al_remove_le(ni, le); mi_remove_attr(NULL, mi, attr); le = le_p; continue; } attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn); mi->dirty = true; ni->attr_list.dirty = true; if (evcn + 1 == alloc) { err = mi_pack_runs(mi, attr, &run, evcn + 1 - next_svcn); if (err) break; mi_p = NULL; } else { mi_p = mi; attr_p = attr; svcn_p = next_svcn; evcn_p = evcn; le_p = le; run_truncate_head(&run, next_svcn); } } if (err) { ntfs_inode_warn(&ni->vfs_inode, "repack problem"); ntfs_set_state(sbi, NTFS_DIRTY_ERROR); /* Pack loaded but not packed runs. */ if (mi_p) mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p); } run_close(&run); return err; #endif } /* * ni_try_remove_attr_list * * Can we remove attribute list? * Check the case when primary record contains enough space for all attributes. */ static int ni_try_remove_attr_list(struct ntfs_inode *ni) { int err = 0; struct ntfs_sb_info *sbi = ni->mi.sbi; struct ATTRIB *attr, *attr_list, *attr_ins; struct ATTR_LIST_ENTRY *le; struct mft_inode *mi; u32 asize, free; struct MFT_REF ref; struct MFT_REC *mrec; __le16 id; if (!ni->attr_list.dirty) return 0; err = ni_repack(ni); if (err) return err; attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL); if (!attr_list) return 0; asize = le32_to_cpu(attr_list->size); /* Free space in primary record without attribute list. */ free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize; mi_get_ref(&ni->mi, &ref); le = NULL; while ((le = al_enumerate(ni, le))) { if (!memcmp(&le->ref, &ref, sizeof(ref))) continue; if (le->vcn) return 0; mi = ni_find_mi(ni, ino_get(&le->ref)); if (!mi) return 0; attr = mi_find_attr(mi, NULL, le->type, le_name(le), le->name_len, &le->id); if (!attr) return 0; asize = le32_to_cpu(attr->size); if (asize > free) return 0; free -= asize; } /* Make a copy of primary record to restore if error. */ mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS); if (!mrec) return 0; /* Not critical. */ /* It seems that attribute list can be removed from primary record. */ mi_remove_attr(NULL, &ni->mi, attr_list); /* * Repeat the cycle above and copy all attributes to primary record. * Do not remove original attributes from subrecords! * It should be success! */ le = NULL; while ((le = al_enumerate(ni, le))) { if (!memcmp(&le->ref, &ref, sizeof(ref))) continue; mi = ni_find_mi(ni, ino_get(&le->ref)); if (!mi) { /* Should never happened, 'cause already checked. */ goto out; } attr = mi_find_attr(mi, NULL, le->type, le_name(le), le->name_len, &le->id); if (!attr) { /* Should never happened, 'cause already checked. */ goto out; } asize = le32_to_cpu(attr->size); /* Insert into primary record. */ attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le), le->name_len, asize, le16_to_cpu(attr->name_off)); if (!attr_ins) { /* * No space in primary record (already checked). */ goto out; } /* Copy all except id. */ id = attr_ins->id; memcpy(attr_ins, attr, asize); attr_ins->id = id; } /* * Repeat the cycle above and remove all attributes from subrecords. */ le = NULL; while ((le = al_enumerate(ni, le))) { if (!memcmp(&le->ref, &ref, sizeof(ref))) continue; mi = ni_find_mi(ni, ino_get(&le->ref)); if (!mi) continue; attr = mi_find_attr(mi, NULL, le->type, le_name(le), le->name_len, &le->id); if (!attr) continue; /* Remove from original record. */ mi_remove_attr(NULL, mi, attr); } run_deallocate(sbi, &ni->attr_list.run, true); run_close(&ni->attr_list.run); ni->attr_list.size = 0; kvfree(ni->attr_list.le); ni->attr_list.le = NULL; ni->attr_list.dirty = false; kfree(mrec); return 0; out: /* Restore primary record. */ swap(mrec, ni->mi.mrec); kfree(mrec); return 0; } /* * ni_create_attr_list - Generates an attribute list for this primary record. */ int ni_create_attr_list(struct ntfs_inode *ni) { struct ntfs_sb_info *sbi = ni->mi.sbi; int err; u32 lsize; struct ATTRIB *attr; struct ATTRIB *arr_move[7]; struct ATTR_LIST_ENTRY *le, *le_b[7]; struct MFT_REC *rec; bool is_mft; CLST rno = 0; struct mft_inode *mi; u32 free_b, nb, to_free, rs; u16 sz; is_mft = ni->mi.rno == MFT_REC_MFT; rec = ni->mi.mrec; rs = sbi->record_size; /* * Skip estimating exact memory requirement. * Looks like one record_size is always enough. */ le = kmalloc(al_aligned(rs), GFP_NOFS); if (!le) return -ENOMEM; mi_get_ref(&ni->mi, &le->ref); ni->attr_list.le = le; attr = NULL; nb = 0; free_b = 0; attr = NULL; for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) { sz = le_size(attr->name_len); le->type = attr->type; le->size = cpu_to_le16(sz); le->name_len = attr->name_len; le->name_off = offsetof(struct ATTR_LIST_ENTRY, name); le->vcn = 0; if (le != ni->attr_list.le) le->ref = ni->attr_list.le->ref; le->id = attr->id; if (attr->name_len) memcpy(le->name, attr_name(attr), sizeof(short) * attr->name_len); else if (attr->type == ATTR_STD) continue; else if (attr->type == ATTR_LIST) continue; else if (is_mft && attr->type == ATTR_DATA) continue; if (!nb || nb < ARRAY_SIZE(arr_move)) { le_b[nb] = le; arr_move[nb++] = attr; free_b += le32_to_cpu(attr->size); } } lsize = PtrOffset(ni->attr_list.le, le); ni->attr_list.size = lsize; to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT; if (to_free <= rs) { to_free = 0; } else { to_free -= rs; if (to_free > free_b) { err = -EINVAL; goto out; } } /* Allocate child MFT. */ err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi); if (err) goto out; err = -EINVAL; /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */ while (to_free > 0) { struct ATTRIB *b = arr_move[--nb]; u32 asize = le32_to_cpu(b->size); u16 name_off = le16_to_cpu(b->name_off); attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off), b->name_len, asize, name_off); if (!attr) goto out; mi_get_ref(mi, &le_b[nb]->ref); le_b[nb]->id = attr->id; /* Copy all except id. */ memcpy(attr, b, asize); attr->id = le_b[nb]->id; /* Remove from primary record. */ if (!mi_remove_attr(NULL, &ni->mi, b)) goto out; if (to_free <= asize) break; to_free -= asize; if (!nb) goto out; } attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0, lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT); if (!attr) goto out; attr->non_res = 0; attr->flags = 0; attr->res.data_size = cpu_to_le32(lsize); attr->res.data_off = SIZEOF_RESIDENT_LE; attr->res.flags = 0; attr->res.res = 0; memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize); ni->attr_list.dirty = false; mark_inode_dirty(&ni->vfs_inode); return 0; out: kvfree(ni->attr_list.le); ni->attr_list.le = NULL; ni->attr_list.size = 0; return err; } /* * ni_ins_attr_ext - Add an external attribute to the ntfs_inode. */ static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type, const __le16 *name, u8 name_len, u32 asize, CLST svcn, u16 name_off, bool force_ext, struct ATTRIB **ins_attr, struct mft_inode **ins_mi, struct ATTR_LIST_ENTRY **ins_le) { struct ATTRIB *attr; struct mft_inode *mi; CLST rno; u64 vbo; struct rb_node *node; int err; bool is_mft, is_mft_data; struct ntfs_sb_info *sbi = ni->mi.sbi; is_mft = ni->mi.rno == MFT_REC_MFT; is_mft_data = is_mft && type == ATTR_DATA && !name_len; if (asize > sbi->max_bytes_per_attr) { err = -EINVAL; goto out; } /* * Standard information and attr_list cannot be made external. * The Log File cannot have any external attributes. */ if (type == ATTR_STD || type == ATTR_LIST || ni->mi.rno == MFT_REC_LOG) { err = -EINVAL; goto out; } /* Create attribute list if it is not already existed. */ if (!ni->attr_list.size) { err = ni_create_attr_list(ni); if (err) goto out; } vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0; if (force_ext) goto insert_ext; /* Load all subrecords into memory. */ err = ni_load_all_mi(ni); if (err) goto out; /* Check each of loaded subrecord. */ for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { mi = rb_entry(node, struct mft_inode, node); if (is_mft_data && (mi_enum_attr(mi, NULL) || vbo <= ((u64)mi->rno << sbi->record_bits))) { /* We can't accept this record 'cause MFT's bootstrapping. */ continue; } if (is_mft && mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) { /* * This child record already has a ATTR_DATA. * So it can't accept any other records. */ continue; } if ((type != ATTR_NAME || name_len) && mi_find_attr(mi, NULL, type, name, name_len, NULL)) { /* Only indexed attributes can share same record. */ continue; } /* * Do not try to insert this attribute * if there is no room in record. */ if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size) continue; /* Try to insert attribute into this subrecord. */ attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, name_off, svcn, ins_le); if (!attr) continue; if (IS_ERR(attr)) return PTR_ERR(attr); if (ins_attr) *ins_attr = attr; if (ins_mi) *ins_mi = mi; return 0; } insert_ext: /* We have to allocate a new child subrecord. */ err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi); if (err) goto out; if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) { err = -EINVAL; goto out1; } attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, name_off, svcn, ins_le); if (!attr) { err = -EINVAL; goto out2; } if (IS_ERR(attr)) { err = PTR_ERR(attr); goto out2; } if (ins_attr) *ins_attr = attr; if (ins_mi) *ins_mi = mi; return 0; out2: ni_remove_mi(ni, mi); mi_put(mi); out1: ntfs_mark_rec_free(sbi, rno, is_mft); out: return err; } /* * ni_insert_attr - Insert an attribute into the file. * * If the primary record has room, it will just insert the attribute. * If not, it may make the attribute external. * For $MFT::Data it may make room for the attribute by * making other attributes external. * * NOTE: * The ATTR_LIST and ATTR_STD cannot be made external. * This function does not fill new attribute full. * It only fills 'size'/'type'/'id'/'name_len' fields. */ static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, const __le16 *name, u8 name_len, u32 asize, u16 name_off, CLST svcn, struct ATTRIB **ins_attr, struct mft_inode **ins_mi, struct ATTR_LIST_ENTRY **ins_le) { struct ntfs_sb_info *sbi = ni->mi.sbi; int err; struct ATTRIB *attr, *eattr; struct MFT_REC *rec; bool is_mft; struct ATTR_LIST_ENTRY *le; u32 list_reserve, max_free, free, used, t32; __le16 id; u16 t16; is_mft = ni->mi.rno == MFT_REC_MFT; rec = ni->mi.mrec; list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32)); used = le32_to_cpu(rec->used); free = sbi->record_size - used; if (is_mft && type != ATTR_LIST) { /* Reserve space for the ATTRIB list. */ if (free < list_reserve) free = 0; else free -= list_reserve; } if (asize <= free) { attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize, name_off, svcn, ins_le); if (IS_ERR(attr)) { err = PTR_ERR(attr); goto out; } if (attr) { if (ins_attr) *ins_attr = attr; if (ins_mi) *ins_mi = &ni->mi; err = 0; goto out; } } if (!is_mft || type != ATTR_DATA || svcn) { /* This ATTRIB will be external. */ err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize, svcn, name_off, false, ins_attr, ins_mi, ins_le); goto out; } /* * Here we have: "is_mft && type == ATTR_DATA && !svcn" * * The first chunk of the $MFT::Data ATTRIB must be the base record. * Evict as many other attributes as possible. */ max_free = free; /* Estimate the result of moving all possible attributes away. */ attr = NULL; while ((attr = mi_enum_attr(&ni->mi, attr))) { if (attr->type == ATTR_STD) continue; if (attr->type == ATTR_LIST) continue; max_free += le32_to_cpu(attr->size); } if (max_free < asize + list_reserve) { /* Impossible to insert this attribute into primary record. */ err = -EINVAL; goto out; } /* Start real attribute moving. */ attr = NULL; for (;;) { attr = mi_enum_attr(&ni->mi, attr); if (!attr) { /* We should never be here 'cause we have already check this case. */ err = -EINVAL; goto out; } /* Skip attributes that MUST be primary record. */ if (attr->type == ATTR_STD || attr->type == ATTR_LIST) continue; le = NULL; if (ni->attr_list.size) { le = al_find_le(ni, NULL, attr); if (!le) { /* Really this is a serious bug. */ err = -EINVAL; goto out; } } t32 = le32_to_cpu(attr->size); t16 = le16_to_cpu(attr->name_off); err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16), attr->name_len, t32, attr_svcn(attr), t16, false, &eattr, NULL, NULL); if (err) return err; id = eattr->id; memcpy(eattr, attr, t32); eattr->id = id; /* Remove from primary record. */ mi_remove_attr(NULL, &ni->mi, attr); /* attr now points to next attribute. */ if (attr->type == ATTR_END) goto out; } while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used)) ; attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize, name_off, svcn, ins_le); if (!attr) { err = -EINVAL; goto out; } if (IS_ERR(attr)) { err = PTR_ERR(attr); goto out; } if (ins_attr) *ins_attr = attr; if (ins_mi) *ins_mi = &ni->mi; out: return err; } /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */ static int ni_expand_mft_list(struct ntfs_inode *ni) { int err = 0; struct runs_tree *run = &ni->file.run; u32 asize, run_size, done = 0; struct ATTRIB *attr; struct rb_node *node; CLST mft_min, mft_new, svcn, evcn, plen; struct mft_inode *mi, *mi_min, *mi_new; struct ntfs_sb_info *sbi = ni->mi.sbi; /* Find the nearest MFT. */ mft_min = 0; mft_new = 0; mi_min = NULL; for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { mi = rb_entry(node, struct mft_inode, node); attr = mi_enum_attr(mi, NULL); if (!attr) { mft_min = mi->rno; mi_min = mi; break; } } if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) { mft_new = 0; /* Really this is not critical. */ } else if (mft_min > mft_new) { mft_min = mft_new; mi_min = mi_new; } else { ntfs_mark_rec_free(sbi, mft_new, true); mft_new = 0; ni_remove_mi(ni, mi_new); } attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL); if (!attr) { err = -EINVAL; goto out; } asize = le32_to_cpu(attr->size); evcn = le64_to_cpu(attr->nres.evcn); svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits); if (evcn + 1 >= svcn) { err = -EINVAL; goto out; } /* * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn]. * * Update first part of ATTR_DATA in 'primary MFT. */ err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), asize - SIZEOF_NONRESIDENT, &plen); if (err < 0) goto out; run_size = ALIGN(err, 8); err = 0; if (plen < svcn) { err = -EINVAL; goto out; } attr->nres.evcn = cpu_to_le64(svcn - 1); attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT); /* 'done' - How many bytes of primary MFT becomes free. */ done = asize - run_size - SIZEOF_NONRESIDENT; le32_sub_cpu(&ni->mi.mrec->used, done); /* Estimate packed size (run_buf=NULL). */ err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size, &plen); if (err < 0) goto out; run_size = ALIGN(err, 8); err = 0; if (plen < evcn + 1 - svcn) { err = -EINVAL; goto out; } /* * This function may implicitly call expand attr_list. * Insert second part of ATTR_DATA in 'mi_min'. */ attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0, SIZEOF_NONRESIDENT + run_size, SIZEOF_NONRESIDENT, svcn, NULL); if (!attr) { err = -EINVAL; goto out; } if (IS_ERR(attr)) { err = PTR_ERR(attr); goto out; } attr->non_res = 1; attr->name_off = SIZEOF_NONRESIDENT_LE; attr->flags = 0; /* This function can't fail - cause already checked above. */ run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), run_size, &plen); attr->nres.svcn = cpu_to_le64(svcn); attr->nres.evcn = cpu_to_le64(evcn); attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT); out: if (mft_new) { ntfs_mark_rec_free(sbi, mft_new, true); ni_remove_mi(ni, mi_new); } return !err && !done ? -EOPNOTSUPP : err; } /* * ni_expand_list - Move all possible attributes out of primary record. */ int ni_expand_list(struct ntfs_inode *ni) { int err = 0; u32 asize, done = 0; struct ATTRIB *attr, *ins_attr; struct ATTR_LIST_ENTRY *le; bool is_mft = ni->mi.rno == MFT_REC_MFT; struct MFT_REF ref; mi_get_ref(&ni->mi, &ref); le = NULL; while ((le = al_enumerate(ni, le))) { if (le->type == ATTR_STD) continue; if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF))) continue; if (is_mft && le->type == ATTR_DATA) continue; /* Find attribute in primary record. */ attr = rec_find_attr_le(&ni->mi, le); if (!attr) { err = -EINVAL; goto out; } asize = le32_to_cpu(attr->size); /* Always insert into new record to avoid collisions (deep recursive). */ err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr), attr->name_len, asize, attr_svcn(attr), le16_to_cpu(attr->name_off), true, &ins_attr, NULL, NULL); if (err) goto out; memcpy(ins_attr, attr, asize); ins_attr->id = le->id; /* Remove from primary record. */ mi_remove_attr(NULL, &ni->mi, attr); done += asize; goto out; } if (!is_mft) { err = -EFBIG; /* Attr list is too big(?) */ goto out; } /* Split MFT data as much as possible. */ err = ni_expand_mft_list(ni); out: return !err && !done ? -EOPNOTSUPP : err; } /* * ni_insert_nonresident - Insert new nonresident attribute. */ int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type, const __le16 *name, u8 name_len, const struct runs_tree *run, CLST svcn, CLST len, __le16 flags, struct ATTRIB **new_attr, struct mft_inode **mi, struct ATTR_LIST_ENTRY **le) { int err; CLST plen; struct ATTRIB *attr; bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn; u32 name_size = ALIGN(name_len * sizeof(short), 8); u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT; u32 run_off = name_off + name_size; u32 run_size, asize; struct ntfs_sb_info *sbi = ni->mi.sbi; /* Estimate packed size (run_buf=NULL). */ err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off, &plen); if (err < 0) goto out; run_size = ALIGN(err, 8); if (plen < len) { err = -EINVAL; goto out; } asize = run_off + run_size; if (asize > sbi->max_bytes_per_attr) { err = -EINVAL; goto out; } err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn, &attr, mi, le); if (err) goto out; attr->non_res = 1; attr->name_off = cpu_to_le16(name_off); attr->flags = flags; /* This function can't fail - cause already checked above. */ run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen); attr->nres.svcn = cpu_to_le64(svcn); attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1); if (new_attr) *new_attr = attr; *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off); attr->nres.alloc_size = svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits); attr->nres.data_size = attr->nres.alloc_size; attr->nres.valid_size = attr->nres.alloc_size; if (is_ext) { if (flags & ATTR_FLAG_COMPRESSED) attr->nres.c_unit = NTFS_LZNT_CUNIT; attr->nres.total_size = attr->nres.alloc_size; } out: return err; } /* * ni_insert_resident - Inserts new resident attribute. */ int ni_insert_resident(struct ntfs_inode *ni, u32 data_size, enum ATTR_TYPE type, const __le16 *name, u8 name_len, struct ATTRIB **new_attr, struct mft_inode **mi, struct ATTR_LIST_ENTRY **le) { int err; u32 name_size = ALIGN(name_len * sizeof(short), 8); u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8); struct ATTRIB *attr; err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT, 0, &attr, mi, le); if (err) return err; attr->non_res = 0; attr->flags = 0; attr->res.data_size = cpu_to_le32(data_size); attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size); if (type == ATTR_NAME) { attr->res.flags = RESIDENT_FLAG_INDEXED; /* is_attr_indexed(attr)) == true */ le16_add_cpu(&ni->mi.mrec->hard_links, 1); ni->mi.dirty = true; } attr->res.res = 0; if (new_attr) *new_attr = attr; return 0; } /* * ni_remove_attr_le - Remove attribute from record. */ void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr, struct mft_inode *mi, struct ATTR_LIST_ENTRY *le) { mi_remove_attr(ni, mi, attr); if (le) al_remove_le(ni, le); } /* * ni_delete_all - Remove all attributes and frees allocates space. * * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links). */ int ni_delete_all(struct ntfs_inode *ni) { int err; struct ATTR_LIST_ENTRY *le = NULL; struct ATTRIB *attr = NULL; struct rb_node *node; u16 roff; u32 asize; CLST svcn, evcn; struct ntfs_sb_info *sbi = ni->mi.sbi; bool nt3 = is_ntfs3(sbi); struct MFT_REF ref; while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { if (!nt3 || attr->name_len) { ; } else if (attr->type == ATTR_REPARSE) { mi_get_ref(&ni->mi, &ref); ntfs_remove_reparse(sbi, 0, &ref); } else if (attr->type == ATTR_ID && !attr->non_res && le32_to_cpu(attr->res.data_size) >= sizeof(struct GUID)) { ntfs_objid_remove(sbi, resident_data(attr)); } if (!attr->non_res) continue; svcn = le64_to_cpu(attr->nres.svcn); evcn = le64_to_cpu(attr->nres.evcn); if (evcn + 1 <= svcn) continue; asize = le32_to_cpu(attr->size); roff = le16_to_cpu(attr->nres.run_off); if (roff > asize) { _ntfs_bad_inode(&ni->vfs_inode); return -EINVAL; } /* run==1 means unpack and deallocate. */ run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, Add2Ptr(attr, roff), asize - roff); } if (ni->attr_list.size) { run_deallocate(ni->mi.sbi, &ni->attr_list.run, true); al_destroy(ni); } /* Free all subrecords. */ for (node = rb_first(&ni->mi_tree); node;) { struct rb_node *next = rb_next(node); struct mft_inode *mi = rb_entry(node, struct mft_inode, node); clear_rec_inuse(mi->mrec); mi->dirty = true; mi_write(mi, 0); ntfs_mark_rec_free(sbi, mi->rno, false); ni_remove_mi(ni, mi); mi_put(mi); node = next; } /* Free base record. */ clear_rec_inuse(ni->mi.mrec); ni->mi.dirty = true; err = mi_write(&ni->mi, 0); ntfs_mark_rec_free(sbi, ni->mi.rno, false); return err; } /* ni_fname_name * * Return: File name attribute by its value. */ struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni, const struct le_str *uni, const struct MFT_REF *home_dir, struct mft_inode **mi, struct ATTR_LIST_ENTRY **le) { struct ATTRIB *attr = NULL; struct ATTR_FILE_NAME *fname; if (le) *le = NULL; /* Enumerate all names. */ next: attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); if (!attr) return NULL; fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); if (!fname) goto next; if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir))) goto next; if (!uni) return fname; if (uni->len != fname->name_len) goto next; if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL, false)) goto next; return fname; } /* * ni_fname_type * * Return: File name attribute with given type. */ struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type, struct mft_inode **mi, struct ATTR_LIST_ENTRY **le) { struct ATTRIB *attr = NULL; struct ATTR_FILE_NAME *fname; *le = NULL; if (name_type == FILE_NAME_POSIX) return NULL; /* Enumerate all names. */ for (;;) { attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); if (!attr) return NULL; fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); if (fname && name_type == fname->type) return fname; } } /* * ni_new_attr_flags * * Process compressed/sparsed in special way. * NOTE: You need to set ni->std_fa = new_fa * after this function to keep internal structures in consistency. */ int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa) { struct ATTRIB *attr; struct mft_inode *mi; __le16 new_aflags; u32 new_asize; attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); if (!attr) return -EINVAL; new_aflags = attr->flags; if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE) new_aflags |= ATTR_FLAG_SPARSED; else new_aflags &= ~ATTR_FLAG_SPARSED; if (new_fa & FILE_ATTRIBUTE_COMPRESSED) new_aflags |= ATTR_FLAG_COMPRESSED; else new_aflags &= ~ATTR_FLAG_COMPRESSED; if (new_aflags == attr->flags) return 0; if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) == (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) { ntfs_inode_warn(&ni->vfs_inode, "file can't be sparsed and compressed"); return -EOPNOTSUPP; } if (!attr->non_res) goto out; if (attr->nres.data_size) { ntfs_inode_warn( &ni->vfs_inode, "one can change sparsed/compressed only for empty files"); return -EOPNOTSUPP; } /* Resize nonresident empty attribute in-place only. */ new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ? (SIZEOF_NONRESIDENT_EX + 8) : (SIZEOF_NONRESIDENT + 8); if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size))) return -EOPNOTSUPP; if (new_aflags & ATTR_FLAG_SPARSED) { attr->name_off = SIZEOF_NONRESIDENT_EX_LE; /* Windows uses 16 clusters per frame but supports one cluster per frame too. */ attr->nres.c_unit = 0; ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; } else if (new_aflags & ATTR_FLAG_COMPRESSED) { attr->name_off = SIZEOF_NONRESIDENT_EX_LE; /* The only allowed: 16 clusters per frame. */ attr->nres.c_unit = NTFS_LZNT_CUNIT; ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr; } else { attr->name_off = SIZEOF_NONRESIDENT_LE; /* Normal files. */ attr->nres.c_unit = 0; ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; } attr->nres.run_off = attr->name_off; out: attr->flags = new_aflags; mi->dirty = true; return 0; } /* * ni_parse_reparse * * buffer - memory for reparse buffer header */ enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr, struct REPARSE_DATA_BUFFER *buffer) { const struct REPARSE_DATA_BUFFER *rp = NULL; u8 bits; u16 len; typeof(rp->CompressReparseBuffer) *cmpr; /* Try to estimate reparse point. */ if (!attr->non_res) { rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER)); } else if (le64_to_cpu(attr->nres.data_size) >= sizeof(struct REPARSE_DATA_BUFFER)) { struct runs_tree run; run_init(&run); if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) && !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer, sizeof(struct REPARSE_DATA_BUFFER), NULL)) { rp = buffer; } run_close(&run); } if (!rp) return REPARSE_NONE; len = le16_to_cpu(rp->ReparseDataLength); switch (rp->ReparseTag) { case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK): break; /* Symbolic link. */ case IO_REPARSE_TAG_MOUNT_POINT: break; /* Mount points and junctions. */ case IO_REPARSE_TAG_SYMLINK: break; case IO_REPARSE_TAG_COMPRESS: /* * WOF - Windows Overlay Filter - Used to compress files with * LZX/Xpress. * * Unlike native NTFS file compression, the Windows * Overlay Filter supports only read operations. This means * that it doesn't need to sector-align each compressed chunk, * so the compressed data can be packed more tightly together. * If you open the file for writing, the WOF just decompresses * the entire file, turning it back into a plain file. * * Ntfs3 driver decompresses the entire file only on write or * change size requests. */ cmpr = &rp->CompressReparseBuffer; if (len < sizeof(*cmpr) || cmpr->WofVersion != WOF_CURRENT_VERSION || cmpr->WofProvider != WOF_PROVIDER_SYSTEM || cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) { return REPARSE_NONE; } switch (cmpr->CompressionFormat) { case WOF_COMPRESSION_XPRESS4K: bits = 0xc; // 4k break; case WOF_COMPRESSION_XPRESS8K: bits = 0xd; // 8k break; case WOF_COMPRESSION_XPRESS16K: bits = 0xe; // 16k break; case WOF_COMPRESSION_LZX32K: bits = 0xf; // 32k break; default: bits = 0x10; // 64k break; } ni_set_ext_compress_bits(ni, bits); return REPARSE_COMPRESSED; case IO_REPARSE_TAG_DEDUP: ni->ni_flags |= NI_FLAG_DEDUPLICATED; return REPARSE_DEDUPLICATED; default: if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE) break; return REPARSE_NONE; } if (buffer != rp) memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER)); /* Looks like normal symlink. */ return REPARSE_LINK; } /* * fiemap_fill_next_extent_k - a copy of fiemap_fill_next_extent * but it uses 'fe_k' instead of fieinfo->fi_extents_start */ static int fiemap_fill_next_extent_k(struct fiemap_extent_info *fieinfo, struct fiemap_extent *fe_k, u64 logical, u64 phys, u64 len, u32 flags) { struct fiemap_extent extent; /* only count the extents */ if (fieinfo->fi_extents_max == 0) { fieinfo->fi_extents_mapped++; return (flags & FIEMAP_EXTENT_LAST) ? 1 : 0; } if (fieinfo->fi_extents_mapped >= fieinfo->fi_extents_max) return 1; if (flags & FIEMAP_EXTENT_DELALLOC) flags |= FIEMAP_EXTENT_UNKNOWN; if (flags & FIEMAP_EXTENT_DATA_ENCRYPTED) flags |= FIEMAP_EXTENT_ENCODED; if (flags & (FIEMAP_EXTENT_DATA_TAIL | FIEMAP_EXTENT_DATA_INLINE)) flags |= FIEMAP_EXTENT_NOT_ALIGNED; memset(&extent, 0, sizeof(extent)); extent.fe_logical = logical; extent.fe_physical = phys; extent.fe_length = len; extent.fe_flags = flags; memcpy(fe_k + fieinfo->fi_extents_mapped, &extent, sizeof(extent)); fieinfo->fi_extents_mapped++; if (fieinfo->fi_extents_mapped == fieinfo->fi_extents_max) return 1; return (flags & FIEMAP_EXTENT_LAST) ? 1 : 0; } /* * ni_fiemap - Helper for file_fiemap(). * * Assumed ni_lock. * TODO: Less aggressive locks. */ int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo, __u64 vbo, __u64 len) { int err = 0; struct fiemap_extent *fe_k = NULL; struct ntfs_sb_info *sbi = ni->mi.sbi; u8 cluster_bits = sbi->cluster_bits; struct runs_tree *run; struct rw_semaphore *run_lock; struct ATTRIB *attr; CLST vcn = vbo >> cluster_bits; CLST lcn, clen; u64 valid = ni->i_valid; u64 lbo, bytes; u64 end, alloc_size; size_t idx = -1; u32 flags; bool ok; if (S_ISDIR(ni->vfs_inode.i_mode)) { run = &ni->dir.alloc_run; attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME, ARRAY_SIZE(I30_NAME), NULL, NULL); run_lock = &ni->dir.run_lock; } else { run = &ni->file.run; attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, NULL); if (!attr) { err = -EINVAL; goto out; } if (is_attr_compressed(attr)) { /* Unfortunately cp -r incorrectly treats compressed clusters. */ err = -EOPNOTSUPP; ntfs_inode_warn( &ni->vfs_inode, "fiemap is not supported for compressed file (cp -r)"); goto out; } run_lock = &ni->file.run_lock; } if (!attr || !attr->non_res) { err = fiemap_fill_next_extent( fieinfo, 0, 0, attr ? le32_to_cpu(attr->res.data_size) : 0, FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST | FIEMAP_EXTENT_MERGED); goto out; } /* * To avoid lock problems replace pointer to user memory by pointer to kernel memory. */ fe_k = kmalloc_array(fieinfo->fi_extents_max, sizeof(struct fiemap_extent), GFP_NOFS | __GFP_ZERO); if (!fe_k) { err = -ENOMEM; goto out; } end = vbo + len; alloc_size = le64_to_cpu(attr->nres.alloc_size); if (end > alloc_size) end = alloc_size; down_read(run_lock); while (vbo < end) { if (idx == -1) { ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); } else { CLST vcn_next = vcn; ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next; if (!ok) vcn = vcn_next; } if (!ok) { up_read(run_lock); down_write(run_lock); err = attr_load_runs_vcn(ni, attr->type, attr_name(attr), attr->name_len, run, vcn); up_write(run_lock); down_read(run_lock); if (err) break; ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); if (!ok) { err = -EINVAL; break; } } if (!clen) { err = -EINVAL; // ? break; } if (lcn == SPARSE_LCN) { vcn += clen; vbo = (u64)vcn << cluster_bits; continue; } flags = FIEMAP_EXTENT_MERGED; if (S_ISDIR(ni->vfs_inode.i_mode)) { ; } else if (is_attr_compressed(attr)) { CLST clst_data; err = attr_is_frame_compressed( ni, attr, vcn >> attr->nres.c_unit, &clst_data); if (err) break; if (clst_data < NTFS_LZNT_CLUSTERS) flags |= FIEMAP_EXTENT_ENCODED; } else if (is_attr_encrypted(attr)) { flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; } vbo = (u64)vcn << cluster_bits; bytes = (u64)clen << cluster_bits; lbo = (u64)lcn << cluster_bits; vcn += clen; if (vbo + bytes >= end) bytes = end - vbo; if (vbo + bytes <= valid) { ; } else if (vbo >= valid) { flags |= FIEMAP_EXTENT_UNWRITTEN; } else { /* vbo < valid && valid < vbo + bytes */ u64 dlen = valid - vbo; if (vbo + dlen >= end) flags |= FIEMAP_EXTENT_LAST; err = fiemap_fill_next_extent_k(fieinfo, fe_k, vbo, lbo, dlen, flags); if (err < 0) break; if (err == 1) { err = 0; break; } vbo = valid; bytes -= dlen; if (!bytes) continue; lbo += dlen; flags |= FIEMAP_EXTENT_UNWRITTEN; } if (vbo + bytes >= end) flags |= FIEMAP_EXTENT_LAST; err = fiemap_fill_next_extent_k(fieinfo, fe_k, vbo, lbo, bytes, flags); if (err < 0) break; if (err == 1) { err = 0; break; } vbo += bytes; } up_read(run_lock); /* * Copy to user memory out of lock */ if (copy_to_user(fieinfo->fi_extents_start, fe_k, fieinfo->fi_extents_max * sizeof(struct fiemap_extent))) { err = -EFAULT; } out: kfree(fe_k); return err; } /* * ni_readpage_cmpr * * When decompressing, we typically obtain more than one page per reference. * We inject the additional pages into the page cache. */ int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page) { int err; struct ntfs_sb_info *sbi = ni->mi.sbi; struct address_space *mapping = page->mapping; pgoff_t index = page->index; u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT; struct page **pages = NULL; /* Array of at most 16 pages. stack? */ u8 frame_bits; CLST frame; u32 i, idx, frame_size, pages_per_frame; gfp_t gfp_mask; struct page *pg; if (vbo >= i_size_read(&ni->vfs_inode)) { SetPageUptodate(page); err = 0; goto out; } if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { /* Xpress or LZX. */ frame_bits = ni_ext_compress_bits(ni); } else { /* LZNT compression. */ frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; } frame_size = 1u << frame_bits; frame = vbo >> frame_bits; frame_vbo = (u64)frame << frame_bits; idx = (vbo - frame_vbo) >> PAGE_SHIFT; pages_per_frame = frame_size >> PAGE_SHIFT; pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); if (!pages) { err = -ENOMEM; goto out; } pages[idx] = page; index = frame_vbo >> PAGE_SHIFT; gfp_mask = mapping_gfp_mask(mapping); for (i = 0; i < pages_per_frame; i++, index++) { if (i == idx) continue; pg = find_or_create_page(mapping, index, gfp_mask); if (!pg) { err = -ENOMEM; goto out1; } pages[i] = pg; } err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame); out1: if (err) SetPageError(page); for (i = 0; i < pages_per_frame; i++) { pg = pages[i]; if (i == idx || !pg) continue; unlock_page(pg); put_page(pg); } out: /* At this point, err contains 0 or -EIO depending on the "critical" page. */ kfree(pages); unlock_page(page); return err; } #ifdef CONFIG_NTFS3_LZX_XPRESS /* * ni_decompress_file - Decompress LZX/Xpress compressed file. * * Remove ATTR_DATA::WofCompressedData. * Remove ATTR_REPARSE. */ int ni_decompress_file(struct ntfs_inode *ni) { struct ntfs_sb_info *sbi = ni->mi.sbi; struct inode *inode = &ni->vfs_inode; loff_t i_size = i_size_read(inode); struct address_space *mapping = inode->i_mapping; gfp_t gfp_mask = mapping_gfp_mask(mapping); struct page **pages = NULL; struct ATTR_LIST_ENTRY *le; struct ATTRIB *attr; CLST vcn, cend, lcn, clen, end; pgoff_t index; u64 vbo; u8 frame_bits; u32 i, frame_size, pages_per_frame, bytes; struct mft_inode *mi; int err; /* Clusters for decompressed data. */ cend = bytes_to_cluster(sbi, i_size); if (!i_size) goto remove_wof; /* Check in advance. */ if (cend > wnd_zeroes(&sbi->used.bitmap)) { err = -ENOSPC; goto out; } frame_bits = ni_ext_compress_bits(ni); frame_size = 1u << frame_bits; pages_per_frame = frame_size >> PAGE_SHIFT; pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); if (!pages) { err = -ENOMEM; goto out; } /* * Step 1: Decompress data and copy to new allocated clusters. */ index = 0; for (vbo = 0; vbo < i_size; vbo += bytes) { u32 nr_pages; bool new; if (vbo + frame_size > i_size) { bytes = i_size - vbo; nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT; } else { nr_pages = pages_per_frame; bytes = frame_size; } end = bytes_to_cluster(sbi, vbo + bytes); for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) { err = attr_data_get_block(ni, vcn, cend - vcn, &lcn, &clen, &new, false); if (err) goto out; } for (i = 0; i < pages_per_frame; i++, index++) { struct page *pg; pg = find_or_create_page(mapping, index, gfp_mask); if (!pg) { while (i--) { unlock_page(pages[i]); put_page(pages[i]); } err = -ENOMEM; goto out; } pages[i] = pg; } err = ni_read_frame(ni, vbo, pages, pages_per_frame); if (!err) { down_read(&ni->file.run_lock); err = ntfs_bio_pages(sbi, &ni->file.run, pages, nr_pages, vbo, bytes, REQ_OP_WRITE); up_read(&ni->file.run_lock); } for (i = 0; i < pages_per_frame; i++) { unlock_page(pages[i]); put_page(pages[i]); } if (err) goto out; cond_resched(); } remove_wof: /* * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData * and ATTR_REPARSE. */ attr = NULL; le = NULL; while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { CLST svcn, evcn; u32 asize, roff; if (attr->type == ATTR_REPARSE) { struct MFT_REF ref; mi_get_ref(&ni->mi, &ref); ntfs_remove_reparse(sbi, 0, &ref); } if (!attr->non_res) continue; if (attr->type != ATTR_REPARSE && (attr->type != ATTR_DATA || attr->name_len != ARRAY_SIZE(WOF_NAME) || memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME)))) continue; svcn = le64_to_cpu(attr->nres.svcn); evcn = le64_to_cpu(attr->nres.evcn); if (evcn + 1 <= svcn) continue; asize = le32_to_cpu(attr->size); roff = le16_to_cpu(attr->nres.run_off); if (roff > asize) { err = -EINVAL; goto out; } /*run==1 Means unpack and deallocate. */ run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, Add2Ptr(attr, roff), asize - roff); } /* * Step 3: Remove attribute ATTR_DATA::WofCompressedData. */ err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME), false, NULL); if (err) goto out; /* * Step 4: Remove ATTR_REPARSE. */ err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL); if (err) goto out; /* * Step 5: Remove sparse flag from data attribute. */ attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); if (!attr) { err = -EINVAL; goto out; } if (attr->non_res && is_attr_sparsed(attr)) { /* Sparsed attribute header is 8 bytes bigger than normal. */ struct MFT_REC *rec = mi->mrec; u32 used = le32_to_cpu(rec->used); u32 asize = le32_to_cpu(attr->size); u16 roff = le16_to_cpu(attr->nres.run_off); char *rbuf = Add2Ptr(attr, roff); memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf)); attr->size = cpu_to_le32(asize - 8); attr->flags &= ~ATTR_FLAG_SPARSED; attr->nres.run_off = cpu_to_le16(roff - 8); attr->nres.c_unit = 0; rec->used = cpu_to_le32(used - 8); mi->dirty = true; ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE | FILE_ATTRIBUTE_REPARSE_POINT); mark_inode_dirty(inode); } /* Clear cached flag. */ ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK; if (ni->file.offs_page) { put_page(ni->file.offs_page); ni->file.offs_page = NULL; } mapping->a_ops = &ntfs_aops; out: kfree(pages); if (err) _ntfs_bad_inode(inode); return err; } /* * decompress_lzx_xpress - External compression LZX/Xpress. */ static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr, size_t cmpr_size, void *unc, size_t unc_size, u32 frame_size) { int err; void *ctx; if (cmpr_size == unc_size) { /* Frame not compressed. */ memcpy(unc, cmpr, unc_size); return 0; } err = 0; if (frame_size == 0x8000) { mutex_lock(&sbi->compress.mtx_lzx); /* LZX: Frame compressed. */ ctx = sbi->compress.lzx; if (!ctx) { /* Lazy initialize LZX decompress context. */ ctx = lzx_allocate_decompressor(); if (!ctx) { err = -ENOMEM; goto out1; } sbi->compress.lzx = ctx; } if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { /* Treat all errors as "invalid argument". */ err = -EINVAL; } out1: mutex_unlock(&sbi->compress.mtx_lzx); } else { /* XPRESS: Frame compressed. */ mutex_lock(&sbi->compress.mtx_xpress); ctx = sbi->compress.xpress; if (!ctx) { /* Lazy initialize Xpress decompress context. */ ctx = xpress_allocate_decompressor(); if (!ctx) { err = -ENOMEM; goto out2; } sbi->compress.xpress = ctx; } if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { /* Treat all errors as "invalid argument". */ err = -EINVAL; } out2: mutex_unlock(&sbi->compress.mtx_xpress); } return err; } #endif /* * ni_read_frame * * Pages - Array of locked pages. */ int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages, u32 pages_per_frame) { int err; struct ntfs_sb_info *sbi = ni->mi.sbi; u8 cluster_bits = sbi->cluster_bits; char *frame_ondisk = NULL; char *frame_mem = NULL; struct page **pages_disk = NULL; struct ATTR_LIST_ENTRY *le = NULL; struct runs_tree *run = &ni->file.run; u64 valid_size = ni->i_valid; u64 vbo_disk; size_t unc_size; u32 frame_size, i, npages_disk, ondisk_size; struct page *pg; struct ATTRIB *attr; CLST frame, clst_data; /* * To simplify decompress algorithm do vmap for source * and target pages. */ for (i = 0; i < pages_per_frame; i++) kmap(pages[i]); frame_size = pages_per_frame << PAGE_SHIFT; frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL); if (!frame_mem) { err = -ENOMEM; goto out; } attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL); if (!attr) { err = -ENOENT; goto out1; } if (!attr->non_res) { u32 data_size = le32_to_cpu(attr->res.data_size); memset(frame_mem, 0, frame_size); if (frame_vbo < data_size) { ondisk_size = data_size - frame_vbo; memcpy(frame_mem, resident_data(attr) + frame_vbo, min(ondisk_size, frame_size)); } err = 0; goto out1; } if (frame_vbo >= valid_size) { memset(frame_mem, 0, frame_size); err = 0; goto out1; } if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { #ifndef CONFIG_NTFS3_LZX_XPRESS err = -EOPNOTSUPP; goto out1; #else loff_t i_size = i_size_read(&ni->vfs_inode); u32 frame_bits = ni_ext_compress_bits(ni); u64 frame64 = frame_vbo >> frame_bits; u64 frames, vbo_data; if (frame_size != (1u << frame_bits)) { err = -EINVAL; goto out1; } switch (frame_size) { case 0x1000: case 0x2000: case 0x4000: case 0x8000: break; default: /* Unknown compression. */ err = -EOPNOTSUPP; goto out1; } attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME), NULL, NULL); if (!attr) { ntfs_inode_err( &ni->vfs_inode, "external compressed file should contains data attribute \"WofCompressedData\""); err = -EINVAL; goto out1; } if (!attr->non_res) { run = NULL; } else { run = run_alloc(); if (!run) { err = -ENOMEM; goto out1; } } frames = (i_size - 1) >> frame_bits; err = attr_wof_frame_info(ni, attr, run, frame64, frames, frame_bits, &ondisk_size, &vbo_data); if (err) goto out2; if (frame64 == frames) { unc_size = 1 + ((i_size - 1) & (frame_size - 1)); ondisk_size = attr_size(attr) - vbo_data; } else { unc_size = frame_size; } if (ondisk_size > frame_size) { err = -EINVAL; goto out2; } if (!attr->non_res) { if (vbo_data + ondisk_size > le32_to_cpu(attr->res.data_size)) { err = -EINVAL; goto out1; } err = decompress_lzx_xpress( sbi, Add2Ptr(resident_data(attr), vbo_data), ondisk_size, frame_mem, unc_size, frame_size); goto out1; } vbo_disk = vbo_data; /* Load all runs to read [vbo_disk-vbo_to). */ err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME), run, vbo_disk, vbo_data + ondisk_size); if (err) goto out2; npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) + PAGE_SIZE - 1) >> PAGE_SHIFT; #endif } else if (is_attr_compressed(attr)) { /* LZNT compression. */ if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { err = -EOPNOTSUPP; goto out1; } if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { err = -EOPNOTSUPP; goto out1; } down_write(&ni->file.run_lock); run_truncate_around(run, le64_to_cpu(attr->nres.svcn)); frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT); err = attr_is_frame_compressed(ni, attr, frame, &clst_data); up_write(&ni->file.run_lock); if (err) goto out1; if (!clst_data) { memset(frame_mem, 0, frame_size); goto out1; } frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; ondisk_size = clst_data << cluster_bits; if (clst_data >= NTFS_LZNT_CLUSTERS) { /* Frame is not compressed. */ down_read(&ni->file.run_lock); err = ntfs_bio_pages(sbi, run, pages, pages_per_frame, frame_vbo, ondisk_size, REQ_OP_READ); up_read(&ni->file.run_lock); goto out1; } vbo_disk = frame_vbo; npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT; } else { __builtin_unreachable(); err = -EINVAL; goto out1; } pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS); if (!pages_disk) { err = -ENOMEM; goto out2; } for (i = 0; i < npages_disk; i++) { pg = alloc_page(GFP_KERNEL); if (!pg) { err = -ENOMEM; goto out3; } pages_disk[i] = pg; lock_page(pg); kmap(pg); } /* Read 'ondisk_size' bytes from disk. */ down_read(&ni->file.run_lock); err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk, ondisk_size, REQ_OP_READ); up_read(&ni->file.run_lock); if (err) goto out3; /* * To simplify decompress algorithm do vmap for source and target pages. */ frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO); if (!frame_ondisk) { err = -ENOMEM; goto out3; } /* Decompress: Frame_ondisk -> frame_mem. */ #ifdef CONFIG_NTFS3_LZX_XPRESS if (run != &ni->file.run) { /* LZX or XPRESS */ err = decompress_lzx_xpress( sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)), ondisk_size, frame_mem, unc_size, frame_size); } else #endif { /* LZNT - Native NTFS compression. */ unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem, frame_size); if ((ssize_t)unc_size < 0) err = unc_size; else if (!unc_size || unc_size > frame_size) err = -EINVAL; } if (!err && valid_size < frame_vbo + frame_size) { size_t ok = valid_size - frame_vbo; memset(frame_mem + ok, 0, frame_size - ok); } vunmap(frame_ondisk); out3: for (i = 0; i < npages_disk; i++) { pg = pages_disk[i]; if (pg) { kunmap(pg); unlock_page(pg); put_page(pg); } } kfree(pages_disk); out2: #ifdef CONFIG_NTFS3_LZX_XPRESS if (run != &ni->file.run) run_free(run); #endif out1: vunmap(frame_mem); out: for (i = 0; i < pages_per_frame; i++) { pg = pages[i]; kunmap(pg); ClearPageError(pg); SetPageUptodate(pg); } return err; } /* * ni_write_frame * * Pages - Array of locked pages. */ int ni_write_frame(struct ntfs_inode *ni, struct page **pages, u32 pages_per_frame) { int err; struct ntfs_sb_info *sbi = ni->mi.sbi; u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT; CLST frame = frame_vbo >> frame_bits; char *frame_ondisk = NULL; struct page **pages_disk = NULL; struct ATTR_LIST_ENTRY *le = NULL; char *frame_mem; struct ATTRIB *attr; struct mft_inode *mi; u32 i; struct page *pg; size_t compr_size, ondisk_size; struct lznt *lznt; attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi); if (!attr) { err = -ENOENT; goto out; } if (WARN_ON(!is_attr_compressed(attr))) { err = -EINVAL; goto out; } if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { err = -EOPNOTSUPP; goto out; } if (!attr->non_res) { down_write(&ni->file.run_lock); err = attr_make_nonresident(ni, attr, le, mi, le32_to_cpu(attr->res.data_size), &ni->file.run, &attr, pages[0]); up_write(&ni->file.run_lock); if (err) goto out; } if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { err = -EOPNOTSUPP; goto out; } pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); if (!pages_disk) { err = -ENOMEM; goto out; } for (i = 0; i < pages_per_frame; i++) { pg = alloc_page(GFP_KERNEL); if (!pg) { err = -ENOMEM; goto out1; } pages_disk[i] = pg; lock_page(pg); kmap(pg); } /* To simplify compress algorithm do vmap for source and target pages. */ frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL); if (!frame_ondisk) { err = -ENOMEM; goto out1; } for (i = 0; i < pages_per_frame; i++) kmap(pages[i]); /* Map in-memory frame for read-only. */ frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO); if (!frame_mem) { err = -ENOMEM; goto out2; } mutex_lock(&sbi->compress.mtx_lznt); lznt = NULL; if (!sbi->compress.lznt) { /* * LZNT implements two levels of compression: * 0 - Standard compression * 1 - Best compression, requires a lot of cpu * use mount option? */ lznt = get_lznt_ctx(0); if (!lznt) { mutex_unlock(&sbi->compress.mtx_lznt); err = -ENOMEM; goto out3; } sbi->compress.lznt = lznt; lznt = NULL; } /* Compress: frame_mem -> frame_ondisk */ compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk, frame_size, sbi->compress.lznt); mutex_unlock(&sbi->compress.mtx_lznt); kfree(lznt); if (compr_size + sbi->cluster_size > frame_size) { /* Frame is not compressed. */ compr_size = frame_size; ondisk_size = frame_size; } else if (compr_size) { /* Frame is compressed. */ ondisk_size = ntfs_up_cluster(sbi, compr_size); memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size); } else { /* Frame is sparsed. */ ondisk_size = 0; } down_write(&ni->file.run_lock); run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn)); err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid); up_write(&ni->file.run_lock); if (err) goto out2; if (!ondisk_size) goto out2; down_read(&ni->file.run_lock); err = ntfs_bio_pages(sbi, &ni->file.run, ondisk_size < frame_size ? pages_disk : pages, pages_per_frame, frame_vbo, ondisk_size, REQ_OP_WRITE); up_read(&ni->file.run_lock); out3: vunmap(frame_mem); out2: for (i = 0; i < pages_per_frame; i++) kunmap(pages[i]); vunmap(frame_ondisk); out1: for (i = 0; i < pages_per_frame; i++) { pg = pages_disk[i]; if (pg) { kunmap(pg); unlock_page(pg); put_page(pg); } } kfree(pages_disk); out: return err; } /* * ni_remove_name - Removes name 'de' from MFT and from directory. * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs. */ int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step) { int err; struct ntfs_sb_info *sbi = ni->mi.sbi; struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); struct ATTR_FILE_NAME *fname; struct ATTR_LIST_ENTRY *le; struct mft_inode *mi; u16 de_key_size = le16_to_cpu(de->key_size); u8 name_type; *undo_step = 0; /* Find name in record. */ mi_get_ref(&dir_ni->mi, &de_name->home); fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len, &de_name->home, &mi, &le); if (!fname) return -ENOENT; memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO)); name_type = paired_name(fname->type); /* Mark ntfs as dirty. It will be cleared at umount. */ ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); /* Step 1: Remove name from directory. */ err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi); if (err) return err; /* Step 2: Remove name from MFT. */ ni_remove_attr_le(ni, attr_from_name(fname), mi, le); *undo_step = 2; /* Get paired name. */ fname = ni_fname_type(ni, name_type, &mi, &le); if (fname) { u16 de2_key_size = fname_full_size(fname); *de2 = Add2Ptr(de, 1024); (*de2)->key_size = cpu_to_le16(de2_key_size); memcpy(*de2 + 1, fname, de2_key_size); /* Step 3: Remove paired name from directory. */ err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de2_key_size, sbi); if (err) return err; /* Step 4: Remove paired name from MFT. */ ni_remove_attr_le(ni, attr_from_name(fname), mi, le); *undo_step = 4; } return 0; } /* * ni_remove_name_undo - Paired function for ni_remove_name. * * Return: True if ok */ bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step) { struct ntfs_sb_info *sbi = ni->mi.sbi; struct ATTRIB *attr; u16 de_key_size; switch (undo_step) { case 4: de_key_size = le16_to_cpu(de2->key_size); if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr, NULL, NULL)) return false; memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size); mi_get_ref(&ni->mi, &de2->ref); de2->size = cpu_to_le16(ALIGN(de_key_size, 8) + sizeof(struct NTFS_DE)); de2->flags = 0; de2->res = 0; if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1)) return false; fallthrough; case 2: de_key_size = le16_to_cpu(de->key_size); if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr, NULL, NULL)) return false; memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size); mi_get_ref(&ni->mi, &de->ref); if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1)) return false; } return true; } /* * ni_add_name - Add new name into MFT and into directory. */ int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, struct NTFS_DE *de) { int err; struct ntfs_sb_info *sbi = ni->mi.sbi; struct ATTRIB *attr; struct ATTR_LIST_ENTRY *le; struct mft_inode *mi; struct ATTR_FILE_NAME *fname; struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); u16 de_key_size = le16_to_cpu(de->key_size); if (sbi->options->windows_names && !valid_windows_name(sbi, (struct le_str *)&de_name->name_len)) return -EINVAL; /* If option "hide_dot_files" then set hidden attribute for dot files. */ if (ni->mi.sbi->options->hide_dot_files) { if (de_name->name_len > 0 && le16_to_cpu(de_name->name[0]) == '.') ni->std_fa |= FILE_ATTRIBUTE_HIDDEN; else ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN; } mi_get_ref(&ni->mi, &de->ref); mi_get_ref(&dir_ni->mi, &de_name->home); /* Fill duplicate from any ATTR_NAME. */ fname = ni_fname_name(ni, NULL, NULL, NULL, NULL); if (fname) memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup)); de_name->dup.fa = ni->std_fa; /* Insert new name into MFT. */ err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr, &mi, &le); if (err) return err; memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size); /* Insert new name into directory. */ err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0); if (err) ni_remove_attr_le(ni, attr, mi, le); return err; } /* * ni_rename - Remove one name and insert new name. */ int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni, struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de, bool *is_bad) { int err; struct NTFS_DE *de2 = NULL; int undo = 0; /* * There are two possible ways to rename: * 1) Add new name and remove old name. * 2) Remove old name and add new name. * * In most cases (not all!) adding new name into MFT and into directory can * allocate additional cluster(s). * Second way may result to bad inode if we can't add new name * and then can't restore (add) old name. */ /* * Way 1 - Add new + remove old. */ err = ni_add_name(new_dir_ni, ni, new_de); if (!err) { err = ni_remove_name(dir_ni, ni, de, &de2, &undo); if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo)) *is_bad = true; } /* * Way 2 - Remove old + add new. */ /* * err = ni_remove_name(dir_ni, ni, de, &de2, &undo); * if (!err) { * err = ni_add_name(new_dir_ni, ni, new_de); * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo)) * *is_bad = true; * } */ return err; } /* * ni_is_dirty - Return: True if 'ni' requires ni_write_inode. */ bool ni_is_dirty(struct inode *inode) { struct ntfs_inode *ni = ntfs_i(inode); struct rb_node *node; if (ni->mi.dirty || ni->attr_list.dirty || (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) return true; for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { if (rb_entry(node, struct mft_inode, node)->dirty) return true; } return false; } /* * ni_update_parent * * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories. */ static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup, int sync) { struct ATTRIB *attr; struct mft_inode *mi; struct ATTR_LIST_ENTRY *le = NULL; struct ntfs_sb_info *sbi = ni->mi.sbi; struct super_block *sb = sbi->sb; bool re_dirty = false; if (ni->mi.mrec->flags & RECORD_FLAG_DIR) { dup->fa |= FILE_ATTRIBUTE_DIRECTORY; attr = NULL; dup->alloc_size = 0; dup->data_size = 0; } else { dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY; attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi); if (!attr) { dup->alloc_size = dup->data_size = 0; } else if (!attr->non_res) { u32 data_size = le32_to_cpu(attr->res.data_size); dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8)); dup->data_size = cpu_to_le64(data_size); } else { u64 new_valid = ni->i_valid; u64 data_size = le64_to_cpu(attr->nres.data_size); __le64 valid_le; dup->alloc_size = is_attr_ext(attr) ? attr->nres.total_size : attr->nres.alloc_size; dup->data_size = attr->nres.data_size; if (new_valid > data_size) new_valid = data_size; valid_le = cpu_to_le64(new_valid); if (valid_le != attr->nres.valid_size) { attr->nres.valid_size = valid_le; mi->dirty = true; } } } /* TODO: Fill reparse info. */ dup->reparse = 0; dup->ea_size = 0; if (ni->ni_flags & NI_FLAG_EA) { attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL, NULL); if (attr) { const struct EA_INFO *info; info = resident_data_ex(attr, sizeof(struct EA_INFO)); /* If ATTR_EA_INFO exists 'info' can't be NULL. */ if (info) dup->ea_size = info->size_pack; } } attr = NULL; le = NULL; while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL, &mi))) { struct inode *dir; struct ATTR_FILE_NAME *fname; fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup))) continue; /* Check simple case when parent inode equals current inode. */ if (ino_get(&fname->home) == ni->vfs_inode.i_ino) { ntfs_set_state(sbi, NTFS_DIRTY_ERROR); continue; } /* ntfs_iget5 may sleep. */ dir = ntfs_iget5(sb, &fname->home, NULL); if (IS_ERR(dir)) { ntfs_inode_warn( &ni->vfs_inode, "failed to open parent directory r=%lx to update", (long)ino_get(&fname->home)); continue; } if (!is_bad_inode(dir)) { struct ntfs_inode *dir_ni = ntfs_i(dir); if (!ni_trylock(dir_ni)) { re_dirty = true; } else { indx_update_dup(dir_ni, sbi, fname, dup, sync); ni_unlock(dir_ni); memcpy(&fname->dup, dup, sizeof(fname->dup)); mi->dirty = true; } } iput(dir); } return re_dirty; } /* * ni_write_inode - Write MFT base record and all subrecords to disk. */ int ni_write_inode(struct inode *inode, int sync, const char *hint) { int err = 0, err2; struct ntfs_inode *ni = ntfs_i(inode); struct super_block *sb = inode->i_sb; struct ntfs_sb_info *sbi = sb->s_fs_info; bool re_dirty = false; struct ATTR_STD_INFO *std; struct rb_node *node, *next; struct NTFS_DUP_INFO dup; if (is_bad_inode(inode) || sb_rdonly(sb)) return 0; if (unlikely(ntfs3_forced_shutdown(sb))) return -EIO; if (!ni_trylock(ni)) { /* 'ni' is under modification, skip for now. */ mark_inode_dirty_sync(inode); return 0; } if (!ni->mi.mrec) goto out; if (is_rec_inuse(ni->mi.mrec) && !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) { bool modified = false; struct timespec64 ctime = inode_get_ctime(inode); /* Update times in standard attribute. */ std = ni_std(ni); if (!std) { err = -EINVAL; goto out; } /* Update the access times if they have changed. */ dup.m_time = kernel2nt(&inode->i_mtime); if (std->m_time != dup.m_time) { std->m_time = dup.m_time; modified = true; } dup.c_time = kernel2nt(&ctime); if (std->c_time != dup.c_time) { std->c_time = dup.c_time; modified = true; } dup.a_time = kernel2nt(&inode->i_atime); if (std->a_time != dup.a_time) { std->a_time = dup.a_time; modified = true; } dup.fa = ni->std_fa; if (std->fa != dup.fa) { std->fa = dup.fa; modified = true; } /* std attribute is always in primary MFT record. */ if (modified) ni->mi.dirty = true; if (!ntfs_is_meta_file(sbi, inode->i_ino) && (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) /* Avoid __wait_on_freeing_inode(inode). */ && (sb->s_flags & SB_ACTIVE)) { dup.cr_time = std->cr_time; /* Not critical if this function fail. */ re_dirty = ni_update_parent(ni, &dup, sync); if (re_dirty) ni->ni_flags |= NI_FLAG_UPDATE_PARENT; else ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT; } /* Update attribute list. */ if (ni->attr_list.size && ni->attr_list.dirty) { if (inode->i_ino != MFT_REC_MFT || sync) { err = ni_try_remove_attr_list(ni); if (err) goto out; } err = al_update(ni, sync); if (err) goto out; } } for (node = rb_first(&ni->mi_tree); node; node = next) { struct mft_inode *mi = rb_entry(node, struct mft_inode, node); bool is_empty; next = rb_next(node); if (!mi->dirty) continue; is_empty = !mi_enum_attr(mi, NULL); if (is_empty) clear_rec_inuse(mi->mrec); err2 = mi_write(mi, sync); if (!err && err2) err = err2; if (is_empty) { ntfs_mark_rec_free(sbi, mi->rno, false); rb_erase(node, &ni->mi_tree); mi_put(mi); } } if (ni->mi.dirty) { err2 = mi_write(&ni->mi, sync); if (!err && err2) err = err2; } out: ni_unlock(ni); if (err) { ntfs_inode_err(inode, "%s failed, %d.", hint, err); ntfs_set_state(sbi, NTFS_DIRTY_ERROR); return err; } if (re_dirty) mark_inode_dirty_sync(inode); return 0; }