// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. * Copyright (C) 2004-2007 Red Hat, Inc. All rights reserved. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gfs2.h" #include "incore.h" #include "bmap.h" #include "dir.h" #include "glock.h" #include "glops.h" #include "inode.h" #include "log.h" #include "meta_io.h" #include "quota.h" #include "recovery.h" #include "rgrp.h" #include "super.h" #include "trans.h" #include "util.h" #include "sys.h" #include "xattr.h" #include "lops.h" enum dinode_demise { SHOULD_DELETE_DINODE, SHOULD_NOT_DELETE_DINODE, SHOULD_DEFER_EVICTION, }; /** * gfs2_jindex_free - Clear all the journal index information * @sdp: The GFS2 superblock * */ void gfs2_jindex_free(struct gfs2_sbd *sdp) { struct list_head list; struct gfs2_jdesc *jd; spin_lock(&sdp->sd_jindex_spin); list_add(&list, &sdp->sd_jindex_list); list_del_init(&sdp->sd_jindex_list); sdp->sd_journals = 0; spin_unlock(&sdp->sd_jindex_spin); down_write(&sdp->sd_log_flush_lock); sdp->sd_jdesc = NULL; up_write(&sdp->sd_log_flush_lock); while (!list_empty(&list)) { jd = list_first_entry(&list, struct gfs2_jdesc, jd_list); BUG_ON(jd->jd_log_bio); gfs2_free_journal_extents(jd); list_del(&jd->jd_list); iput(jd->jd_inode); jd->jd_inode = NULL; kfree(jd); } } static struct gfs2_jdesc *jdesc_find_i(struct list_head *head, unsigned int jid) { struct gfs2_jdesc *jd; list_for_each_entry(jd, head, jd_list) { if (jd->jd_jid == jid) return jd; } return NULL; } struct gfs2_jdesc *gfs2_jdesc_find(struct gfs2_sbd *sdp, unsigned int jid) { struct gfs2_jdesc *jd; spin_lock(&sdp->sd_jindex_spin); jd = jdesc_find_i(&sdp->sd_jindex_list, jid); spin_unlock(&sdp->sd_jindex_spin); return jd; } int gfs2_jdesc_check(struct gfs2_jdesc *jd) { struct gfs2_inode *ip = GFS2_I(jd->jd_inode); struct gfs2_sbd *sdp = GFS2_SB(jd->jd_inode); u64 size = i_size_read(jd->jd_inode); if (gfs2_check_internal_file_size(jd->jd_inode, 8 << 20, BIT(30))) return -EIO; jd->jd_blocks = size >> sdp->sd_sb.sb_bsize_shift; if (gfs2_write_alloc_required(ip, 0, size)) { gfs2_consist_inode(ip); return -EIO; } return 0; } /** * gfs2_make_fs_rw - Turn a Read-Only FS into a Read-Write one * @sdp: the filesystem * * Returns: errno */ int gfs2_make_fs_rw(struct gfs2_sbd *sdp) { struct gfs2_inode *ip = GFS2_I(sdp->sd_jdesc->jd_inode); struct gfs2_glock *j_gl = ip->i_gl; struct gfs2_log_header_host head; int error; j_gl->gl_ops->go_inval(j_gl, DIO_METADATA); if (gfs2_withdrawing_or_withdrawn(sdp)) return -EIO; error = gfs2_find_jhead(sdp->sd_jdesc, &head, false); if (error) { gfs2_consist(sdp); return error; } if (!(head.lh_flags & GFS2_LOG_HEAD_UNMOUNT)) { gfs2_consist(sdp); return -EIO; } /* Initialize some head of the log stuff */ sdp->sd_log_sequence = head.lh_sequence + 1; gfs2_log_pointers_init(sdp, head.lh_blkno); error = gfs2_quota_init(sdp); if (!error && gfs2_withdrawing_or_withdrawn(sdp)) error = -EIO; if (!error) set_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags); return error; } void gfs2_statfs_change_in(struct gfs2_statfs_change_host *sc, const void *buf) { const struct gfs2_statfs_change *str = buf; sc->sc_total = be64_to_cpu(str->sc_total); sc->sc_free = be64_to_cpu(str->sc_free); sc->sc_dinodes = be64_to_cpu(str->sc_dinodes); } void gfs2_statfs_change_out(const struct gfs2_statfs_change_host *sc, void *buf) { struct gfs2_statfs_change *str = buf; str->sc_total = cpu_to_be64(sc->sc_total); str->sc_free = cpu_to_be64(sc->sc_free); str->sc_dinodes = cpu_to_be64(sc->sc_dinodes); } int gfs2_statfs_init(struct gfs2_sbd *sdp) { struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master; struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local; struct buffer_head *m_bh; struct gfs2_holder gh; int error; error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, GL_NOCACHE, &gh); if (error) return error; error = gfs2_meta_inode_buffer(m_ip, &m_bh); if (error) goto out; if (sdp->sd_args.ar_spectator) { spin_lock(&sdp->sd_statfs_spin); gfs2_statfs_change_in(m_sc, m_bh->b_data + sizeof(struct gfs2_dinode)); spin_unlock(&sdp->sd_statfs_spin); } else { spin_lock(&sdp->sd_statfs_spin); gfs2_statfs_change_in(m_sc, m_bh->b_data + sizeof(struct gfs2_dinode)); gfs2_statfs_change_in(l_sc, sdp->sd_sc_bh->b_data + sizeof(struct gfs2_dinode)); spin_unlock(&sdp->sd_statfs_spin); } brelse(m_bh); out: gfs2_glock_dq_uninit(&gh); return 0; } void gfs2_statfs_change(struct gfs2_sbd *sdp, s64 total, s64 free, s64 dinodes) { struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode); struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local; struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master; s64 x, y; int need_sync = 0; gfs2_trans_add_meta(l_ip->i_gl, sdp->sd_sc_bh); spin_lock(&sdp->sd_statfs_spin); l_sc->sc_total += total; l_sc->sc_free += free; l_sc->sc_dinodes += dinodes; gfs2_statfs_change_out(l_sc, sdp->sd_sc_bh->b_data + sizeof(struct gfs2_dinode)); if (sdp->sd_args.ar_statfs_percent) { x = 100 * l_sc->sc_free; y = m_sc->sc_free * sdp->sd_args.ar_statfs_percent; if (x >= y || x <= -y) need_sync = 1; } spin_unlock(&sdp->sd_statfs_spin); if (need_sync) gfs2_wake_up_statfs(sdp); } void update_statfs(struct gfs2_sbd *sdp, struct buffer_head *m_bh) { struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode); struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master; struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local; gfs2_trans_add_meta(l_ip->i_gl, sdp->sd_sc_bh); gfs2_trans_add_meta(m_ip->i_gl, m_bh); spin_lock(&sdp->sd_statfs_spin); m_sc->sc_total += l_sc->sc_total; m_sc->sc_free += l_sc->sc_free; m_sc->sc_dinodes += l_sc->sc_dinodes; memset(l_sc, 0, sizeof(struct gfs2_statfs_change)); memset(sdp->sd_sc_bh->b_data + sizeof(struct gfs2_dinode), 0, sizeof(struct gfs2_statfs_change)); gfs2_statfs_change_out(m_sc, m_bh->b_data + sizeof(struct gfs2_dinode)); spin_unlock(&sdp->sd_statfs_spin); } int gfs2_statfs_sync(struct super_block *sb, int type) { struct gfs2_sbd *sdp = sb->s_fs_info; struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master; struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local; struct gfs2_holder gh; struct buffer_head *m_bh; int error; error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, GL_NOCACHE, &gh); if (error) goto out; error = gfs2_meta_inode_buffer(m_ip, &m_bh); if (error) goto out_unlock; spin_lock(&sdp->sd_statfs_spin); gfs2_statfs_change_in(m_sc, m_bh->b_data + sizeof(struct gfs2_dinode)); if (!l_sc->sc_total && !l_sc->sc_free && !l_sc->sc_dinodes) { spin_unlock(&sdp->sd_statfs_spin); goto out_bh; } spin_unlock(&sdp->sd_statfs_spin); error = gfs2_trans_begin(sdp, 2 * RES_DINODE, 0); if (error) goto out_bh; update_statfs(sdp, m_bh); sdp->sd_statfs_force_sync = 0; gfs2_trans_end(sdp); out_bh: brelse(m_bh); out_unlock: gfs2_glock_dq_uninit(&gh); out: return error; } struct lfcc { struct list_head list; struct gfs2_holder gh; }; /** * gfs2_lock_fs_check_clean - Stop all writes to the FS and check that all * journals are clean * @sdp: the file system * * Returns: errno */ static int gfs2_lock_fs_check_clean(struct gfs2_sbd *sdp) { struct gfs2_inode *ip; struct gfs2_jdesc *jd; struct lfcc *lfcc; LIST_HEAD(list); struct gfs2_log_header_host lh; int error, error2; /* * Grab all the journal glocks in SH mode. We are *probably* doing * that to prevent recovery. */ list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) { lfcc = kmalloc(sizeof(struct lfcc), GFP_KERNEL); if (!lfcc) { error = -ENOMEM; goto out; } ip = GFS2_I(jd->jd_inode); error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &lfcc->gh); if (error) { kfree(lfcc); goto out; } list_add(&lfcc->list, &list); } gfs2_freeze_unlock(&sdp->sd_freeze_gh); error = gfs2_glock_nq_init(sdp->sd_freeze_gl, LM_ST_EXCLUSIVE, LM_FLAG_NOEXP | GL_NOPID, &sdp->sd_freeze_gh); if (error) goto relock_shared; list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) { error = gfs2_jdesc_check(jd); if (error) break; error = gfs2_find_jhead(jd, &lh, false); if (error) break; if (!(lh.lh_flags & GFS2_LOG_HEAD_UNMOUNT)) { error = -EBUSY; break; } } if (!error) goto out; /* success */ gfs2_freeze_unlock(&sdp->sd_freeze_gh); relock_shared: error2 = gfs2_freeze_lock_shared(sdp); gfs2_assert_withdraw(sdp, !error2); out: while (!list_empty(&list)) { lfcc = list_first_entry(&list, struct lfcc, list); list_del(&lfcc->list); gfs2_glock_dq_uninit(&lfcc->gh); kfree(lfcc); } return error; } void gfs2_dinode_out(const struct gfs2_inode *ip, void *buf) { const struct inode *inode = &ip->i_inode; struct gfs2_dinode *str = buf; str->di_header.mh_magic = cpu_to_be32(GFS2_MAGIC); str->di_header.mh_type = cpu_to_be32(GFS2_METATYPE_DI); str->di_header.mh_format = cpu_to_be32(GFS2_FORMAT_DI); str->di_num.no_addr = cpu_to_be64(ip->i_no_addr); str->di_num.no_formal_ino = cpu_to_be64(ip->i_no_formal_ino); str->di_mode = cpu_to_be32(inode->i_mode); str->di_uid = cpu_to_be32(i_uid_read(inode)); str->di_gid = cpu_to_be32(i_gid_read(inode)); str->di_nlink = cpu_to_be32(inode->i_nlink); str->di_size = cpu_to_be64(i_size_read(inode)); str->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(inode)); str->di_atime = cpu_to_be64(inode->i_atime.tv_sec); str->di_mtime = cpu_to_be64(inode->i_mtime.tv_sec); str->di_ctime = cpu_to_be64(inode_get_ctime(inode).tv_sec); str->di_goal_meta = cpu_to_be64(ip->i_goal); str->di_goal_data = cpu_to_be64(ip->i_goal); str->di_generation = cpu_to_be64(ip->i_generation); str->di_flags = cpu_to_be32(ip->i_diskflags); str->di_height = cpu_to_be16(ip->i_height); str->di_payload_format = cpu_to_be32(S_ISDIR(inode->i_mode) && !(ip->i_diskflags & GFS2_DIF_EXHASH) ? GFS2_FORMAT_DE : 0); str->di_depth = cpu_to_be16(ip->i_depth); str->di_entries = cpu_to_be32(ip->i_entries); str->di_eattr = cpu_to_be64(ip->i_eattr); str->di_atime_nsec = cpu_to_be32(inode->i_atime.tv_nsec); str->di_mtime_nsec = cpu_to_be32(inode->i_mtime.tv_nsec); str->di_ctime_nsec = cpu_to_be32(inode_get_ctime(inode).tv_nsec); } /** * gfs2_write_inode - Make sure the inode is stable on the disk * @inode: The inode * @wbc: The writeback control structure * * Returns: errno */ static int gfs2_write_inode(struct inode *inode, struct writeback_control *wbc) { struct gfs2_inode *ip = GFS2_I(inode); struct gfs2_sbd *sdp = GFS2_SB(inode); struct address_space *metamapping = gfs2_glock2aspace(ip->i_gl); struct backing_dev_info *bdi = inode_to_bdi(metamapping->host); int ret = 0; bool flush_all = (wbc->sync_mode == WB_SYNC_ALL || gfs2_is_jdata(ip)); if (flush_all) gfs2_log_flush(GFS2_SB(inode), ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL | GFS2_LFC_WRITE_INODE); if (bdi->wb.dirty_exceeded) gfs2_ail1_flush(sdp, wbc); else filemap_fdatawrite(metamapping); if (flush_all) ret = filemap_fdatawait(metamapping); if (ret) mark_inode_dirty_sync(inode); else { spin_lock(&inode->i_lock); if (!(inode->i_flags & I_DIRTY)) gfs2_ordered_del_inode(ip); spin_unlock(&inode->i_lock); } return ret; } /** * gfs2_dirty_inode - check for atime updates * @inode: The inode in question * @flags: The type of dirty * * Unfortunately it can be called under any combination of inode * glock and freeze glock, so we have to check carefully. * * At the moment this deals only with atime - it should be possible * to expand that role in future, once a review of the locking has * been carried out. */ static void gfs2_dirty_inode(struct inode *inode, int flags) { struct gfs2_inode *ip = GFS2_I(inode); struct gfs2_sbd *sdp = GFS2_SB(inode); struct buffer_head *bh; struct gfs2_holder gh; int need_unlock = 0; int need_endtrans = 0; int ret; if (unlikely(!ip->i_gl)) { /* This can only happen during incomplete inode creation. */ BUG_ON(!test_bit(GIF_ALLOC_FAILED, &ip->i_flags)); return; } if (gfs2_withdrawing_or_withdrawn(sdp)) return; if (!gfs2_glock_is_locked_by_me(ip->i_gl)) { ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); if (ret) { fs_err(sdp, "dirty_inode: glock %d\n", ret); gfs2_dump_glock(NULL, ip->i_gl, true); return; } need_unlock = 1; } else if (WARN_ON_ONCE(ip->i_gl->gl_state != LM_ST_EXCLUSIVE)) return; if (current->journal_info == NULL) { ret = gfs2_trans_begin(sdp, RES_DINODE, 0); if (ret) { fs_err(sdp, "dirty_inode: gfs2_trans_begin %d\n", ret); goto out; } need_endtrans = 1; } ret = gfs2_meta_inode_buffer(ip, &bh); if (ret == 0) { gfs2_trans_add_meta(ip->i_gl, bh); gfs2_dinode_out(ip, bh->b_data); brelse(bh); } if (need_endtrans) gfs2_trans_end(sdp); out: if (need_unlock) gfs2_glock_dq_uninit(&gh); } /** * gfs2_make_fs_ro - Turn a Read-Write FS into a Read-Only one * @sdp: the filesystem * * Returns: errno */ void gfs2_make_fs_ro(struct gfs2_sbd *sdp) { int log_write_allowed = test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags); if (!test_bit(SDF_KILL, &sdp->sd_flags)) gfs2_flush_delete_work(sdp); gfs2_destroy_threads(sdp); if (log_write_allowed) { gfs2_quota_sync(sdp->sd_vfs, 0); gfs2_statfs_sync(sdp->sd_vfs, 0); /* We do two log flushes here. The first one commits dirty inodes * and rgrps to the journal, but queues up revokes to the ail list. * The second flush writes out and removes the revokes. * * The first must be done before the FLUSH_SHUTDOWN code * clears the LIVE flag, otherwise it will not be able to start * a transaction to write its revokes, and the error will cause * a withdraw of the file system. */ gfs2_log_flush(sdp, NULL, GFS2_LFC_MAKE_FS_RO); gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_SHUTDOWN | GFS2_LFC_MAKE_FS_RO); wait_event_timeout(sdp->sd_log_waitq, gfs2_log_is_empty(sdp), HZ * 5); gfs2_assert_warn(sdp, gfs2_log_is_empty(sdp)); } gfs2_quota_cleanup(sdp); } /** * gfs2_put_super - Unmount the filesystem * @sb: The VFS superblock * */ static void gfs2_put_super(struct super_block *sb) { struct gfs2_sbd *sdp = sb->s_fs_info; struct gfs2_jdesc *jd; /* No more recovery requests */ set_bit(SDF_NORECOVERY, &sdp->sd_flags); smp_mb(); /* Wait on outstanding recovery */ restart: spin_lock(&sdp->sd_jindex_spin); list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) { if (!test_bit(JDF_RECOVERY, &jd->jd_flags)) continue; spin_unlock(&sdp->sd_jindex_spin); wait_on_bit(&jd->jd_flags, JDF_RECOVERY, TASK_UNINTERRUPTIBLE); goto restart; } spin_unlock(&sdp->sd_jindex_spin); if (!sb_rdonly(sb)) gfs2_make_fs_ro(sdp); else { if (gfs2_withdrawing_or_withdrawn(sdp)) gfs2_destroy_threads(sdp); gfs2_quota_cleanup(sdp); } WARN_ON(gfs2_withdrawing(sdp)); /* At this point, we're through modifying the disk */ /* Release stuff */ gfs2_freeze_unlock(&sdp->sd_freeze_gh); iput(sdp->sd_jindex); iput(sdp->sd_statfs_inode); iput(sdp->sd_rindex); iput(sdp->sd_quota_inode); gfs2_glock_put(sdp->sd_rename_gl); gfs2_glock_put(sdp->sd_freeze_gl); if (!sdp->sd_args.ar_spectator) { if (gfs2_holder_initialized(&sdp->sd_journal_gh)) gfs2_glock_dq_uninit(&sdp->sd_journal_gh); if (gfs2_holder_initialized(&sdp->sd_jinode_gh)) gfs2_glock_dq_uninit(&sdp->sd_jinode_gh); brelse(sdp->sd_sc_bh); gfs2_glock_dq_uninit(&sdp->sd_sc_gh); gfs2_glock_dq_uninit(&sdp->sd_qc_gh); free_local_statfs_inodes(sdp); iput(sdp->sd_qc_inode); } gfs2_glock_dq_uninit(&sdp->sd_live_gh); gfs2_clear_rgrpd(sdp); gfs2_jindex_free(sdp); /* Take apart glock structures and buffer lists */ gfs2_gl_hash_clear(sdp); truncate_inode_pages_final(&sdp->sd_aspace); gfs2_delete_debugfs_file(sdp); gfs2_sys_fs_del(sdp); free_sbd(sdp); } /** * gfs2_sync_fs - sync the filesystem * @sb: the superblock * @wait: true to wait for completion * * Flushes the log to disk. */ static int gfs2_sync_fs(struct super_block *sb, int wait) { struct gfs2_sbd *sdp = sb->s_fs_info; gfs2_quota_sync(sb, -1); if (wait) gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL | GFS2_LFC_SYNC_FS); return sdp->sd_log_error; } static int gfs2_freeze_locally(struct gfs2_sbd *sdp) { struct super_block *sb = sdp->sd_vfs; int error; error = freeze_super(sb, FREEZE_HOLDER_USERSPACE); if (error) return error; if (test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags)) { gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_FREEZE | GFS2_LFC_FREEZE_GO_SYNC); if (gfs2_withdrawing_or_withdrawn(sdp)) { error = thaw_super(sb, FREEZE_HOLDER_USERSPACE); if (error) return error; return -EIO; } } return 0; } static int gfs2_do_thaw(struct gfs2_sbd *sdp) { struct super_block *sb = sdp->sd_vfs; int error; error = gfs2_freeze_lock_shared(sdp); if (error) goto fail; error = thaw_super(sb, FREEZE_HOLDER_USERSPACE); if (!error) return 0; fail: fs_info(sdp, "GFS2: couldn't thaw filesystem: %d\n", error); gfs2_assert_withdraw(sdp, 0); return error; } void gfs2_freeze_func(struct work_struct *work) { struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_freeze_work); struct super_block *sb = sdp->sd_vfs; int error; mutex_lock(&sdp->sd_freeze_mutex); error = -EBUSY; if (test_bit(SDF_FROZEN, &sdp->sd_flags)) goto freeze_failed; error = gfs2_freeze_locally(sdp); if (error) goto freeze_failed; gfs2_freeze_unlock(&sdp->sd_freeze_gh); set_bit(SDF_FROZEN, &sdp->sd_flags); error = gfs2_do_thaw(sdp); if (error) goto out; clear_bit(SDF_FROZEN, &sdp->sd_flags); goto out; freeze_failed: fs_info(sdp, "GFS2: couldn't freeze filesystem: %d\n", error); out: mutex_unlock(&sdp->sd_freeze_mutex); deactivate_super(sb); } /** * gfs2_freeze_super - prevent further writes to the filesystem * @sb: the VFS structure for the filesystem * */ static int gfs2_freeze_super(struct super_block *sb, enum freeze_holder who) { struct gfs2_sbd *sdp = sb->s_fs_info; int error; if (!mutex_trylock(&sdp->sd_freeze_mutex)) return -EBUSY; error = -EBUSY; if (test_bit(SDF_FROZEN, &sdp->sd_flags)) goto out; for (;;) { error = gfs2_freeze_locally(sdp); if (error) { fs_info(sdp, "GFS2: couldn't freeze filesystem: %d\n", error); goto out; } error = gfs2_lock_fs_check_clean(sdp); if (!error) break; /* success */ error = gfs2_do_thaw(sdp); if (error) goto out; if (error == -EBUSY) fs_err(sdp, "waiting for recovery before freeze\n"); else if (error == -EIO) { fs_err(sdp, "Fatal IO error: cannot freeze gfs2 due " "to recovery error.\n"); goto out; } else { fs_err(sdp, "error freezing FS: %d\n", error); } fs_err(sdp, "retrying...\n"); msleep(1000); } out: if (!error) { set_bit(SDF_FREEZE_INITIATOR, &sdp->sd_flags); set_bit(SDF_FROZEN, &sdp->sd_flags); } mutex_unlock(&sdp->sd_freeze_mutex); return error; } /** * gfs2_thaw_super - reallow writes to the filesystem * @sb: the VFS structure for the filesystem * */ static int gfs2_thaw_super(struct super_block *sb, enum freeze_holder who) { struct gfs2_sbd *sdp = sb->s_fs_info; int error; if (!mutex_trylock(&sdp->sd_freeze_mutex)) return -EBUSY; error = -EINVAL; if (!test_bit(SDF_FREEZE_INITIATOR, &sdp->sd_flags)) goto out; gfs2_freeze_unlock(&sdp->sd_freeze_gh); error = gfs2_do_thaw(sdp); if (!error) { clear_bit(SDF_FREEZE_INITIATOR, &sdp->sd_flags); clear_bit(SDF_FROZEN, &sdp->sd_flags); } out: mutex_unlock(&sdp->sd_freeze_mutex); return error; } void gfs2_thaw_freeze_initiator(struct super_block *sb) { struct gfs2_sbd *sdp = sb->s_fs_info; mutex_lock(&sdp->sd_freeze_mutex); if (!test_bit(SDF_FREEZE_INITIATOR, &sdp->sd_flags)) goto out; gfs2_freeze_unlock(&sdp->sd_freeze_gh); out: mutex_unlock(&sdp->sd_freeze_mutex); } /** * statfs_slow_fill - fill in the sg for a given RG * @rgd: the RG * @sc: the sc structure * * Returns: 0 on success, -ESTALE if the LVB is invalid */ static int statfs_slow_fill(struct gfs2_rgrpd *rgd, struct gfs2_statfs_change_host *sc) { gfs2_rgrp_verify(rgd); sc->sc_total += rgd->rd_data; sc->sc_free += rgd->rd_free; sc->sc_dinodes += rgd->rd_dinodes; return 0; } /** * gfs2_statfs_slow - Stat a filesystem using asynchronous locking * @sdp: the filesystem * @sc: the sc info that will be returned * * Any error (other than a signal) will cause this routine to fall back * to the synchronous version. * * FIXME: This really shouldn't busy wait like this. * * Returns: errno */ static int gfs2_statfs_slow(struct gfs2_sbd *sdp, struct gfs2_statfs_change_host *sc) { struct gfs2_rgrpd *rgd_next; struct gfs2_holder *gha, *gh; unsigned int slots = 64; unsigned int x; int done; int error = 0, err; memset(sc, 0, sizeof(struct gfs2_statfs_change_host)); gha = kmalloc_array(slots, sizeof(struct gfs2_holder), GFP_KERNEL); if (!gha) return -ENOMEM; for (x = 0; x < slots; x++) gfs2_holder_mark_uninitialized(gha + x); rgd_next = gfs2_rgrpd_get_first(sdp); for (;;) { done = 1; for (x = 0; x < slots; x++) { gh = gha + x; if (gfs2_holder_initialized(gh) && gfs2_glock_poll(gh)) { err = gfs2_glock_wait(gh); if (err) { gfs2_holder_uninit(gh); error = err; } else { if (!error) { struct gfs2_rgrpd *rgd = gfs2_glock2rgrp(gh->gh_gl); error = statfs_slow_fill(rgd, sc); } gfs2_glock_dq_uninit(gh); } } if (gfs2_holder_initialized(gh)) done = 0; else if (rgd_next && !error) { error = gfs2_glock_nq_init(rgd_next->rd_gl, LM_ST_SHARED, GL_ASYNC, gh); rgd_next = gfs2_rgrpd_get_next(rgd_next); done = 0; } if (signal_pending(current)) error = -ERESTARTSYS; } if (done) break; yield(); } kfree(gha); return error; } /** * gfs2_statfs_i - Do a statfs * @sdp: the filesystem * @sc: the sc structure * * Returns: errno */ static int gfs2_statfs_i(struct gfs2_sbd *sdp, struct gfs2_statfs_change_host *sc) { struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master; struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local; spin_lock(&sdp->sd_statfs_spin); *sc = *m_sc; sc->sc_total += l_sc->sc_total; sc->sc_free += l_sc->sc_free; sc->sc_dinodes += l_sc->sc_dinodes; spin_unlock(&sdp->sd_statfs_spin); if (sc->sc_free < 0) sc->sc_free = 0; if (sc->sc_free > sc->sc_total) sc->sc_free = sc->sc_total; if (sc->sc_dinodes < 0) sc->sc_dinodes = 0; return 0; } /** * gfs2_statfs - Gather and return stats about the filesystem * @dentry: The name of the link * @buf: The buffer * * Returns: 0 on success or error code */ static int gfs2_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct gfs2_sbd *sdp = sb->s_fs_info; struct gfs2_statfs_change_host sc; int error; error = gfs2_rindex_update(sdp); if (error) return error; if (gfs2_tune_get(sdp, gt_statfs_slow)) error = gfs2_statfs_slow(sdp, &sc); else error = gfs2_statfs_i(sdp, &sc); if (error) return error; buf->f_type = GFS2_MAGIC; buf->f_bsize = sdp->sd_sb.sb_bsize; buf->f_blocks = sc.sc_total; buf->f_bfree = sc.sc_free; buf->f_bavail = sc.sc_free; buf->f_files = sc.sc_dinodes + sc.sc_free; buf->f_ffree = sc.sc_free; buf->f_namelen = GFS2_FNAMESIZE; return 0; } /** * gfs2_drop_inode - Drop an inode (test for remote unlink) * @inode: The inode to drop * * If we've received a callback on an iopen lock then it's because a * remote node tried to deallocate the inode but failed due to this node * still having the inode open. Here we mark the link count zero * since we know that it must have reached zero if the GLF_DEMOTE flag * is set on the iopen glock. If we didn't do a disk read since the * remote node removed the final link then we might otherwise miss * this event. This check ensures that this node will deallocate the * inode's blocks, or alternatively pass the baton on to another * node for later deallocation. */ static int gfs2_drop_inode(struct inode *inode) { struct gfs2_inode *ip = GFS2_I(inode); struct gfs2_sbd *sdp = GFS2_SB(inode); if (inode->i_nlink && gfs2_holder_initialized(&ip->i_iopen_gh)) { struct gfs2_glock *gl = ip->i_iopen_gh.gh_gl; if (test_bit(GLF_DEMOTE, &gl->gl_flags)) clear_nlink(inode); } /* * When under memory pressure when an inode's link count has dropped to * zero, defer deleting the inode to the delete workqueue. This avoids * calling into DLM under memory pressure, which can deadlock. */ if (!inode->i_nlink && unlikely(current->flags & PF_MEMALLOC) && gfs2_holder_initialized(&ip->i_iopen_gh)) { struct gfs2_glock *gl = ip->i_iopen_gh.gh_gl; gfs2_glock_hold(gl); if (!gfs2_queue_try_to_evict(gl)) gfs2_glock_queue_put(gl); return 0; } /* * No longer cache inodes when trying to evict them all. */ if (test_bit(SDF_EVICTING, &sdp->sd_flags)) return 1; return generic_drop_inode(inode); } static int is_ancestor(const struct dentry *d1, const struct dentry *d2) { do { if (d1 == d2) return 1; d1 = d1->d_parent; } while (!IS_ROOT(d1)); return 0; } /** * gfs2_show_options - Show mount options for /proc/mounts * @s: seq_file structure * @root: root of this (sub)tree * * Returns: 0 on success or error code */ static int gfs2_show_options(struct seq_file *s, struct dentry *root) { struct gfs2_sbd *sdp = root->d_sb->s_fs_info; struct gfs2_args *args = &sdp->sd_args; unsigned int logd_secs, statfs_slow, statfs_quantum, quota_quantum; spin_lock(&sdp->sd_tune.gt_spin); logd_secs = sdp->sd_tune.gt_logd_secs; quota_quantum = sdp->sd_tune.gt_quota_quantum; statfs_quantum = sdp->sd_tune.gt_statfs_quantum; statfs_slow = sdp->sd_tune.gt_statfs_slow; spin_unlock(&sdp->sd_tune.gt_spin); if (is_ancestor(root, sdp->sd_master_dir)) seq_puts(s, ",meta"); if (args->ar_lockproto[0]) seq_show_option(s, "lockproto", args->ar_lockproto); if (args->ar_locktable[0]) seq_show_option(s, "locktable", args->ar_locktable); if (args->ar_hostdata[0]) seq_show_option(s, "hostdata", args->ar_hostdata); if (args->ar_spectator) seq_puts(s, ",spectator"); if (args->ar_localflocks) seq_puts(s, ",localflocks"); if (args->ar_debug) seq_puts(s, ",debug"); if (args->ar_posix_acl) seq_puts(s, ",acl"); if (args->ar_quota != GFS2_QUOTA_DEFAULT) { char *state; switch (args->ar_quota) { case GFS2_QUOTA_OFF: state = "off"; break; case GFS2_QUOTA_ACCOUNT: state = "account"; break; case GFS2_QUOTA_ON: state = "on"; break; case GFS2_QUOTA_QUIET: state = "quiet"; break; default: state = "unknown"; break; } seq_printf(s, ",quota=%s", state); } if (args->ar_suiddir) seq_puts(s, ",suiddir"); if (args->ar_data != GFS2_DATA_DEFAULT) { char *state; switch (args->ar_data) { case GFS2_DATA_WRITEBACK: state = "writeback"; break; case GFS2_DATA_ORDERED: state = "ordered"; break; default: state = "unknown"; break; } seq_printf(s, ",data=%s", state); } if (args->ar_discard) seq_puts(s, ",discard"); if (logd_secs != 30) seq_printf(s, ",commit=%d", logd_secs); if (statfs_quantum != 30) seq_printf(s, ",statfs_quantum=%d", statfs_quantum); else if (statfs_slow) seq_puts(s, ",statfs_quantum=0"); if (quota_quantum != 60) seq_printf(s, ",quota_quantum=%d", quota_quantum); if (args->ar_statfs_percent) seq_printf(s, ",statfs_percent=%d", args->ar_statfs_percent); if (args->ar_errors != GFS2_ERRORS_DEFAULT) { const char *state; switch (args->ar_errors) { case GFS2_ERRORS_WITHDRAW: state = "withdraw"; break; case GFS2_ERRORS_PANIC: state = "panic"; break; default: state = "unknown"; break; } seq_printf(s, ",errors=%s", state); } if (test_bit(SDF_NOBARRIERS, &sdp->sd_flags)) seq_puts(s, ",nobarrier"); if (test_bit(SDF_DEMOTE, &sdp->sd_flags)) seq_puts(s, ",demote_interface_used"); if (args->ar_rgrplvb) seq_puts(s, ",rgrplvb"); if (args->ar_loccookie) seq_puts(s, ",loccookie"); return 0; } static void gfs2_final_release_pages(struct gfs2_inode *ip) { struct inode *inode = &ip->i_inode; struct gfs2_glock *gl = ip->i_gl; if (unlikely(!gl)) { /* This can only happen during incomplete inode creation. */ BUG_ON(!test_bit(GIF_ALLOC_FAILED, &ip->i_flags)); return; } truncate_inode_pages(gfs2_glock2aspace(gl), 0); truncate_inode_pages(&inode->i_data, 0); if (atomic_read(&gl->gl_revokes) == 0) { clear_bit(GLF_LFLUSH, &gl->gl_flags); clear_bit(GLF_DIRTY, &gl->gl_flags); } } static int gfs2_dinode_dealloc(struct gfs2_inode *ip) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct gfs2_rgrpd *rgd; struct gfs2_holder gh; int error; if (gfs2_get_inode_blocks(&ip->i_inode) != 1) { gfs2_consist_inode(ip); return -EIO; } gfs2_rindex_update(sdp); error = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); if (error) return error; rgd = gfs2_blk2rgrpd(sdp, ip->i_no_addr, 1); if (!rgd) { gfs2_consist_inode(ip); error = -EIO; goto out_qs; } error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, LM_FLAG_NODE_SCOPE, &gh); if (error) goto out_qs; error = gfs2_trans_begin(sdp, RES_RG_BIT + RES_STATFS + RES_QUOTA, sdp->sd_jdesc->jd_blocks); if (error) goto out_rg_gunlock; gfs2_free_di(rgd, ip); gfs2_final_release_pages(ip); gfs2_trans_end(sdp); out_rg_gunlock: gfs2_glock_dq_uninit(&gh); out_qs: gfs2_quota_unhold(ip); return error; } /** * gfs2_glock_put_eventually * @gl: The glock to put * * When under memory pressure, trigger a deferred glock put to make sure we * won't call into DLM and deadlock. Otherwise, put the glock directly. */ static void gfs2_glock_put_eventually(struct gfs2_glock *gl) { if (current->flags & PF_MEMALLOC) gfs2_glock_queue_put(gl); else gfs2_glock_put(gl); } static bool gfs2_upgrade_iopen_glock(struct inode *inode) { struct gfs2_inode *ip = GFS2_I(inode); struct gfs2_sbd *sdp = GFS2_SB(inode); struct gfs2_holder *gh = &ip->i_iopen_gh; long timeout = 5 * HZ; int error; gh->gh_flags |= GL_NOCACHE; gfs2_glock_dq_wait(gh); /* * If there are no other lock holders, we will immediately get * exclusive access to the iopen glock here. * * Otherwise, the other nodes holding the lock will be notified about * our locking request. If they do not have the inode open, they are * expected to evict the cached inode and release the lock, allowing us * to proceed. * * Otherwise, if they cannot evict the inode, they are expected to poke * the inode glock (note: not the iopen glock). We will notice that * and stop waiting for the iopen glock immediately. The other node(s) * are then expected to take care of deleting the inode when they no * longer use it. * * As a last resort, if another node keeps holding the iopen glock * without showing any activity on the inode glock, we will eventually * time out and fail the iopen glock upgrade. * * Note that we're passing the LM_FLAG_TRY_1CB flag to the first * locking request as an optimization to notify lock holders as soon as * possible. Without that flag, they'd be notified implicitly by the * second locking request. */ gfs2_holder_reinit(LM_ST_EXCLUSIVE, LM_FLAG_TRY_1CB | GL_NOCACHE, gh); error = gfs2_glock_nq(gh); if (error != GLR_TRYFAILED) return !error; gfs2_holder_reinit(LM_ST_EXCLUSIVE, GL_ASYNC | GL_NOCACHE, gh); error = gfs2_glock_nq(gh); if (error) return false; timeout = wait_event_interruptible_timeout(sdp->sd_async_glock_wait, !test_bit(HIF_WAIT, &gh->gh_iflags) || test_bit(GLF_DEMOTE, &ip->i_gl->gl_flags), timeout); if (!test_bit(HIF_HOLDER, &gh->gh_iflags)) { gfs2_glock_dq(gh); return false; } return gfs2_glock_holder_ready(gh) == 0; } /** * evict_should_delete - determine whether the inode is eligible for deletion * @inode: The inode to evict * @gh: The glock holder structure * * This function determines whether the evicted inode is eligible to be deleted * and locks the inode glock. * * Returns: the fate of the dinode */ static enum dinode_demise evict_should_delete(struct inode *inode, struct gfs2_holder *gh) { struct gfs2_inode *ip = GFS2_I(inode); struct super_block *sb = inode->i_sb; struct gfs2_sbd *sdp = sb->s_fs_info; int ret; if (unlikely(test_bit(GIF_ALLOC_FAILED, &ip->i_flags))) goto should_delete; if (test_bit(GIF_DEFERRED_DELETE, &ip->i_flags)) return SHOULD_DEFER_EVICTION; /* Deletes should never happen under memory pressure anymore. */ if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) return SHOULD_DEFER_EVICTION; /* Must not read inode block until block type has been verified */ ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, GL_SKIP, gh); if (unlikely(ret)) { glock_clear_object(ip->i_iopen_gh.gh_gl, ip); ip->i_iopen_gh.gh_flags |= GL_NOCACHE; gfs2_glock_dq_uninit(&ip->i_iopen_gh); return SHOULD_DEFER_EVICTION; } if (gfs2_inode_already_deleted(ip->i_gl, ip->i_no_formal_ino)) return SHOULD_NOT_DELETE_DINODE; ret = gfs2_check_blk_type(sdp, ip->i_no_addr, GFS2_BLKST_UNLINKED); if (ret) return SHOULD_NOT_DELETE_DINODE; ret = gfs2_instantiate(gh); if (ret) return SHOULD_NOT_DELETE_DINODE; /* * The inode may have been recreated in the meantime. */ if (inode->i_nlink) return SHOULD_NOT_DELETE_DINODE; should_delete: if (gfs2_holder_initialized(&ip->i_iopen_gh) && test_bit(HIF_HOLDER, &ip->i_iopen_gh.gh_iflags)) { if (!gfs2_upgrade_iopen_glock(inode)) { gfs2_holder_uninit(&ip->i_iopen_gh); return SHOULD_NOT_DELETE_DINODE; } } return SHOULD_DELETE_DINODE; } /** * evict_unlinked_inode - delete the pieces of an unlinked evicted inode * @inode: The inode to evict */ static int evict_unlinked_inode(struct inode *inode) { struct gfs2_inode *ip = GFS2_I(inode); int ret; if (S_ISDIR(inode->i_mode) && (ip->i_diskflags & GFS2_DIF_EXHASH)) { ret = gfs2_dir_exhash_dealloc(ip); if (ret) goto out; } if (ip->i_eattr) { ret = gfs2_ea_dealloc(ip); if (ret) goto out; } if (!gfs2_is_stuffed(ip)) { ret = gfs2_file_dealloc(ip); if (ret) goto out; } /* * As soon as we clear the bitmap for the dinode, gfs2_create_inode() * can get called to recreate it, or even gfs2_inode_lookup() if the * inode was recreated on another node in the meantime. * * However, inserting the new inode into the inode hash table will not * succeed until the old inode is removed, and that only happens after * ->evict_inode() returns. The new inode is attached to its inode and * iopen glocks after inserting it into the inode hash table, so at * that point we can be sure that both glocks are unused. */ ret = gfs2_dinode_dealloc(ip); if (!ret && ip->i_gl) gfs2_inode_remember_delete(ip->i_gl, ip->i_no_formal_ino); out: return ret; } /* * evict_linked_inode - evict an inode whose dinode has not been unlinked * @inode: The inode to evict */ static int evict_linked_inode(struct inode *inode) { struct super_block *sb = inode->i_sb; struct gfs2_sbd *sdp = sb->s_fs_info; struct gfs2_inode *ip = GFS2_I(inode); struct address_space *metamapping; int ret; gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL | GFS2_LFC_EVICT_INODE); metamapping = gfs2_glock2aspace(ip->i_gl); if (test_bit(GLF_DIRTY, &ip->i_gl->gl_flags)) { filemap_fdatawrite(metamapping); filemap_fdatawait(metamapping); } write_inode_now(inode, 1); gfs2_ail_flush(ip->i_gl, 0); ret = gfs2_trans_begin(sdp, 0, sdp->sd_jdesc->jd_blocks); if (ret) return ret; /* Needs to be done before glock release & also in a transaction */ truncate_inode_pages(&inode->i_data, 0); truncate_inode_pages(metamapping, 0); gfs2_trans_end(sdp); return 0; } /** * gfs2_evict_inode - Remove an inode from cache * @inode: The inode to evict * * There are three cases to consider: * 1. i_nlink == 0, we are final opener (and must deallocate) * 2. i_nlink == 0, we are not the final opener (and cannot deallocate) * 3. i_nlink > 0 * * If the fs is read only, then we have to treat all cases as per #3 * since we are unable to do any deallocation. The inode will be * deallocated by the next read/write node to attempt an allocation * in the same resource group * * We have to (at the moment) hold the inodes main lock to cover * the gap between unlocking the shared lock on the iopen lock and * taking the exclusive lock. I'd rather do a shared -> exclusive * conversion on the iopen lock, but we can change that later. This * is safe, just less efficient. */ static void gfs2_evict_inode(struct inode *inode) { struct super_block *sb = inode->i_sb; struct gfs2_sbd *sdp = sb->s_fs_info; struct gfs2_inode *ip = GFS2_I(inode); struct gfs2_holder gh; int ret; if (inode->i_nlink || sb_rdonly(sb) || !ip->i_no_addr) goto out; /* * In case of an incomplete mount, gfs2_evict_inode() may be called for * system files without having an active journal to write to. In that * case, skip the filesystem evict. */ if (!sdp->sd_jdesc) goto out; gfs2_holder_mark_uninitialized(&gh); ret = evict_should_delete(inode, &gh); if (ret == SHOULD_DEFER_EVICTION) goto out; if (ret == SHOULD_DELETE_DINODE) ret = evict_unlinked_inode(inode); else ret = evict_linked_inode(inode); if (gfs2_rs_active(&ip->i_res)) gfs2_rs_deltree(&ip->i_res); if (gfs2_holder_initialized(&gh)) gfs2_glock_dq_uninit(&gh); if (ret && ret != GLR_TRYFAILED && ret != -EROFS) fs_warn(sdp, "gfs2_evict_inode: %d\n", ret); out: truncate_inode_pages_final(&inode->i_data); if (ip->i_qadata) gfs2_assert_warn(sdp, ip->i_qadata->qa_ref == 0); gfs2_rs_deltree(&ip->i_res); gfs2_ordered_del_inode(ip); clear_inode(inode); gfs2_dir_hash_inval(ip); if (gfs2_holder_initialized(&ip->i_iopen_gh)) { struct gfs2_glock *gl = ip->i_iopen_gh.gh_gl; glock_clear_object(gl, ip); gfs2_glock_hold(gl); ip->i_iopen_gh.gh_flags |= GL_NOCACHE; gfs2_glock_dq_uninit(&ip->i_iopen_gh); gfs2_glock_put_eventually(gl); } if (ip->i_gl) { glock_clear_object(ip->i_gl, ip); wait_on_bit_io(&ip->i_flags, GIF_GLOP_PENDING, TASK_UNINTERRUPTIBLE); gfs2_glock_add_to_lru(ip->i_gl); gfs2_glock_put_eventually(ip->i_gl); rcu_assign_pointer(ip->i_gl, NULL); } } static struct inode *gfs2_alloc_inode(struct super_block *sb) { struct gfs2_inode *ip; ip = alloc_inode_sb(sb, gfs2_inode_cachep, GFP_KERNEL); if (!ip) return NULL; ip->i_no_addr = 0; ip->i_flags = 0; ip->i_gl = NULL; gfs2_holder_mark_uninitialized(&ip->i_iopen_gh); memset(&ip->i_res, 0, sizeof(ip->i_res)); RB_CLEAR_NODE(&ip->i_res.rs_node); ip->i_rahead = 0; return &ip->i_inode; } static void gfs2_free_inode(struct inode *inode) { kmem_cache_free(gfs2_inode_cachep, GFS2_I(inode)); } void free_local_statfs_inodes(struct gfs2_sbd *sdp) { struct local_statfs_inode *lsi, *safe; /* Run through the statfs inodes list to iput and free memory */ list_for_each_entry_safe(lsi, safe, &sdp->sd_sc_inodes_list, si_list) { if (lsi->si_jid == sdp->sd_jdesc->jd_jid) sdp->sd_sc_inode = NULL; /* belongs to this node */ if (lsi->si_sc_inode) iput(lsi->si_sc_inode); list_del(&lsi->si_list); kfree(lsi); } } struct inode *find_local_statfs_inode(struct gfs2_sbd *sdp, unsigned int index) { struct local_statfs_inode *lsi; /* Return the local (per node) statfs inode in the * sdp->sd_sc_inodes_list corresponding to the 'index'. */ list_for_each_entry(lsi, &sdp->sd_sc_inodes_list, si_list) { if (lsi->si_jid == index) return lsi->si_sc_inode; } return NULL; } const struct super_operations gfs2_super_ops = { .alloc_inode = gfs2_alloc_inode, .free_inode = gfs2_free_inode, .write_inode = gfs2_write_inode, .dirty_inode = gfs2_dirty_inode, .evict_inode = gfs2_evict_inode, .put_super = gfs2_put_super, .sync_fs = gfs2_sync_fs, .freeze_super = gfs2_freeze_super, .thaw_super = gfs2_thaw_super, .statfs = gfs2_statfs, .drop_inode = gfs2_drop_inode, .show_options = gfs2_show_options, };